CONSTRUCTION SPECIFICATIONS ## **BUILDING 1978 RENOVATION** # SENSITIVE COMPARTMENTED INFORMATION FACILITY (SCIF) FORT MEADE, MARYLAND INVITATION NO. DACA31-02-R-0042 CONTRACT NO. DATE: **JUL 19, 2002** #### PROJECT TABLE OF CONTENTS #### DIVISION 01 - GENERAL REQUIREMENTS - 01000 ADMINISTRATIVE REQUIREMENTS - 01050 JOB CONDITIONS 01060 SAFETY - 01070 CUTTING, PATCHING AND REPAIRING - 01200 WARRANTY REQUIREMENT - 01312 RESIDENT MANAGEMENT SYSTEM (RMS) - 01320 PROJECT SCHEDULE - 01330 SUBMITTAL PROCEDURES - 01420 SOURCES FOR REFERENCE PUBLICATIONS - 01451 CONTRACTOR QUALITY CONTROL - 01510 TEMPORARY CONSTRUCTION ITEMS - 01561 ENVIRONMENTAL PROTECTION - 01572 CONSTRUCTION AND DEMOLITION WASTE MANAGEMENT - 01670 RECYCLED / RECOVERED MATERIALS - 01720 AS-BUILT DRAWINGS CADD - 01780 CLOSEOUT SUBMITTALS #### DIVISION 02 - SITE WORK - 02300 SITE GRADING AND EARTHWORK FOR ROADWAYS - 02315 EXCAVATION, FILLING AND BACKFILLING FOR BUILDINGS - 02821N CHAIN LINK FENCES AND GATES #### DIVISION 03 - CONCRETE 03300 CAST-IN-PLACE STRUCTURAL CONCRETE DIVISION 04 - MASONRY 04200a MASONRY DIVISION 05 - METALS - 05120a STRUCTURAL STEEL - 05300a STEEL DECKING - 05500a MISCELLANEOUS METAL #### DIVISION 06 - WOODS & PLASTICS - 06100a ROUGH CARPENTRY - 06410a LAMINATE CLAD ARCHITECTURAL CASEODORK - 06650 SOLID POLYMER (SOLID SURFACING) FABRICATIONS #### DIVISION 07 - THERMAL & MOISTURE PROTECTION - 07190N WATER REPELLENTS - 07212N MINERAL FIBER BLANKET INSULATION - 07840a FIRESTOPPING - 07900a JOINT SEALING #### DIVISION 08 - DOORS & WINDOWS - 08110 STEEL DOORS AND FRAMES - 08210 WOOD DOORS - 08710 DOOR HARDWARE #### DIVISION 09 - FINISHES - 09100N METAL SUPPORT ASSEMBLIES - 09250A GYPSUM WALLBOARD - 09310A CERAMIC TILE - 09510A ACOUSTICAL CEILINGS - 09651N RESILIENT TILE FLOORING - 09680A CARPET - 09900 PAINTS AND COATINGS - 09915 COLOR SCHEDULE #### DIVISION 10 - SPECIALTIES - 10160A TOILET PARTITIONS - 10270A RAISED FLOOR SYSTEM - 10440A INTERIOR SIGNAGE - 10520 FIRE PROTECTION SPECIALTIES - 10800A TOILET ACCESSORIES #### DIVISION 13 - SPECIAL CONSTRUCTION - 13280A ASBESTOS ABATEMENT - 13851A FIRE DETECTION AND ALARM SYSTEM, ADDRESSABLE - 13930A WET PIPE SPRINKLER SYSTEM, FIRE PROTECTION #### DIVISION 15 - MECHANICAL - 15080A THERMAL INSULATION FOR MECHANICAL SYSTEMS - 15182A REFRIGERANT PIPING - 15190A GAS PIPING SYSTEMS - 15400A PLUMBING, GENERAL PURPOSE - 15565A HEATING SYSTEM; GAS-FIRED HEATERS - 15700A UNITARY HEATING AND COOLING EQUIPMENT - 15895A AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM - 15951A DIRECT DIGITAL CONTROL FOR HVAC - 15990A TESTING, ADJUSTING, AND BALANCING OF HVAC SYSTEMS - 15995A COMMISSIONING OF HVAC SYSTEMS #### DIVISION 16 - ELECTRICAL - 16415A ELECTRICAL WORK, INTERIOR - 16528A EXTERIOR LIGHTING - 16710A PREMISES DISTRIBUTION SYSTEM - -- End of Project Table of Contents -- #### SECTION 01000 ## ADMINISTRATIVE REQUIREMENTS 01/01 #### PART 1 GENERAL #### 1.1 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-01 Preconstruction Submittals Vehicle Registration; G A/E Proof of purchase for equipment and/or materials. Photographs; G A/E SD-03 Product Data Equipment Data; G A/E An itemized list of serial/model numbers and equipment installed by the Contractor under this contract.. A schedule that shows the manner in which the Contractor intends to prosecute the work. SD-10 Operation and Maintenance Data O and M Data; G A/E A list of proposed maintenance and instruction manuals that is mainly used for but not limited to customized equipment. Commissioning Activity for HVAC; G A/E The Contractor shall provide a separate activity for commissioning. Commissioning shall start only after all HVAC related work has been completed and all HVAC O&M manuals have been submitted and approved by the Government. #### 1.2 PROGRESS SCHEDULING AND REPORTING (DEC 1998) #### 1.2.1 Practicable Progress Schedule The Contractor shall, within 20 days after date of commencement of work or as otherwise determined by the Contracting Officer, submit for approval a practicable progress schedule in accordance with specification Section 01320 PROJECT SCHEDULE showing the manner in which he intends to prosecute the work. #### 1.2.2 Software Package The Contractor shall utilize an industry recognized scheduling software package to implement the requirements of Section 01320 PROJECT SCHEDULE. The program and data must be IBM PC compatible in a Window environment. These requirements are not intended to restrict the Contractors selection of an automated scheduling system but to establish a format which will allow use of the same program with government computers and automated information systems. The Contractor will provide at least one program installation and maintenance on government hardware complete with all program and data files. Such installation shall be maintained for the duration of the project until fiscal completion and shall allow analysis and of the project schedule by government personnel or agents. #### 1.2.3 Additional Scheduling Requirements The Contractor shall incorporate the following requirements in addition to those specified in Section 01320 PROJECT SCHEDULE. #### 1.2.4 Preparation of Operation and Maintenance (O&M) Manuals The Contractor shall provide a separate activity for the preparation and submission of all O&M manuals. The associated cost of \$2,000 shall be assessed for this activity. #### 1.2.5 Commissioning Activity for HVAC The Contractor shall provide a separate activity for commissioning of the HVAC system. The activity shall be as a minimum 30 days long. The associated cost shall be \$9,600 of value of the HVAC system. Commissioning shall start only after all HVAC related work has been completed and all HVAC O&M manuals have been submitted and approved by the Government. #### 1.2.6 Additional Commissioning Requirements Provide separate activities for commissioning of systems shown below. Each activity shall be as a minimum duration as shown below and shall have an appropriate associated cost. - a. Electrical Interior 30 in Duration cost: \$8,650 - c. Fire Alarm System 30 in Duration Cost \$1,250 - e. Communication System 60 in Duration Cost\$19,500 #### 1.3 PAYMENTS TO CONTRACTORS: (NOV 1976) For payment purposes only, an allowance will be made by the Contracting Officer of 100 percent of the invoiced cost of materials or equipment delivered to the site but not incorporated into the construction, pursuant to the Contract Clause entitled "PAYMENTS UNDER FIXED-PRICE CONSTRUCTION CONTRACTS". The Contracting Officer may also, at his discretion, take into consideration the cost of materials or equipment stored at locations other than the jobsite, when making progress payments under the contract. In order to be eligible for payment, the Contractor must provide satisfactory evidence that he has acquired title to such material or equipment, and that it will be utilized on the work covered by this contract. Further, all items must be properly stored and protected. Earnings will be computed using 100% of invoiced value. (CENAB-CO-E) #### 1.4 IDENTIFICATION OF EMPLOYEES: (OCT 1983) Each employee assigned to this project by the Contractor and subcontractors shall be required to display at all times, while on the project site, an approved form of identification provided by the Contractor, as an authorized employee of the Contractor/subcontractor. In addition, on those projects where identification is prescribed and furnished by the Government, it shall be displayed as required and it shall immediately be returned to the Contracting Officer for cancellation upon release of the assigned employee and or completion of project. (CENAB) #### 1.5 PURCHASE ORDER: (SEP 1975) One readable copy of all purchase orders for material and equipment, showing firm names and addresses, and all shipping bills, or memoranda of shipment received regarding such material and equipment, shall be furnished to the appointed Contracting Officer's Representative as soon as issued. Such orders, shipping bills or memoranda shall be so worded or marked that all material and each item, piece or member of equipment can be definitely identified on the drawings. Where a priority rating is assigned to a contract, this rating, the required delivery date, and the scheduled shipping date shall also be shown on the purchase order. At the option of the Contractor, the copy of the purchase order may or may not indicate the purchase price. (CENAB-CO-E) #### 1.6 REAL PROPERTY EQUIPMENT DATA: (APR 1975) At or before the time of completion of the contract, the Contractor shall submit to the Contracting Officer a complete itemized list, including serial and model number where applicable, showing the unit retail value of each Contractor furnished item of mechanical, electrical and plumbing equipment installed by the Contractor under this contract. For each of the items which is specified herein to be guaranteed for a specified period from the date of acceptance thereof, either for beneficial use or final acceptance, whichever is earlier, against defective materials, design, and workmanship, the following information shall be given: the name, address and telephone number of the Subcontractor, Equipment Supplier, or Manufacturer originating the guaranteed item. The list shall be accompanied by a copy of the specific guarantee document for each item which is specified herein to be guaranteed if one had been furnished to the Contractor by the Equipment Supplier or Manufacturer. The Contractor's guarantee to the Government of these items will not be limited by the terms of any manufacturer's guarantee to the Contractor. Baltimore District NADB
Form 1019 may be utilized for the itemized listing and will be made available to the Contractor upon request. (CENAB-CO-E) #### 1.7 O and M DATA: (JUL 1979) The requirements for furnishing operating and maintenance data and field instruction are specified elsewhere in the specifications. The Contractor shall submit to the Contracting Officer, at a time prior to the 50% project completion time, a list of proposed maintenance and instruction manuals to be furnished the Government and the scheduled dates of all required field instructions to be provided by Contractor furnished personnel or manufacturer's representatives. All maintenance and instruction manuals must be furnished to the Contracting Officer at least 2 weeks prior to the scheduled dates of any required Contractor furnished field instructions or at least one month prior to project completion if no Contractor furnished field instructions are required. (CENAB) #### 1.8 FACILITY SECURITY REQUIREMENTS: - a. Paragraph CONTRACTOR'S ACCESS is a basic plan for the Contractor. If additional information is needed the POC is Bryan C. Tempio and can be reached at OFFICE (301) 212-2514; FAX (301) 912-2156; CELL (301) 320-9415. - b. Paragraphs LIMITED ACCESS CONTROL; 24-HOUR ACCESS CONTROL and VEHICLE REGISTRATION: If additional information is needed the POC is Mr. Julius Simms, Public Affairs Officer at (301) 677-1301. Access is controlled by the Provost Marshall's Office #### 1.8.1 Contractor's Access #### a. Contract Work - 1. The Contracting Officer will provide a contractor list to the Provost Marshal's Office. - 2. The Contractor will then provide a list of his subcontractors to the PMO. - 3. The Contractor and subcontractors will then provide a proposed list of their personnnel, Listing Name, Social Security Number, Date of birth, place of birth. Each employee shall be required to obtain a temporary 30 day pass if they anticipate working on the contract for more than 1 day. All deliveries are to be made through the Mapes Entrance off of Rte 32 - 4. Delieveries will need a bill of lading indicating the Contractor's name and which contract they are delivering to. - b. Contractor's Meeting With Government Personnel on Fort Meade. - 1. Government employees will most likely be using GSA vehicles. - 2. Contractors will be required to register at the Visitor's Center located at Reece Road and Route 175. #### 1.8.2 Limited Access Control - a. Limited access control involves gates either permanently closed or manned by military police or security personnel. - 1. Range Road and Pepper Road entrances are permanently closed. - b. Four gates with limited access Monday thru Friday and closed on weekends and holidays are as follows: - 1. NSA Connector and BW Parkway open 5 a.m. thru 9 p.m. - 2. Mapes Road and Route 175 open 5 a.m. thru 9 p.m. - 3. Rockenbach Road and Route 175 open 5 a.m. thru 9 p.m. - 4. Llewelly Avenue and Route 175 open 5:30 8:30 a.m. and 3 6 p.m. #### 1.8.3 24-Hour Access Control - a. The following gates have 24-hour access seven days a week. - a. Mapes Road and Route 32. - b. Reece Road and Route 175 (Visitors Center Location) - c. Canine Road and Route 32. - d. Sanford Road and Route 32 (temporary closed due to construction.) - b. Everyone who lives or works on Fort Meade must register their vehicles. Only registered vehicles will be allowed to enter. Vehicles that are not registered with the installation Provost Marshall Office will be denied access and re-routed to the Visitors Center entrance to register their vehicle or obtain a day pass. #### 1.8.4 Vehicle Registration - a. Provide identification showing government affiliation. - b. Provide a valid driver's license, vehicle registration and proof of insurance. - c. If someone else ownes the vehicle, the owner must authorize the registration with either a power of attorney or a notarized letter. #### 1.9 NEGOTIATED MODIFICATIONS: (OCT 84) Whenever profit is negotiated as an element of price for any modification to this contract with either prime or subcontractor, a reasonable profit shall be negotiated or determined by using the OCE Weighted Guidelines method outlined in EFARS 15.902. (Sugg. NAB 84-232) #### 1.10 PHOTOGRAPHS #### ALTERNATE A: PHOTOGRAPHIC COVERAGE: (SEP 85) Permission to take photographs under this contract shall be obtained from the Provost Marshal through the Contracting Officer. The Contractor shall provide photographic coverage under the contract. These services shall be for ten commercial grade color photographs every three months from the beginning of the contract until acceptance of the completed work. These photographs shall be in 8" x 10" size and shall be taken at intervals and at the place designated by the Contracting Officer. Negatives from all of the above photographs shall be given to and become the property of the Government. (CENAB-CO) #### ALTERNATE B PHOTOGRAPHIC COVERAGE: (SEP 85) Permission to take photographs under this contract shall be obtained from the Provost Marshal through the Contracting Officer. The Contractor shall furnish ten each 8" x 10" (commercial grade color photographs of the project (with negatives) to the Contracting Officer. These photographs shall be taken at systematic intervals during the contract where and when directed by the Contracting Officer. (CENAB-CO) #### 1.11 PARTNERING: (NOV 92) In order to most effectively accomplish this contract, the Government is willing to form a cohesive partnership with the Contractor and its subcontractors. This partnership would strive to draw on the strengths of each organization in an effort to achieve a quality project done right the first time, within budget and on schedule. This partnership would be bilateral in make-up and participation will be totally voluntary. Any cost associated with effectuating this partnership will be agreed to by both parties and will be shared equally with no change in contract price. (CENAB-EN-DT) PART 2 PRODUCTS NOT APPLICABLE PART 3 EXECUTION NOT APPLICABLE #### ATTACHMENTS: NADB Form 1153 ("Physical Construction Progress Chart" -- End of Section -- SECTION 01050 ## JOB CONDITIONS 01/01 #### PART 1 GENERAL #### 1.1 LAYOUT OF WORK #### ALTERNATE 1: SURVEY MUST BE SHOWN ON SITE PLAN. LAYOUT OF WORK: (NOV 1993) The Contractor shall layout his work and shall be responsible for all measurements in connection with therewith. The Contractor shall furnish, at his own expense, templates, platforms, equipment, tools, materials, and labor as may be required in laying out any part of the work. The Contractor will be held responsible for execution of the work to such lines and elevations shown on the drawings or indicated by the Contractor. (CENAB) #### 1.2 PHYSICAL DATA: (APR 1984) Data and information furnished or referred to below is for the Contractor's information. The Government shall not be responsible for any interpretation or conclusion drawn from the data or information by the Contractor. (CENAB) #### 1.2.1 Transportation Facilities The principal access roads are Maryland Routes 198, 32 and 175. These State Highways also connect to the other major highways, U.S. 1 and I-95. There is no current rail service to Fort Meade. The Maryland Department of Transportation provides daily bus service between the Fort and downtown Baltimore and the Baltimore-Washington International Airport. #### 1.3 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: #### SD-01 Preconstruction Submittals Shut Down Utility Services; G AR. Prior approval for service/utility interruptions. Checklist; G A/E A Risk Assessment for excavation and other work in the vicinity of utilities. SD-05 Design Data Summarization; G A/E A form that is used for statistical information purposes. SD-07 Certificates Operations Statement; G A/E Written proof that the boilers have been properly installed and are operating satisfactorily in accordance with the manufacturer's instructions. #### 1.4 UTILITIES 1.4.1 Availability of Utilities Including Lavatory Facilities: (JUN 1980) It shall be the responsibility of the Contractor to provide all utilities he may require during the entire life of the contract. He shall make his own investigation and determinations as to the availability and adequacy of utilities for his use for construction purposes and domestic consumption. He shall install and maintain all necessary supply lines, connections, piping, and meters if required, but only at such locations and in such manner as approved by the Contracting Officer. Before final acceptance of work under this contract, all temporary supply lines, connections and piping installed by the Contractor shall be removed by him in a manner satisfactory to the Contracting Officer. (CENAB) - 1.4.2 Interruption of Utilities: (1972) - a. No utility services shall be interrupted by the Contractor to make connections, to relocate, or for any purpose without approval of the Contracting Officer. - b. Request for permission to shut down utility services shall be submitted in writing to the Contracting Officer not less than 17 days prior to proposed date of interruption. The request shall give the following information: - c. Nature of Utility (Gas, L.P. or H.P., Water, Etc.) - d. Size of line and location of shutoff. - e. Buildings and services affected. - f. Hours and date of shutoff. - g. Estimated length of time service will be interrupted. - h. Services will not be shut off until receipt of approval of the proposed hours and date from the Contracting Officer. - i. Shutoffs which will cause interruption of Government work operations as determined by the Contracting Officer shall be accomplished during regular non-work hours or on non-work
days of the Using Agency without any additional cost to the Government. - j. Operation of valves on water mains will be by Government personnel. Where shutoff of water lines interrupts service to fire hydrants or fire sprinkler systems, the Contractor shall arrange his operations and have sufficient material and personnel available to complete the work without undue delay or to restore service without delay in event of emergency. k. Flow in gas mains which have been shut off shall not be restored until the Government inspector has determined that all items serviced by the gas line have been shut off. (CENAB) #### 1.4.3 Utility Markings The Contractor shall contact the installation/DPW and the One-Call Service, a minimum of 14 days and 48 hours, respectively, prior to any excavation, the Post DPW and Miss Utility requesting utility location markings. The Contractor shall not proceed with any excavation until all utilities, including abandoned utilities, have been marked to the satisfaction of the Contracting Officer. Prior to requesting the marking of utilities, the Contractor shall stake out proposed excavations and limits of work with white lines ("White Lining"). It is the Contractor's responsibility to ensure that all permits (excavation or otherwise, including DPW permits) are current and up-to-date without expiration. In addition to the above requirements the Contractor shall: - a) Visually survey and verify that all utility markings are consistent with existing appurtenances such as manholes, valve boxes, poles, pedestals, pad-mounted devices, gas meters, etc. prior to any excavation. - b) Hand dig test holes to verify the depth and location of all utilities prior to any mechanical excavation within the limits of work. Other non-damaging methods for utility verification, as indicated in (d) below, may be considered subject to approval by the Contracting Officer. Also, verify that any abandoned utilities are not active. - c) Preserve all utility markings for the duration of the project to the furthest extent possible. - d) When excavation is performed within 2 feet of any utility line, a non-damaging method of excavation shall be used. The non-damaging method shall be hand digging. Other non-damaging methods, such as, soft digging, vacuum excavation, pneumatic hand tools, may be considered subject to approval by the Contracting Officer. - e) Regardless of the type of excavation, the Contractor shall notify the Contracting Officer a minimum of 72 hours prior to any excavation activity. Failure to notify the Contracting Officer can result in the issuance of a "Stop Work" order, which shall not be justification for contract delay or time extension. The Government reserves the right to have personnel present on site during any type of excavation. - f) The Contractor's Quality Control System Manager shall ensure that all excavation requirements herein are met at the time of the preparatory phase of quality control, and that the excavation procedures are reviewed during the preparatory phase meeting. This preparatory phase of control shall also establish and document contingency plans and actions to be followed in the event that existing utilities are damaged or interrupted. Locations of shut off or isolation devices along with other safety features shall be established and their operation reviewed. - g) Any work other than excavation in the vicinity of a utility, that could damage or interrupt a utility, such as, exterior or interior work near transformers, power lines, poles, above ground gas lines, gas meters, etc., shall be done with extreme care. The Contractor shall specifically note during the preparatory phase of quality control, the construction techniques to be used to preclude damaging or interrupting any utility. This preparatory phase of control shall also establish and document contingency plans and actions to be followed in the event that existing utilities are damaged or interrupted. Locations of shut off or isolation devices along with other safety features shall be established and their operation reviewed. - h) The Contractor shall complete a risk assessment, using the attached checklist, at least one week prior to the start of any excavation or other work in the vicinity of a utility. The risk assessment shall be submitted for government approval prior to any excavation or other work in the vicinity of a utility. A risk assessment shall be completed for each definable feature of work encountering utilities and shall include all utilities anticipated to be encountered. #### 1.5 DISPOSAL OF EXISTING MATERIAL AND EQUIPMENT: (DEC 1975) All removed, dismantled or demolished material and/or equipment including rubble, scrap and debris not specified or indicated to be Government salvaged, reinstalled under this contract or otherwise retained for disposal on Government land will become the property of the Contractor and shall be promptly removed from the site and disposed of by the Contractor at his own expense and responsibility. (CENAB) 1.6 COMPLIANCE WITH POST/BASE REGULATIONS: (JUL 1980) The site of the work is on a military reservation and all rules and regulations issued by the Commanding Officer covering general safety, security, sanitary requirements, pollution control, traffic regulations and parking, shall be observed by the Contractor. Information regarding these requirements may be obtained by contacting the Contracting Officer, who will provide such information or assist in obtaining same from appropriate authorities. (MEMO) #### 1.7 MAINTENANCE OF ACCESS: (DEC 1975) The Contractor shall not block passage through sidewalks, roads, alleys or other entranceways to the building during performance of work under this contract. In addition, the Contractor shall at all times maintain safe and clear passage through interior corridors and doorways to allow minimal disruption of normal activities within the building. No equipment or new materials are to be stored in the building except those items that are necessary for progress of the immediate work. All existing equipment, materials and debris removed during the work that are not to be reinstalled shall be removed daily by the Contractor from the building. (CENAB) - 1.8 PROTECTION OF GOVERNMENT PROPERTY AND PERSONNEL: (DEC 1975) - 1.8.1 Protection of Equipment All existing Government owned equipment within the work area shall be protected by the Contractor from damage caused by construction operations. As a minimum, the Contractor shall cover all furniture, equipment and carpets in the work area with dust barriers and protect such items from any damage due to dust, vibration, water, heat or other conditions resulting from construction activities. Existing work damaged by construction operations shall be promptly repaired by the Contractor at his own expense. #### 1.8.2 Protection of Personnel The Contractor shall protect occupants of the building by installing safety rails and/or barricades as applicable to prevent injury from unauthorized entry of personnel into work areas. Warning signs shall be erected as necessary to indicate Construction areas or hazardous zones. Work shall proceed in such manner as to prevent the undue spread of dust and flying particles. #### 1.8.3 Measures to Prevent Damage/Injury The Contractor shall take such additional measures as may be directed by the Contracting Officer to prevent damage or injury to Government property or personnel. (CENAB) #### 1.9 STREET CLOSINGS: (MAY 1978) When operations in connection with contract work necessitate the closing of streets, it shall be the Contractor's responsibility to arrange in advance with the Contracting Officer for such street closings and to provide appropriate barricades, signs, markers, flares, and other devices as may be required by the Contracting Officer's Representative for traffic guides and public safety. (CENAB) #### 1.10 CONTRACTOR USE OF HEATING PLANT: (1968) (MOD 1975) #### 1.10.1 Utilization of the Installed Heating System The Contractor may, at his option, utilize the heating system installed under this contract to provide space heating prior to the time of completion of the building. All fuel-oil for such space heating and for the required tests of heating equipment shall be furnished by the Contractor and shall be of the type and grade specified. #### 1.10.2 Operations Statement The heating system shall be operated only by qualified personnel and shall be operated with all auxiliaries and in accordance with the manufacturer's instructions and good operating practice. Boilers shall not be operated for space heating until the Contracting Officer is furnished a written operations statement signed by the Contractor certifying that all water treating equipment, combustion control equipment, and the boiler safety controls have been properly installed and are operating satisfactorily. When a boiler is to be shut down for a period of more than 5 days, the combustion chamber and the fire sides of all boiler tubes shall be cleaned thoroughly immediately after shutdown. If at any time the Contracting Officer determines that the equipment is being improperly operated or maintained, the Contractor may be directed to discontinue its use. #### 1.10.3 Controlled Temperature Heating systems shall be operated and controlled to prevent temperature in any room or space in the building from exceeding 90 degrees F #### 1.10.4 Renovating the New Heating System The Contractor shall, prior to the time of final acceptance of all work under this contract, place the heating system and related equipment in a condition equal to new. The combustion chamber and fire side of all boiler tubes shall be cleaned, burner nozzles shall be cleaned and adjusted, and air filters, and pipeline strainers shall be replaced or cleaned, as required. (CENAB) #### 1.11 ASBESTOS (JAN 1985 REV NOV 1993) #### 1.11.1 WARNING THE CONTRACTOR IS WARNED THAT EXPOSURE TO AIRBORNE ASBESTOS HAS BEEN ASSOCIATED
WITH FOUR DISEASES: LUNG CANCER, CERTAIN GASTROINTESTINAL CANCERS, PLEURAL OR PERITONEAL MESOTHELIOMA AND ASBESTOSIS. Studies indicate there are significantly increased health dangers to persons exposed to asbestos who smoke and further, to family members and other persons who become indirectly exposed as a result of the exposed worker bringing asbestos-laden work clothing home to be laundered. #### 1.11.2 Friable and/or Nonfriable Asbestos The Contractor is advised that friable and/or nonfriable asbestos containing material has been identified in area(s) where contract work is to be performed. Friable asbestos containing material means any material that contains more than 1 percent asbestos by weight that hand pressure can crumble, pulverize or reduce to powder when dry. Nonfriable asbestos containing materials do not release airborne asbestos fiber during routine handling and end-use. However, excessive fiber concentrations may be produced during uncontrolled abrading, sanding, drilling, cutting, machining, removal, demolition or other similar activities. Whether asbestos is friable or nonfriable, care must be taken to avoid releasing or causing to be released, asbestos fibers into the atmosphere where they may be inhaled or ingested. #### 1.11.3 Potential Locations When contract work activities are carried out in locations where the potential exists for exposure to airborne asbestos fibers as described in paragraph "Friable and/or Nonfriable Asbestos" above or where asbestos waste will be generated, the contractor shall assure that all measures necessary to provide effective protection to persons from exposure to asbestos fibers and prevention of contamination to property, materials, supplies, equipment and the internal and external environment are effectively instituted. The Contractor shall conduct asbestos-related activities in accordance with SECTION: 13280 - ASBESTOS; ABATEMENT. #### 1.11.4 Summarization The Contractor shall complete and return to the Contracting Officer within 15 working days after the completion of all airborne asbestos monitoring conducted under this contract, a "Summarization of Airborne Asbestos Sampling Results" form provided by the Government. This completed summarization form is to be used by the US Army Corps of Engineers for statistical information purposes and does not relieve the Contractor from his recordkeeping requirements as specified in SECTION: 13280 - ASBESTOS; ABATEMENT. A copy of this summarization form is attached to the end of this section. #### 1.11.5 Industrial Hygiene Asbestos Survey An industrial hygiene asbestos survey was conducted in the contract work area(s) to identify the presence of asbestos containing materials as described in paragraph "Friable and/or Nonfriable Asbestos" above. The data collected is contained in the ASBESTOS SURVEY REPORT inserted at the end of this section. #### 1.11.6 Additional Asbestos Survey The industrial hygiene asbestos survey described in the above paragraph may not have identified all asbestos containing materials in the contract work area(s). When contract work area(s) appear to have asbestos containing material not identified in the ASBESTOS SURVEY REPORT, the Contractor shall conduct an asbestos survey to identify such material(s) in a manner similar to that described in the ASBESTOS SURVEY REPORT. The points of contact follow: - 1. OSHA: (410)962-2840 - 2. EPA, Region 3: 1-800-438-2474 - 3. State of Maryland, Department of the Environment, Air Management Administration (410)631-3200 #### 1.12 TIME EXTENSIONS FOR UNUSUALLY SEVERE WEATHER #### 1.12.1 Procedure for Determination This provision specifies the procedure for determination of time extensions for unusually severe weather in accordance the contract clause entitled "Default: (Fixed Price Construction)". In order for the Contracting Officer to award a time extension under this clause, the following conditions must be satisfied: - a. The weather experienced at the project site during the contract period must be found to be unusually severe, that is, more severe than the adverse weather anticipated for the project location during any given month. - b. The unusually severe weather must actually cause a delay to the completion of the project. The delay must be beyond the control and without the fault or negligence of the contractor. #### 1.12.2 Anticipated Adverse Weather Delays The following schedule of monthly anticipated adverse weather delays is based on National Oceanic and Atmospheric Administration (NOAA) or similar data for the project location and will constitute the base line for monthly weather time evaluations. The contractor's progress schedule must reflect these anticipated adverse weather delays in all weather dependent activities. ## MONTHLY ANTICIPATED ADVERSE WEATHER DELAY WORK DAYS BASED ON (5) DAY WORK WEEK JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 7 6 6 7 7 6 4 5 3 5 4 4 #### 1.12.3 Impact Upon acknowledgment of the Notice to Proceed (NTP) and continuing throughout the contract, the contractor will record on the daily CQC report, the occurrence of adverse weather and resultant impact to normally scheduled work. Actual adverse weather delay days must prevent work on critical activities for 50 percent or more of the contractor's scheduled work day. The number of actual adverse weather delay days shall include days impacted by actual adverse weather (even if adverse weather occurred in previous month), be calculated chronologically from the first to the last day of each month, and be recorded as full days. If the number of actual adverse weather delay days exceeds the number of days anticipated in paragraph "Anticipated Adverse Weather Delays", above, the Contracting Officer will convert any qualifying delays to calendar days, giving full consideration for equivalent fair weather work days, and issue a modification in accordance with the contract clause entitled "Default (Fixed Price Construction)". #### 1.13 WORKING HOURS WORKING HOURS: (DEC 93) It shall be the Contractors responsibility to obtain the working hours other than the normal five (5) day work week 08:00 am to 4:30 pm. PART 2 PRODUCTS NOT APPLICABLE PART 3 EXECUTION NOT APPLICABLE ATTACHMENT RISK ASSESSMENT CHECKLIST -- End of Section -- ## RISK ASSESSMENT FOR EXCAVATION AND OTHER WORK IN THE VICINITY OF UTILITIES | | OJECT NAME:
NTRACT NUMBER: | |-----|---| | PR | OJECT INSTALLATION AND LOCATION: | | PR | OPOSED EXCAVATION START DATE: | | 1. | ☐ ESTABLISH EXCAVATION DETAILS AND DRAWINGS (check when completed) | | 2. | ☐ PROPOSED EXCAVATION AREA MARKED ("white lining") (check when completed) | | 3. | CONTACT APPROPRIATE ONE-CALL SERVICE FOR PUBLIC UTILITIES : MD: Miss Utility 1-800-257-7777 N Y: New York City - Long Island One Call Center 1-800-272-4480 N. VA: Miss Utility 1-800-552-7777 PA: Pennsylvania One-Call System Incorporated 1-800-242-1776 DC: Miss Utility 1-800-257-7777 ONE-CALL NATIONAL REFERRAL CENTER: 1-888-258-0808 | | ME | ☐ CONTACT INSTALLATION/OWNERS OF ALL PRIVATELY OWNED UTILITIES (NON ONE-CALL MBERS) | | 4. | DATE UTILITIES MARKED AND METHOD OF MARKING ONE-CALL LOCATORS OTHER LOCATORS | | | ☐ CONTACT APPROPRIATE DPW REPRESENTATIVES AND COMPLY WITH INSTALLATION PERMIT QUIREMENTS: | | 6. | ☐ UTILITIES IDENTIFIED ON-SITE: ☐ NONE ☐ ELECTRIC ☐ GAS ☐ WATER ☐ TELEPHONE ☐ CATV ☐ SEWER ☐ OTHER | | 7. | □ LEVEL OF RISK: (Based upon personnel safety and consequences of utility outages.) □ SEVERE: Excavation required within the immediate vicinity (<2-ft) of a MARKED utility. □ MODERATE: Excav. required outside the immediate vicinity (> 2-ft) of MARKED utility. □ MINIMAL: Excavation required in an area with NO utilities. | | 8. | ☐ EXISTING FACILITIES/UTILITIES IN VICINITY: ☐ NON-CRITICAL ☐ MISSION CRITICAL ☐ HIGH-PROFILE ☐ CEREMONIAL ☐ OTHER ☐ CONSEQUENCES IF EXISTING UTILITIES ARE DAMAGED/DISRUPTED | | 9. | ☐ ENGINEERING CONTROLS REQUIRED: ☐ NONE ☐ HAND EXCAVATE TO LOCATE UTILITY ☐ EXCAVATE WITH DUE CARE ☐ OTHER | | 10. | ☐ ADMINISTRATIVE CONTROLS REQUIRED: ☐ Notification of Contracting Officer's Representative, NOTIFIED on: ☐ Notification of Installation/DPW Representative, NOTIFIED on: | | 11. | ☐ EMERGENCY NOTIFICATION AT INSTALLATION: POC & PHONE NUMBER | | | E INFORMATION NOTED ABOVE IS ACCURATE AND THE WORK IS READY TO PROCEED SNED and DATECQC MANAGER | | 12. | ☐ ON-SITE GOVERNMENT REP. RECOMMENDATION FOR APPROVAL TO EXCAVATE: ☐ YES ☐ NO SIGNATURE AND DATE: Comments: | | 13. | ☐ AREA ENGINEER APPROVAL TO EXCAVATE: ☐ APPROVED ☐ DENIED SIGNATURE AND DATE: Comments: | | 14. | ☐ CHIEF, DIVISION APPROVAL TO EXCAVATE: ☐ APPROVED ☐ DENIED SIGNATURE AND DATE: Comments: | ### ASBESTOS CONTAINING MATERIALS AND LEAD BASED PAINT SURVEY REPORT ## BUILDING P-1978 SCIF FORT MEADE, MARYLAND Prepared For: HNTB 421 – 7th Street, N.W. Washington, D.C. 20004 Submitted By: DIVERSIFIED ENGINEERING, INC. 914 Silver Spring Avenue, Suite 208 Silver Spring, Maryland 20910 December 28, 2001 ### TABLE OF CONTENTS | | Executive Summary | |-----|--| | 1.0 | Introduction | | 2.0 | Purpose of the Study | | 3.0 | Findings | | 4.0 | Analysis | | 5.0 | Asbestos Random Sample Results | | 5.1 | Lead Random Sample Results | | 6.0 | Conclusions and Recommendations | | | Appendix A – Asbestos Laboratory Reports of Analysis | | | Appendix B - Lead Based Paint Laboratory Reports of Analysis | | | Appendix C - Asbestos Sample Location Plans | | | Appendix D - Lead Based Paint Sample Location Plane | #### EXECUTIVE SUMMARY
In the month of November, 2001, Building P1978 Sensitive Compartmented Information Facility (SCIF), located at Fort Meade, Maryland, was investigated for Asbestos Containing Materials (ACM) and Lead Based Paint (LBP). The building was inspected and samples were taken from suspect materials. The suspect materials sampled for asbestos were: gasket, pipe insulation, caulking, gypsum board, mastic and tile. These samples were analyzed for asbestos by EMSL Analytical, Inc. via Environmental Protection Agency (EPA) 600/R-93/116 method using a polarized light microscope. Fourteen percent (14%) of the samples collected tested positive for asbestos. The surface materials sampled for Lead Based Paint (LBP) were: equipment, and door. These samples were analyzed for LBP by EMSL Analytical, Inc. via EPA Flame AAS (SW 846,7420). Twenty eight percent (28%) of the samples collected from the Upper Anacostia Pumping Station and the Rock Creek Pumping Station, and 44% from the Earl Place Pumping Station tested positive for lead. An Asbestos Survey And Management Plan report was prepared in 1995 by BCM Engineers, Planners and Scientists for Building P1978. This report does not have information relating to the selected space to be renovated for SCIF. #### 1.0 INTRODUCTION An environmental survey for asbestos and lead based paint (LBP) was performed for Building P1978 SCIF in Fort Meade, Maryland. This survey report was prepared by Diversified Engineering, Inc. This report will serve as a basis for initiating abatement. The area designated for the Sensitive Compartmented Information Facility (SCIF) of the building was inspected and suspect materials were sampled for asbestos and lead based paint. #### Local and Federal Regulations If abatement is required, the Local and Federal regulations are as follows: COMAR 26.11.21 - Maryland Regulations for Asbestos Removal EPA regulations for asbestos and lead based paint removal and disposal are contained in the Code of Federal Regulations (40 CFR). Occupational Safety and Health Administration (OSHA) regulations for Workers Safety in the Construction Industry 29 CFR 1910 and 29 CFR 1926. The protocol for sample collection and testing is one sample for each type of suspect material. A homogenous bulk sample is one bulk sample taken from a material located in different areas. ### Requirements for Abatement If the building will be renovated and asbestos and lead based paint materials will be disturbed, abatement will be required only in the disturbed area. If the building will be renovated and asbestos and lead based paint materials will not be disturbed, abatement will not be required, but the Contractor will be aware that these materials exist. #### 2.0 PURPOSE OF THE STUDY #### A. Hazardous Materials in the Building Rehabilitation and improvements to Building P1978 SCIF will require abatement of the hazardous materials (asbestos and lead based paint) present in the building. This study will highlight the known hazardous materials that may be disturbed during construction and should be mitigated before construction proceeds. #### Asbestos Asbestos is a known carcinogen; therefore, it is regulated by the Federal Environmental Protection Agency. The purposes of this study for asbestos are as follows: - Survey and identify areas and materials where asbestos may be present. - Collect bulk samples of suspect materials that may contain asbestos. - Analyze the bulk samples of suspect materials in a laboratory to reveal the amount of asbestos fiber present in the materials. - Provide an assessment of the type and quantity of asbestos containing materials to facilitate in evaluating the cost of abatement. #### Lead Based Paint - Survey and identify areas where lead based paint may be present. - Collect chip samples of suspect surface materials that may contain lead. - Analyze the bulk samples of suspect materials in a laboratory to reveal the amount of lead present in the materials. - Provide an assessment of the type and quantity of lead based paint to facilitate in evaluating the cost of abatement. #### 3.0 FINDINGS ### A. ASBESTOS CONTAINING MATERIALS IN THE BUILDING Fourteen percent (14%) of the samples tested positive for asbestos. Fourteen bulk homogenous samples were obtained from the designated SCIF area of the building from suspect materials. Following are the locations where the samples were taken, the types of materials and their status. | Sample Number | Location, Type and Status | |---------------|---| | A-1 | Utility Closet: A bulk sample taken from 1" dia. pipe insulation was analyzed. The test result was negative. | | A-2 | Utility Closet: A bulk sample taken from 1" dia. pipe insulation cover material was analyzed. The test result was negative. | | A-3 | Corridor: A bulk sample taken from the gypsum
board was analyzed. The test result was negative. | | A-4 and A-5 | Room 4: Bulk samples taken from the mastic and hardboard were analyzed. The test results were negative. | | A-6, A-7, A-8 | | | and A-9 | Room One: Bulk samples taken from two layers of
tile and mastic were analyzed. The test results were
negative. | | A-10 | Room Two: A bulk sample taken from concrete finished floor material was analyzed. The test result was negative. | | A-11 | Room 3: A bulk sample taken from the gypsum wall board joint was analyzed and found to be ACBM. | | | | A-12 and A-13 Boiler Room: Bulk samples taken from a pipe insulation gasket from the boiler were analyzed. The test results were negative. A-14 Exterior Door: A bulk sample taken from metal door frame caulking was analyzed and found to be ACBM. ### B. LEAD BASED PAINT IN THE BUILDING Twenty-eight percent (28%) of the samples tested positive for lead based paint. Seven homogenous samples were obtained from the designated SCIF space of the building from suspect materials. Following are the locations where the samples were taken, the types of materials and their status: | Sample Number | Location, Type and Status | |---------------|---| | L-l | Boiler Room: A sample taken from a
motor was analyzed. The test result was
negative. | | L-2 | Boiler Room: A sample taken from the boiler was analyzed. The test result was negative. | | L-3 | Boiler Room: A sample taken from the
boiler room door was analyzed. The test
result was negative. | | L-4 and L-5 | Room No 4: Samples taken from a door were analyzed. The test results were negative. | | L-6 | Corridor/Exterior Door: A sample taken from the door was analyzed. The test result was positive. | | L-7 | Room No. 5: A sample taken from a door was analyzed. The test result was positive. | #### 4.0 ANALYSIS Following are descriptions of the various types of materials that were sampled for Asbestos Containing Material (ACM) and Lead Based Paint (LBP) and a description of the types of asbestos fiber and the amount of lead found in the analyzed samples. #### A. Asbestos The bulk samples analyzed were taken from the following suspect Asbestos Containing Building Material (ACBM) and Asbestos Containing Material (ACM) and Thermal System Insulation (TSI): | • | Gypsum Board Ceiling/Wall | (ACBM) | |---|---------------------------|------------| | | Caulking | (ACBM) | | • | Pipe Insulation | (ACM)(TSI) | | • | Gasket | (ACBM) | There are three types of asbestos commonly used in the United States. Only one was found in the samples taken: Chrysotile is most commonly found in building products. The bulk sample was analyzed according to EPA Standard -600/R-93/116 method using a polarized light microscope. ### B. Lead Based Paint in the Building The samples analyzed were taken from the following painted surface materials: boiler, door, and equipment. The samples were analyzed according to EPA standard AAS (SW 846,7420). An analyzed paint sample is considered positive for lead if the concentration of lead is at or above 1.0 mg/cm² or 0.50% by weight. An analyzed paint sample is considered negative for lead if the concentration of lead is below 1.0 mg/cm² or less than 0.50% by weight. #### ASBESTOS RANDOM SAMPLE RESULTS 5.0 | SAMPLE | LOCATION/ | APPEARANCE | ASBESTOS TYPE | QTY | REMARKS | | |--------|--|----------------|----------------|-----|---------------------------|--| | NO. | DESCRIPTION | | CHRYSOTILE | | See Note 1. | | | A-1 | Utility Closet – White None detected. 1" dia. Pipe Insulation | | None detected. | | No abatement required. | | | A-2 | Utility Closet –
1" dia. Pipe
Insulation
Cover Material | Silver/Gray | None detected. | | No abatement
required. | | | A-3 | Corridor –
Gypsum Board | Gray/Tan/White | None detected. | | No abatement
required. | | | A-4 | Room 4 –
Mastic Behind
Hardboard | Brown | None detected. | | No abatement
required. | | | A-5 | Room 4 –
Hardboard | Brown | None detected. | | No abatement
required. | | | A-6 | Room 1 - Tile
(Second Layer) | Gray | None detected. | | No abatement
required. | | | A-7 | Room 1 –
Mastic under
Second Layer
Tile | Tan | None detected. | | No abatement required. | | | A-8 | Room 1 – Tile
(First Layer) | Gray | None detected. | | No abatement
required. | | | A-9 | Room 1 –
Mastic under
First Layer Tile | Yellow | None detected. | | No abatement
required. | | | A-10 | Room 2 –
Concrete
Finished Floor
Material | Tan | None detected. | | No abatement required. | | | | | | | | | | | SAMPLE
NO. | LOCATION/ | APPEARANCE | ASBESTOS TYPE | QTY | REMARKS | | |---------------|---|--------------|----------------|-------------|---------------------------|--| | NO. | DESCRIPTION | | CHRYSOTILE | | See Note 1. | | | A-11 | Room 3 –
Gypsum Wall
Board
Joint | Tan | 3% | 370
SF ± | Abatement required. | | | A-12 | Boiler Room
Pipe Insulation | Black/Silver | None detected. | | No abatement
required. | | | A-13 | Boiler Room –
Boiler Gasket | Black/Cream | None detected. | | No abatement
required. | | | A-14 | Corridor –
Exterior Door
Caulking | Beige | 5% | 78
LF ± | Abstement required. | | Note 1: Refer to "Requirements for Abatement", Introduction, page 1. ### 5.1 LEAD BASED PAINT RANDOM SAMPLE RESULTS | SAMPLE
NO. | LOCATION/
DESCRIPTION | COLOR/
APPEARANCE | RESULTS | QTY | REMARKS | |---------------|-----------------------------|----------------------|---------|-------------|----------| | L-1 | Boiler Room –
Equipment | Gray | 0.011% | | Negative | | L-2 | Boiler Room – Boiler | Gray | 0.196% | A | Negative | | L-3 | Boiler Room - Door | Brown | 0.433% | | Negative | | L-4 | Room 4 – Door | White | 0.182% | | Negative | | L-5 | Room 4 – Door | Blue | 0.059% | | Negative | | L-6 | Corridor – Exterior
Door | Brown | 2.886% | 150 SF
± | Positive | | SAMPLE
NO. | LOCATION/
DESCRIPTION | COLOR/
APPEARANCE | RESULTS | QTY | REMARKS | |---------------|--------------------------|----------------------|---------|-------|----------| | L-7 | Room 5 – Door | White | 1.291% | 50 SF | Positive | ### 6.0 CONCLUSIONS AND RECOMMENDATIONS Following are conclusions and recommendations addressing the course of action needed in each area of the building that requires mitigation of the hazardous materials present: #### A. Asbestos All Rooms: The gypsum wall board joint was sampled and analyzed. The test result was positive for Asbestos Containing Building Material. If the gypsum wall board will be disturbed during renovation, the joints must be mitigated before any other work begins. Exterior Door; Caulking around the door frame was sampled and analyzed. The test result was positive for Asbestos Containing Building Material (ACBM). The caulk material is intact. There is no immediate danger, however, this material should be replaced during renovation if it is disturbed. #### B. Lead Based Paint Exterior Doors: Samples taken from the exterior doors were analyzed. The test results were positive for lead. No abatement is necessary if this door will remain in place. If the doors will be replaced, the lead based paint must be mitigated. ### Conditions That Require Immediate Action No existing conditions are found to require immediate action. ## APPENDIX A Laboratory Reports of Analysis (Asbestos) 10768 Baltimore Avenue Beltsville, MD 20705 Phone: (301) 937-5700 Fax: (301) 937-5701 EMSL Attn.: Emmett Fiawoo Diversified Engineering, Inc. 914 Silver Spring Avenue Silver Spring, MD 20910 Tuesday, December 04, 2001 Ref Number: MD016289 ### POLARIZED LIGHT MICROSCOPY (PLM) Performed by EPA 600/R-93/116 Method* Project: Ft. Meade-Bldg.#P1978(SCIF) | | | | Sample | ASBESTOS | | | NON-AS | SBESTOS | | |--------|---|--|------------------|----------|-------------|-----|---------------|---------|---------------------------------| | Sample | Location | Appearance | Treatment | % | Туре | % | Fibrous | % | Non-Fibrous | | A-1 | Utility closet 1"
pipe insulated | Grey/White
Fibrous
Heterogeneous | Teased/Dissolved | No | ne Detected | 55% | Min. Wool | 45% | Other | | A-2 | Utility closet 1"
pipe insulated
cover material | Grey/Silver
Fibrous
Heterogeneous | Teased/Dissolved | No | ne Detected | 25% | Cellulose | 75% | Other | | A-3 | Corridor celling
Gypsurn board | Grey/Tan/White
Fibrous
Heterogeneous | Teased/Dissolved | No | ne Detacted | 30% | Cellulose | 30% | Ca Carbonate
Gypsum
Other | | A-4 | Mastic behind hard
board | Brown
Non-Fibrous
Homogeneous | Teased/Dissolved | No | ne Detected | | CIE - 200 CIE | 100% | Other | | A-5 | Rm hardboard | Brown/Blue/Cream
Fibrous
Heterogeneous | Teased/Dissolved | No | ne Detected | 40% | Cellulose | 60% | Other | | A-6 | Rm 1 tile | Grey
Non-Fibrous
Heterogeneous | Teased/Dissolved | No | ne Detected | | | - 55565 | Quartz
Other | Comments: For all obviously heterogeneous samples easily separated into subsamples, and for layered samples, each component is analyzed separately. Also, "# of Layers" refers to number of separable subsamples. Russell Meyer Analyst Approved Signatory Displaying: PLM has been known to rives exhestes in a small percentage of samples which contain abbeatos. Thus regarde PLM results cannot be guaranteed. EMSL suggests that samples reported as <1% or name detected be rested with either SEM or TEM. The above test report relates only to the temp tested. This report may not be reproduced, except in full, without written approved by EMSL. The above test must not be used by the client to claim product endorsement by NVLAP nor any agency of the United States Government. Laboratory is not responsible for the accuracy of results when requested to physically separate and analyze layered samples. ATHRYSIS DESTRICTED BY ENISC BRISING (NATURE AT 210 BUIK REJUZIUS, WAY LIC #1, 1000033) NY samples analyzed by ELAP 198.1 Method. 10768 Baltimore Avenue Beltsville, MD 20705 Phone: (301) 937-5700 Fax: (301) 937-5701 Attn.: Emmett Fiawoo Diversified Engineering, Inc. 914 Silver Spring Avenue Silver Spring, MD 20910 3014951563 Tuesday, December 04, 2001 Ref Number: MD016289 ### POLARIZED LIGHT MICROSCOPY (PLM) Performed by EPA 600/R-93/116 Method* Project: Ft. Meade-Bldg.#P1978(SCIF) | | | | Sample | ASBESTOS | NON-/ | SBESTOS | |--------|------------------------------|--|------------------|---------------|---------------|-------------------------| | Sample | Location | Appearance | Treatment | % Type | % Fibrous | % Non-Fibrous | | A-7 | Rm 3 mastic | Tan
Non-Fibrous
Homogeneous | Teased/Dissolved | None Detected | | 100% Other | | A-8 | Rm 3 tile | Grey
Non-Fibrous
Heterogeneous | Teased/Dissolved | None Detected | | 40% Quartz
60% Other | | A-9 | Rm 3 mastic | Yellow
Non-Fibrous
Homogeneous | Teased/Dissolved | None Detected | | 100% Other | | A-10 | Rm 3 | Tan
Non-Fibrous
Heterogeneous | Teased/Dissolved | None Detected | | 60% Quartz
40% Other | | A-11 | Rm Gypsum wall
Joint | Tan
Fibrous
Heterogeneous | Teased/Dissolved | 3% Chrysotlle | 10% Cellulose | 87% Other | | A-12 | Boiler on pipe
Insulation | Black/Silver
Fibrous
Heterogeneous | Teased/Dissolved | None Detected | 35% Cellulose | 65% Other | Comments: For all obviously heterogeneous samples easily separated into subsamples, end for layered samples, each component is analyzed separately. Also, "# of Layers" refers to number of separable subsamples. * NY samples analyzed by ELAP 198.1 Method. Analyst Approved Signatory Disclaimers: PLM has been known to miss ascentize in a small percentage of samples which bootsin asbestos. This engative PLM results cannot be guaranteed. EMSL suggests that samples reported as <1% or none detected be tasted with either SEM or TEM. The above test report relates only to the items tested. This report may not be reproduced, except in full, without written approve by EMSL. The above test must not be used by the client to death produced andorsement by NVLAP nor any agency of the United States Coveniment. Laboratory is not responsible for the accuracy of results when requested to physically separate and analyze layered samples. SES DEROTTIGO DY EMISE BELLINE (INVERP AIR AND BUR #200291, WV CC # CTUXOSS) 10768 Baltimore Avenue Beltsville, MD 20705 Phone: (301) 937-5700 Fax: (301) 937-5701 EMSL Attn.: Emmett Flawoo Diversified Engineering, Inc. 914 Silver Spring Avenue Silver Spring, MD 20910 Tuesday, December 04, 2001 Ref Number: MD016289 ### POLARIZED LIGHT MICROSCOPY (PLM) Performed by EPA 600/R-93/116 Method* Project: Ft. Meade-Bidg.#P1978(SCIF) | | | | Sample | ASBESTOS | | NON-ASBESTOS | | | os | |--------|--------------------------------------|--|------------------|----------|-------------|--------------|-----------|------|-------------| | Sample | Location | Appearance | Trestment | % | Type | % | Fibrous | % | Non-Fibrous | | A-13 | Boiler m boiler
gasket | Black/Cream
Non-Fibrous
Histerogeneous | Teased/Dissolved | No | ne Detected | - | | 100% | Other | | A-14 | Corridor exterior door caulking gray | Belge
Fibrous
Heterogeneous | Teased/Dissolved | 5% Ch | rysatile | 8% | Cellulose | 87% | Other | Comments: For all obviously heterogeneous samples easily separated into subsamples, and for layered samples, each component is analyzed separately. Also, "# of Layers" refers to number of separable subsamples. * NY samples analyzed by ELAP 198.1 Method. Russell Meyer Analyst Approved Signatory Disclaimers: PLM has been known to mise estreeter in a small percentage of samples which contain aspectos. Thus #8550va PLM results connot be guaranteed. BMSL suggests that samples reported as <1% or none detected be lasted with either SEM or TEM. The above test report retailes only to the fierre tested. This report may not be reproduced, except in full, without written approval by EMSL. The above test must not be used by the client to claim product endorsament by NVLAP nor any agency of the United States Government. Laboratory is not responsible for the accuracy of results when requested to physically apparate and analyse bysend samples. пирум раполнео ој сибстовналне (после на вистох вскоско, по ст. естолоко) ## APPENDIX B Laboratory Reports of Analysis (Lead Based Paint) 10768 Baltimore Avenue, Beltsville, MD 20705 Phone: 301-937-5700 Fax: 301-937-5701 Diversified Engineering, Inc. 914 Silver Spring Avenue Silver Spring, MD 20910 Attention: Emmett Fiawoo Client Project ID: Ft. Meade Bldg. #P1978 (SCIF) EMSL Project #: MD016290 Beltsville Batch #: 120301 Date Received: 12/3/01 Date Analyzed: 12/3/01 Report
Date: 12/04/01 Page: 1/1 Summary of Analytical Results - Lead in Paint | Client
Sample ID | Lab
Sample ID | Sample
Description | RL
% by weight | Results
% by weigh | |---------------------|------------------|---------------------------------------|-------------------|-----------------------| | L-1 | 156783 | Boiler Room - Equipment
Gray Paint | 0.01 | 0.011 | | L-2 | 156784 | Boiler Room - Boiler
Gray Paint | 0.01 | 0.196 | | L-3 | 156785 | Boiler Room - Door
Brown Paint | 0.01 | 0.433 | | L-4 | 156786 | Room 3 - Door
White Paint | 0.01 | 0.182 | | L-5 | 156787 | Room 3 - Door
Blue Paint | 0.01 | 0.059 | | L-6 | 156788 | Corridor Door
Brown Paint | 0.01 | 2,886 | | L-7 | 156789 | Room 7 - Door
White Paint | 0.01 | 1.291 | *RL = Reporting Limit for EMSL Beltsville = 0.01% at 0.2g Joseph M. Centifonti Lead Laboratory Manager This report shall not be reproduced unless in full, without written approximation EMSL Analysis performed by EMSL Beltsville via EPA method SW848 - 3050A-7420. Instrument ID: Perkin Elmer 3110 AIHA Apprediction #102801 ## APPENDIX C Sample Location Plan (Asbestos) PROJECT NO. DATE 12/28/01 DIVERSIFIED ENGINEERING, INC. 914 SILVER SPRING AVENUE SILVER SPRING, MARYLAND 20910 (301) 565-2000 CORPORATION > 401 739 Stood, NW Washington DC 20002 Fer (D02) 629-7626 Fex (D62) 654-1900 Building P1978 - SCIF Ft. Meade Asbestos and Lead Based Paint Survey Report # APPENDIX D Sample Location Plan (Lead Based Paint) PROJECT NAME FORT MEADE SCIF LEAD SAMPLE LOCATION PLAN PROJECT NO. DATE 12/28/01 DRAWN BY DIVERSIFIED ENGINEERING, INC. 914 SILVER SPRING AVENUE SILVER SPRING, MARYLAND 20910 (301) 565-2000 CORPORATION 421 7th Speed, NAV Washington GC 20004 Tel: (202) 926-7525 Par: (2020) 924-700 # FORT GEORGE G. MEADE # ASBESTOS SURVEY AND MANAGEMENT PLAN **BUILDING 1978** BCM PROJECT NO. 09-5008-08 FINAL REVISION MAY 1995 Engineers, Planners, Scientists and Laboratory Services REPORT Table 1.1 lists the suspect materials that were sampled, their homogeneous number, description, sampling location, quantity and laboratory analysis result. Refer to Section 5.0 for details of the Management Plan and Table 5.7 for details of ACM in each building and the recommended. response actions. | T LAB RESULT | . QN | 1 | N N | | | NA
NA | NA | NA | NA | S | QN | 9 | T | 1 | |----------------------------|---------------------------------|---------------------------------|---------------------------------|--|---|--|---|--|--|------------------|------------------|------------------|---------------|---------------| | QUANTITY | 40,000 SF | | | 30,000 SF | | | | | | 2,000 LF | | | 20.000 SF | | | LOCATION | Corridor | Corridor | Mens room | Corridor | Contidor | Mens room | Mens room | Corridor | Corridor | Corridor | 116 | Corridor | 121 | | | DESCRIPTION | 2x4 Slash and hole ceiling tile | 2x4 Skash and hole celling tile | 2x4 Slash and hole ceiling tile | 12x12 White with gray splotch floor tile | 12x12 White with gray splotch floor tile mastic | 12x12 White with gray splotch floor tile | 12x12 White with gray splotch floor tile mastic | 12x12 White with gray splotch floor tile | 12x12 White with gray splotch floor tile
mastic | Baseboard mastic | Baseboard mastic | Baseboard mastic | Carpet mastic | Carnet mastic | | BUILDING
& HOMO
AREA | 1978 - 1 | | | 2 | | | | | | 3 | | | 4 | | | SAMPLE NO. | FGGM-0693 | FGGM-0694 | FGGM-0695 | FGGM-0696A | FGGM-0696B | FGGM-0697A | FGGM-0697B | FGGM-0698A | FGGM-0698B | FGGM-0699 | FGGM-0700 | FGGM-0701A | FGGM-0702A | FGGM-0703A | | erglass insulation erglass insulation erglass insulation compound composite compound composite compound composite g tile g tile file file file file file file file f | 2 | 8008 | 2 2 | 3000 SF | | 2 2 | Hall by 105 | rcom | 1 onn SF | | UN 1 600 SE NA | ON CONTRACTOR | | 0 | |--|---|------|-----|--------------------|--------------------|--------------------|-------------|------|----------|-------|----------------|---------------|------|-----------------------------| | | | | | compound composite | compound composite | compound composite | | | | g tle | | tile | file | 2x4 Birds feet ceiling tile | TRACE = < 1% ASHESTOS ND = NONE DETECTED NA = NOT ANALYZED BECAUSE PREVIOUS HOMOGENEOUS AREA SAMPLE POSTRIVE NMP = NO MASTIC PRESENT OR IN QUANTITIES TOO SMALL TO ANALYZE PROPERLY ASBESTOS TYPES (VALUES IN BOLD ARE ASBESTOS CONTAINING MATERIALS) (f) = CHRYSOTILE (2) = AMOSITE (3) = CROCIDOLITE (4) = ANTHOPHYLLITE (5) = TREMOLITE/ACTINOLITE | 1 3 | |--| | splotch floor tile | | 1 40 | | 4 | | | | - 1 | | 12x12 White w/ tan splotch floor tile mastic | | | | floor tile mastic | | | | floor tile mastic | | floor file | | lloor tile mastic | | celling tile | | ceiling file | | ceiling tile | | ceiling tile | | 2x4 Birds feet ceiling tile 12x12 White w/ tan splotch floor tile mastic 12x12 White w/ tan splotch floor tile 12x12 White w/ tan splotch floor tile 2x2 White w/ tan splotch floor tile 9x9 tan and brown | TRACE = <1% ASBESTOS ND = NONE DETECTED NA = NOT ANALYZED BECAUSE PREVIOUS HOMOGENEOUS AREA SAMPLE POSITIVE NMP = NO MASTIC PRESENT OR IN QUANTITIES TOO SMALL TO ANALYZE PROPERLY ASBESTOS TYPES (VALUES IN BOLD ARE ASBESTOS CONTAINING MATERIALS) (I) = CHRYSOTILE (2) = AMOSITE (3) = CROCIDOLITE (4) = ANTHOPHYLLITE (5) = TREMOLITE/ACTINOLITE 2 6 SF Roof Roofing shingle 22 FGGM-0783 | | | REA SAMPLE POSTIVE
O ANALYZE PROPERLY
3G MATERIALS) | 7 | |--|---|---|--| | | 1 | TRACE = <1% ASBESTOS ND = NONE DETECTED NA = NOT ANALYZED BECAUSE PREVIOUS HOMOGENEOUS AREA SAMPLE POSITIVE NMP = NO MASTIC PRESENT OR IN QUANTITIES TOO SALAL TO ANALYZE PROPERLY ASBESTOS TYPES (VALUES IN BOLD ARE ASBESTOS CONTAINING MATERIALS) (1) = CHRYSOTILE (2) = AMOSTIE (3) = CROCIDOLITE (4) = ANTHOPHYLLITE (5) = TREMOLITE/ACTINOLITE | Contract of the th | | | | TRACE = <1% ASBESTOS ND = NONE DETECTED NA = NOT ANALYZED BECAUSE P NMP = NO MASHIC PRESIBNT OR II ASBESTOS TYPES (VALJES IN BOL (1) = CHRYSOTILE (2) = AMOSITE (3) = CROCIDOLITE (4) = ANTHOPHYLLITE (5) = TREMOLITE/ACTINOLITE (5) = TREMOLITE/ACTINOLITE | | SECTION 01060 SAFETY 01/01 # PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only. U.S. ARMY CORPS OF
ENGINEERS (USACE) EM 385-1-1 (1996) U.S. Army Corps of Engineers Safety and Health Requirements Manual #### 1.2 APPLICABLE PUBLICATION The publications listed below form a part of this specification and are referred to in the text by the basic designation only. All interim changes (changes made between publications of new editions) to the U.S. Army Corps of Engineers Safety and Health Requirements Manual, EM 385-1-1, will be posted on the Headquarters Website. The date that it is posted shall become the official effective date of the change and contracts awarded after this date shall require to comply accordingly. The website location where these changes can be found is under the button entitled "Changes to EM", located at: "http://www.hq.usace.army.mil/soh/hqusace soh.htm". #### 1.3 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-01 Preconstruction Submittals Safety Supervisor; G A/E. A safety supervisor shall be responsible for overall supervision of accident prevention activities. SD-09 Manufacturer's Field Reports Activity Phase Hazard Analysis Plan; G A/E. The addressing of the activity phase hazard analysis plan for each activity performed in a phase of work. #### 1.4 GENERAL - The U.S. Army Corps of Engineers Safety and Health Requirements Manual, EM 385-1-1, and all subsequent revisions referred to in the Contract Clause ACCIDENT PREVENTION of this contract, are hereby supplemented as follows: - a. The Contractor shall designate an employee responsible for overall supervision of accident prevention activities. Such duties shall include: (1) assuring applicable safety requirements are (a) communicated to the workers in a language they understand (reference EM 385-1-1, September 1996, 01.A.04). It is the Contractor's responsibility to ascertain if there are workers on the job who do not speak and/or understand the English language, if such workers are employed by the prime contractor or subcontractors, at any tier, it is the prime contractor's responsibility to insure that all safety programs, signs, and tool box meetings are communicated to the workers in a language they understand, and that a bilingual employee is on site at all time. If the contractor contends that interpreters and/or bilingual signs are not required, language certification must be provided which verifies that all workers (whose native tongue is other than English) have a command of the English language sufficient to understand all direction, training and safety requirements, whether written or oral, and (b) incorporated in work methods, and (2) inspecting the work to ensure that safety measures and instructions are actually applied. The proposed safety supervisor name and qualifications shall be submitted in writing for approval to the Contracting Officer's Representative. This individual must have prior experience as a safety engineer or be able to demonstrate his/her familiarity and understanding of the safety requirements over a prescribed trial period. The safety engineer shall have the authority to act on behalf of the Contractor's general management to take whatever action is necessary to assure compliance with safety requirements. The safety supervisor is required to be on the site when work is being performed. - b. Prior to commencement of any work at a job site, a preconstruction safety meeting shall be held between the Contractor and the Corps of Engineers Area/Resident Engineer to discuss the Contractor's safety program and in particular to review the following submittals: - (1) Contracts Accident Prevention Plan: An acceptable accident prevention plan, written by the prime Contractor for the specific work and implementing in detail the pertinent requirements of EM 385-1-1, shall be submitted for Government approval. - (2) Activity Phase Hazard Analysis Plan: Prior to beginning each major phase of work, an activity hazard analysis (phase plan) shall be prepared by the Contractor for that phase of work and submitted to the Contracting Officer's Representative for approval. A phase is defined as an operation involving a type of work presenting hazards not experienced in previous operations or where a new subcontractor or work crew is to perform work. The analysis shall address the hazards for each activity performed in the phase and shall present the procedures and safeguards necessary to eliminate the hazards or reduce the risk to an acceptable level. - c. Subsequent jobsite safety meetings shall be held as follows: - (1) A safety meeting shall be held at least once a month for all supervisors on the project to review past activities, to plan ahead for new or changed operations and to establish safe working procedures to anticipated hazards. An outline report of each monthly meeting shall be submitted to the Contracting Officer's Representative. (2) At least one safety meeting shall be conducted weekly, or whenever new crews begin work, by the appropriate field supervisors or foremen for all workers. An outline report of the meeting giving date, time, attendance, subjects discussed and who conducted it shall be maintained and copies furnished the designated authority on request. #### 1.5 ACCIDENTS Chargeable accidents are to be investigated by both Contractor personnel and the Contracting Officer. # 1.5.1 Accident Reporting, ENG FORM 3394 Section 1, Paragraph 01.D, OF EM 385-1-1 and the Contract Clause entitled ACCIDENT PREVENTION are amended as follows: The prime Contractor shall report on Eng Form 3394, supplied by the Contracting Officer, all injuries to his employees or subcontractors that result in lost time and all damage to property and/or equipment in excess of \$2,000 per incident. Verbal notification of such accident shall be made to the Contracting Officer within 24 hours. A written report on the above noted form shall be submitted to the Contracting Officer within 72 hours following such accidents. The written report shall include the following: - a. A description of the circumstances leading up to the accident, the cause of the accident, and corrective measures taken to prevent recurrence. - b. A description of the injury and name and location of the medical facility giving examination and treatment. - c. A statement as to whether or not the employee was permitted to return to work after examination and treatment by the doctor, and if not, an estimate or statement of the number of days lost from work. If there have been days lost from work, state whether or not the employee has been re-examined and declared fit to resume work as of the date of the report. ## 1.5.2 OSHA Requirements # 1.5.2.1 OSHA Log A copy of the Contractor's OSHA Log of Injuries shall be forwarded monthly to the Contracting Officer. # 1.5.2.2 OSHA Inspections Contractors shall immediately notify the Contracting Officer when an OSHA Compliance official (Federal or State representative) presents his/her credentials and informs the Contractor that the workplace will be inspected for OSHA compliance. Contractors shall also notify the Contracting Officer upon determination that an exit interview will take place upon completion of the OSHA inspection. (NABSA OCT 05, 1976) #### 1.6 GOVERNMENT APPROVAL Submittals shall be in accordance with Section 01330 SUBMITTAL PROCEDURES. All required submittals of items specified in this section shall be for information only, except for those items including, but not limited to, the following which shall be submitted for Government approval: - a. Written designation of safety representative. - b. Written project specific accident prevention plan. - c. Written activity phase hazard analysis plan. PART 2 PRODUCT NOT APPLICABLE PART 3 EXECUTION NOT APPLICABLE -- End of Section -- #### SECTION 01070 # CUTTING, PATCHING AND REPAIRING 01/01 # PART 1 GENERAL #### 1.1 Description This section pertains to the provision of all cutting, removing, replacing, patching, repairing, restoration, refinishing and similar type work as necessary to existing work scheduled to remain and to new work required to be cut or uncovered. All existing facilities damaged as a result of the construction activities shall be restored to a condition equivalent to that prior to the start of work, except where otherwise shown or specified. #### 1.2 Work Execution Extent of work includes uncovering work to provide for installation of ill-timed work, removal and replacement of defective work or work that does not conform to the contract documents, installation of new work to be installed in existing construction, and as necessary to make several parts fit. #### 1.3 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: # SD-01 Preconstruction Submittals Procedures; G A/E. The accomplishment of cutting, patching, and repairing of the work. #### PART 2 PRODUCTS # 2.1 MATERIALS Materials for replacement, repairing, patching, restoration, and similar type work shall conform to applicable sections of the specifications for new materials or work. Where existing materials and/or installations are not covered by the specifications, such materials shall match existing. All excess materials resulting from cutting and removal work shall be removed from the job site. #### PART 3 EXECUTION #### 3.1 INSPECTION AND PREPARATION # 3.1.1 Inspection of Conditions of Work Inspect all existing conditions of work, for possible movement or damage during
cutting or uncovering procedures. After uncovering work, inspect conditions affecting installation of new products. Do not proceed with any further cutting, patching or repairing work if defects are observed; or if any unsafe condition exists. #### 3.1.2 Preparation of the Work Site Prior to cutting or uncovering work, provide all shoring, bracing and supports as required to maintain the structural integrity of the project. Prior to restoration work, properly prepare existing surfaces to receive new materials such as to provide a proper bond or joining. #### 3.2 CUTTING AND DRILLING Contractor shall do all cutting and drilling of existing walls, partitions, ceilings, floors, etc., as necessary for installation of the new work as shown, including cutting of holes and other openings for new plumbing, mechanical and electrical work. Cutting shall be performed by hand or small power tools; holes and slots cut neat and to size required, with minimum disturbance of adjacent work; cut holes in concrete slabs for pipes and conduit with core drills of proper sizes. Openings shall be covered temporarily when not in use and patched as soon as work is installed. #### 3.3 PATCHING AND REPAIRS # 3.3.1 Performance of Work Existing work shall be cut, altered, removed, temporarily removed and replaced, or relocated as required for the performance of the work indicated on the drawings. Work remaining in place that is damaged or defaced by reason of alteration or demolition shall be restored to a condition equivalent to that prior to the start of work. Contractor shall be responsible for coordinating all patching and repairing involving the various trades, whether or not specifically mentioned under the respective sections. # 3.3.2 Alterations Where alterations or removals exposes damaged or unfinished surfaces or materials, such surfaces or materials shall be refinished or replaced as necessary to make continuous areas uniform. Where new work by any trade occurs in an existing finished area the entire wall or ceiling surface in which such work occurs shall be refinished. Where such new work occurs in an existing unfinished area, the work shall be done to render the new work inconspicuous. ## 3.3.3 Utility Removal Where utilities are removed, relocated, or abandoned, they shall be capped, valved or plugged to make a complete and working installation as required. Resulting holes and damaged surfaces shall be properly patched to match adjacent undisturbed surfaces or prepared to receive new finish as applicable. # 3.3.4 Restoration of Existing Surfaces All surfaces affected by patching and repairing work shall be restored to match existing adjacent surfaces. Repainting of affected areas or surfaces shall match color and shade of existing painted surfaces. #### 3.4 PROCEDURES #### 3.4.1 Procedures The procedures proposed for the accomplishment of cutting, patching, and repairing work shall be submitted when such work affects: - a. Work of Government employees or Contractors working under separate contract. - b. The structural value of or structural integrity of any element of the project. - c. Integrity of effectiveness of weather-exposed or moisture-resistant elements or systems. - $\ensuremath{\mathtt{d.}}$ Efficiency and operational life, maintenance or safety of operational elements. - e. Visual qualities of sight-exposed elements. #### 3.4.2 Submittals - a. Identification of the project. - b. Description of affected work. - c. The necessity for cutting, patching or alteration. - d. The affect on work of the Government or any separate Contractor. - e. The affect on the structural or weather proof integrity of the project. - f. Description of proposed work: - 1. Scope of cutting, patching, alteration and repairing. - 2. Trades who will execute the work. - 3. Products proposed to be used. - 4. Schedule of work. - g. Alternatives to cutting, patching and repairing. #### 3.5 MEASUREMENT AND PAYMENT No separate measurement and payment will be made for the work performed in this Section 01070, CUTTING, PATCHING & REPAIRING specified herein, and all costs in connection therewith shall be considered a subsidiary obligation of the Contractor, and shall be included in the overall cost of the work. -- End of Section -- #### SECTION 01200 # WARRANTY REQUIREMENT 01/01 #### PART 1 GENERAL #### 1.1 WARRANTY OF CONSTRUCTION The Contractor shall warranty all materials and workmanship in accordance with Contract Clause (FAR 52.246-21), "WARRANTY OF CONSTRUCTION" #### 1.2 MANUFACTURER'S WARRANTY: The Contractor shall provide manufacturer's warranties, when available, on all equipment for one year starting from the day of facility acceptance by the Government. Any warranty offered by the manufacturer for periods greater than one year or required by other sections of the specifications shall also be provided. #### 1.3 WARRANTY PAYMENT Warranty work is a subsidiary portion of the contract work, and has a value to the Government of \$15,000 . The Contractor will assign a value of that amount in the breakdown for progress payments mentioned in the Contract Clause (FAR 52.232-5) "Payments Under Fixed-Price Construction". If the Contractor fails to respond to warranty items as provided in paragraph CONTRACTOR'S RESPONSE TO WARRANTY SERVICE REQUIREMENTS below, the Government may elect to acquire warranty repairs through other sources and, if so, shall backcharge the Contractor for the cost of such repairs. Such backcharges shall be accomplished under the Contract Clause (FAR 52.243-4) "CHANGES" of the contract through a credit modification(s). #### 1.4 PERFORMANCE BOND: The Contractor's Performance Bond will remain effective throughout the construction warranty period and warranty extensions. #### 1.4.1 Failure to Commence In the event the Contractor or his designated representative(s) fail to commence and diligently pursue any work required under this clause, and in a manner pursuant to the requirements thereof, the Contracting Officer shall have the right to demand that said work be performed under the Performance Bond by making written notice on the surety. If the surety fails or refuses to perform the obligation it assumed under the Performance Bond, the Contracting Officer shall have the work performed by others, and after completion of the work, may demand reimbursement of any or all expenses incurred by the Government while performing the work, including, but not limited to administrative expenses. #### 1.5 PRE-WARRANTY CONFERENCE: Prior to contract completion and at a time designated by the Contracting Officer, the Contractor shall meet with the Contracting Officer to develop a mutual understanding with respect to the requirements of this specification. Communication procedures for Contractor notification of warranty defects, priorities with respect to the type of defect, reasonable time required for Contractor response, and other details deemed necessary by the Contracting Officer for the execution of the construction warranty shall be reviewed at this meeting. The Contractor shall provide names, addresses, and telephone numbers of all subcontractors, equipment suppliers, or manufacturers with specific designation of their area of responsibilities if they are to be contacted directly on warranty corrections. This point of contact will be located within the local service area of the warranted construction, will be continuously available, and will be responsive to Government inquiry on warranty work action and status. Minutes of the meeting will be prepared by the Government and signed by both, the Contractor and the Contracting Officer. The minutes shall become part of the contract file. #### 1.6 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-04 Samples Sample Tags; G A/E To identify the warranty for all Contractor and Government furnished equipment which the Contractor installs. #### 1.7 ADDITIONAL REQUIREMENTS #### 1.7.1 Roof Survey The Contractor shall during the ninth (9) month of the warranty period conduct an infrared roof survey on any project involving a membrane roofing system. This survey will be conducted in accordance with ASTM C1153-90, "Standard Practice for the Location of Wet Insulation in Roofing Systems Using Infrared Imaging". Contractor shall be required to replace all damaged materials and to locate and repair sources of moisture penetration. #### 1.7.2 Equipment Warranty Identification Tags: The Contractor shall provide warranty identification tags on all Contractor and Government furnished equipment which he has installed. #### 1.7.2.1 Format and Size for Tags The tags shall be similar in format and size to the exhibits provided by this specification, they shall be suitable for interior and exterior locations, resistant to solvents, abrasion, and to fading caused by sunlight, precipitation. etc. . These tags shall have a permanent pressure-sensitive adhesive back, and they shall be installed in a position that is easily (or most easily) noticeable. Contractor furnished equipment that has differing warranties on its components will have each component tagged. # 1.7.2.2 Sample Tags Sample tags shall be filled out representative of how the Contractor will complete all other tags. These tags shall be submitted to the Government. # 1.7.2.3 Tags for Warranted Equipment: The tag for this equipment shall be similar to the following. Exact format and size will be as approved. | 1 | PMENT WARRANTY
FURNISHED EQUIPMENT | | |--|---------------------------------------|---| | | | | | MFG: | MODEL NO.: | _ | | SERIAL NO.: | CONTRACT NO.: | _ | | CONTRACTORS NAME: | | _ | |
CONTRACTOR WARRANTY EXPIRE | S: | _ | |
 MFG WARRANTY(IES) EXPIRE: | | _ | | | | | | | | | | | | | | EQUI | PMENT WARRANTY | | | GOVERNMENT | FURNISHED EQUIPMENT | | | MFG: | MODEL NO.: | | | | CONTRACT NO.: | | | | | | | | ERVICE: | | | MFG WARRANTY(IES) EXPIRES: | | | | | | | #### 1.7.2.4 Execution The Contractor will complete the required information on each tag and install these tags on the equipment by the time of and as a condition of final acceptance of the equipment. All tags shall be mechanically attached to the equipment as directed by the Contracting Officer. 1.7.2.5 Equipment Warranty Tag Replacement. The contractor shall provide new tags on repaired or replaced equipment during the warranty period. The tag shall be identical to the original tag, except that the Contractor's warranty expiration date shall be updated to show the correct warranty experation date. - 1.8 CONTRACTOR'S RESPONSE TO WARRANTY SERVICE REQUIREMENTS. - 1.8.1 Notification to Warranty Service Requirements Following oral or written notification by authorized representative of the installation designated in writing by the Contracting Officer, the Contractor shall respond to warranty service requirements in accordance with the "Warranty Service Priority List" and the three categories of priorities listed below. - 1.8.1.1 Categories of Priorities - a. First Priority Code 1: Perform on site inspection to evaluate situation, determine course of action, initiate work within 24 hours and work continuously to completion or relief. - b. Second Priority Code 2: Perform on site inspection to evaluate situation, determine course of action, initiate work within 48 hours and work continuously to completion or relief. - c. Third Priority Code 3: All other work to be initiated within 5 work days end work continuously to completion or relief. - 1.8.1.2 Warranty Service Priority List # AIR CONDITIONING SYSTEM: #### Code 1: b. Buildings with computer equipment. #### Code 2: - a. Recreational support. - b. Air conditioning leak in part of building, if causing damage. - c. Admin buildings with ADP equipment not on priority list. #### DOORS: #### Code 1: a. Overhead doors not operational #### ELECTRICAL: #### Code 1: - a. Power failure (entire area or any building operational after 1600 hours). - b. Traffic control devices. - c. Security lights. #### Code 2: - a. Power failure (no Power to a room or part of building), - b. Receptacle and lights. - c. Fire alarm systems. GAS #### Code 1 a. Leaks and breaks. HEAT #### Code 1 d. Area power failure affecting heat. #### INTRUSION DETECTION SYSTEMS #### Code 1 a. Finance, PX and Commissary, and high security areas. #### Code 2 a. Systems other than those listed under Code 1. # PLUMBING # Code 2 - a. Flush valves. - b. Fixture drain, supply line commode, or water pipe leaking. - c. Commode leaking at base. # ROOF LEAKS # Code 1 a. Temporary repairs will be made where major damage to property is occurring. # Code 2 a. Where major damage to property is not occurring, check for location of leak during rain and complete repairs on a Code 2 basis. # WATER (Exterior) #### Code 1 a. Normal operation of water pump station. #### Code 2 No water to facility. # WATER, HOT (and STEAM) #### Code 1 - a. Hospitals. - b. Mess Halls. - c. BOQ. BEQ. barracks (entire building). - d. Medical and dental. #### Code 2 a. No hot water in portion of building listed under Code 1 (items a through \mathbf{c}). #### SPRINKLER SYSTEM #### Code 1 a. All sprinkler systems, valves, manholes, deluge systems, and air systems to sprinkler $\,$ ## 1.8.2 Availability of Required Parts Should parts be required to complete the work and the parts are not immediately available the Contractor shall have a maximum of 12 hours after arrival at the job site to provide authorized representative of the installation with firm written plan for emergency alternatives and temporary repairs for Government participation with the Contractor to provide emergency relief until the required parts are available on site for the Contractor to perform permanent warranty repair. The Contractors plan shall include a firm date and time that the required parts shall be available on site to complete the permanent warranty repair. # PART 2 PRODUCTS - NOT APPLICABLE # PART 3 EXECUTION - NOT APPLICABLE -- End of Section -- #### SECTION 01312 # RESIDENT MANAGEMENT SYSTEM (RMS) 05/00 #### PART 1 GENERAL The Government will use the Resident Management System for Windows (RMS-W) to assist in its monitoring and administration of this contract. The Contractor shall use the Government-furnished Construction Contractor Module of RMS-Windows, referred to as RMS-QC (QC for Quality Control), to record, maintain, and submit various information throughout the contract period. This joint Government-Contractor use of RMS-W and RMS-QC will facilitate electronic exchange of information and overall management of the contract. RMS-QC provides the means for the Contractor to input, track, and electronically share information with the Government in the following areas: Administration Finances Quality Control Submittal Monitoring Scheduling Import/Export of Data ## 1.1 Correspondence and Electronic Communications For ease and speed of communications, both Government and Contractor will, to the maximum extent feasible, exchange correspondence and other documents in electronic format. Correspondence, pay requests and other documents comprising the official contract record shall also be provided in paper format, with signatures and dates where necessary. Paper documents will govern, in the event of discrepancy with the electronic version. #### 1.1.1 Other Factors Particular attention is directed to Contract Clause, "Schedules for Construction Contracts", Contract Clause, "Payments", Section 01320, "Project Schedule", Section 01330, SUBMITTAL PROCEDURES, and Section 01451, CONTRACTOR QUALITY CONTROL, which have a direct relationship to the reporting to be accomplished through RMS-QC. Also, there is no separate payment for establishing and maintaining the RMS-QC database; all costs associated therewith shall be included in the contract pricing for the work. #### 1.2 RMS-QC SOFTWARE RMS-QC is a Windows-based program that can be run on a stand-alone personal computer or on a network. The Government will make available the RMS-QC software to the Contractor after award of the construction contract. Prior to the Pre-Construction Conference, the Contractor shall be responsible to download, install and use the latest version of the RMS-QC software from the Government's RMS Internet Website. Upon specific justification and request by the Contractor, the Government can provide RMS-QC on 3-1/2" high-density diskettes or CD-ROM. Any program updates of RMS-QC will be made available to the Contractor via the Government RMS Website as they become available. #### 1.3 SYSTEM REQUIREMENTS The following listed hardware and software is the minimum system configuration that the Contractor shall have to run RMS-QC: #### Hardware IBM-compatible PC with 200 MHz Pentium or higher processor 32+ MB RAM 4 GB hard drive disk space for sole use by the RMS-QC system 3 1/2 inch high-density floppy drive Compact disk (CD) Reader Color monitor Laser printer compatible with HP LaserJet III or better, with minimum 4 MB installed memory. Connection to the Internet, minimum 28 BPS #### Software Microsoft (MS) Access 97 or newer version database software MS Windows 95 or newer version operating system (MS Windows NT 4.0 or newer is recommended) Word Processing software compatible with MS Word 97 or newer Internet browser The Contractor's computer system shall be protected by virus protection software that is regularly upgraded with all issued manufacturer's updates throughout the life of the contract. Electronic mail (E-mail) compatible with MS Outlook #### 1.4 RELATED INFORMATION #### 1.4.1 RMS-OC User Guide After contract award, the Contractor shall download instructions for the installation and use of RMS-QC from the Government RMS Internet Website; the Contractor can obtain the current address from the Government. In case of justifiable difficulties, the Government will provide the Contractor with a CD-ROM containing these instructions. # 1.4.2 Contractor Quality Control(CQC) Training The use of RMS-QC will be discussed with the Contractor's QC System Manager during the mandatory CQC Training class. # 1.4.3 Video Training for RMS-QC After contract award, the Contractor will be provided with a CD containing a training video on the use of RMS-QC. #### 1.5 CONTRACT DATABASE Prior to the pre-construction conference, the Government shall provide the Contractor with basic contract award data to use for RMS-QC. The Government will provide data updates to the Contractor as needed, generally by files attached to E-mail. These updates will generally consist of submittal reviews, correspondence status, QA comments, and other administrative and QA data. #### 1.6 DATABASE MAINTENANCE The Contractor shall establish, maintain, and update data for the contract in the RMS-QC database throughout the duration of the contract. The Contractor shall establish and maintain the RMS-QC database at the Contractor's site office. Data updates to the Government shall be submitted by E-mail with file attachments, e.g., daily reports, schedule updates, payment requests. If permitted by the Contracting Officer, a data diskette or CD-ROM may be used instead of E-mail (see Paragraph DATA SUBMISSION VIA COMPUTER DISKETTE OR CD-ROM). The RMS-QC database typically shall include current data on the following items: #### 1.6.1 Administration #### 1.6.1.1 Contractor Information The database shall contain the Contractor's name, address, telephone numbers, management staff, and other required items. Within 14 calendar days of receipt of RMS-QC software from the Government, the Contractor shall deliver Contractor administrative data in electronic format via E-mail. #
1.6.1.2 Subcontractor Information The database shall contain the name, trade, address, phone numbers, and other required information for all subcontractors. A subcontractor must be listed separately for each trade to be performed. Each subcontractor/trade shall be assigned a unique Responsibility Code, provided in RMS-QC. Within 14 calendar days of receipt of RMS-QC software from the Government, the Contractor shall deliver subcontractor administrative data in electronic format via E-mail. #### 1.6.1.3 Correspondence All Contractor correspondence to the Government shall be identified with a serial number. Correspondence initiated by the Contractor's site office shall be prefixed with "S". Letters initiated by the Contractor's home (main) office shall be prefixed with "H". Letters shall be numbered starting from 0001. (e.g., H-0001 or S-0001). The Government's letters to the Contractor will be prefixed with "C". #### 1.6.1.4 Requests for Information RMS-QC includes a means for the Contractor to enter, log, and transmit requests for information (RFI) to the Government. RFIs can be exchanged electronically using the import/export functions of RMS-QC. The Contractor shall also provide the Government with a signed, printed copy of each RFI. All RFIs from the Contractor to the Government shall have the prefix "RFI" and shall be numbered sequentially beginning with RFI-0001. #### 1.6.1.5 Equipment The Contractor's RMS-QC database shall contain a current list of equipment planned for use or being used on the jobsite, including the most recent and planned equipment inspection dates. # 1.6.1.6 EM 385-1-1, Corps of Engineers Safety Manual and RMS Linkage Upon request, the Contractor can obtain a copy of the current version of the Safety Manual, EM 385-1-1, on CD. Data on the CD will be accessible through RMS-QC, or in stand-alone mode. # 1.6.1.7 Management Reporting RMS-QC includes a number of reports that Contractor management can use to track the status of the project. The value of these reports is reflective of the quality of the data input, and is maintained in the various sections of RMS-QC. Among these reports are: Progress Payment Request worksheet, QA/QC comments, Submittal Register Status, Three-Phase Inspection checklists. #### 1.6.2 Finances # 1.6.2.1 Pay Activity Data The RMS-QC database shall include a list of pay activities that the Contractor shall develop in conjunction with the construction schedule. The sum of all pay activities shall be equal to the total contract amount, including modifications. Pay activities shall be grouped by Contract Line Item Number (CLIN), and the sum of the activities shall equal the amount of each CLIN. The total of all CLINs equals the Contract Amount. #### 1.6.2.2 Payment Requests All progress payment requests shall be prepared using RMS-QC. The Contractor shall complete the payment request worksheet and include it with the payment request. The work completed under the contract, measured as percent or as specific quantities, shall be updated at least monthly. After the update, the Contractor shall generate a payment request report using RMS-QC. The Contractor shall submit the payment requests with supporting data by E-mail with file attachment(s). If permitted by the Contracting Officer, a data diskette may be used instead of E-mail. A signed paper copy of the approved payment request is also required, which shall govern in the event of discrepancy with the electronic version. ## 1.6.3 Quality Control (QC) RMS-QC provides a means to track implementation of the 3-phase QC Control System, prepare daily reports, identify and track deficiencies, document progress of work, and support other contractor QC requirements. The Contractor shall maintain this data on a daily basis. Entered data will automatically output to the RMS-QC generated daily report. The Contractor shall provide the Government a Contractor Quality Control (CQC) Plan within the time required in Section 01451, CONTRACTOR QUALITY CONTROL. Within seven calendar days of Government acceptance, the Contractor shall submit a data diskette or CD-ROM reflecting the information contained in the accepted CQC Plan: schedule, pay activities, features of work, submittal register, QC requirements, and equipment list. # 1.6.3.1 Daily Contractor Quality Control (CQC) Reports. RMS-QC includes the means to produce the Daily CQC Report. The Contractor may use other formats to record basic QC data. However, the Daily CQC Report generated by RMS-QC shall be the Contractor's official report. Data from any supplemental reports by the Contractor shall be summarized and consolidated onto the RMS-QC-generated Daily CQC Report. Daily CQC Reports shall be submitted as required by Section 01451, CONTRACTOR QUALITY CONTROL. Reports shall be submitted electronically to the Government using E-mail or diskette within 24 hours after the date covered by the report. Use of either mode of submittal shall be coordinated with the government representative. The Contractor shall also provide the Government a signed, printed copy of the daily CQC report. #### 1.6.3.2 Deficiency Tracking. The Contractor shall use RMS-QC to track deficiencies. Deficiencies identified by the Contractor will be numerically tracked using QC Comments. The contractor shall maintain a current log of its QC comments in the RMS-QC database. The Government will log the deficiencies it has identified using its QA comments. The Government's QA comments will be included in its export file to the Contractor. The Contractor shall regularly update the correction status of both QC and QA comments. #### 1.6.3.3 Three-Phase Control Meetings The Contractor shall maintain scheduled and actual dates and times of preparatory and initial control meetings in RMS-QC. # 1.6.3.4 Accident/Safety Tracking. The Government will issue safety comments, directions, or guidance whenever safety deficiencies are observed. The Government's safety comments will be included in its export file to the Contractor. The Contractor shall regularly update the correction status of the safety comments. In addition, the Contractor shall utilize RMS-QC to advise the Government of any accidents occurring on the jobsite. This brief supplemental entry is not to be considered as a substitute for completion of mandatory reports, e.g., ENG Form 3394 and OSHA Form 200. #### 1.6.3.5 Features of Work The Contractor shall include a complete list of the features of work in the RMS-QC database. A feature of work may be associated with multiple pay activities. However, each pay activity (see subparagraph "Pay Activity Data" of paragraph "Finances") will only be linked to a single feature of work. # 1.6.3.6 QC Requirements The Contractor shall develop and maintain a complete list of QC testing, transferred and installed property, and user training requirements in RMS-QC. The Contractor shall update all data on these QC requirements as work progresses, and shall promptly provide this information to the Government via RMS-QC. #### 1.6.4 Submittal Mnagement The Government will provide the initial submittal register, ENG Form 4288, SUBMITTAL REGISTER, in electronic format. Thereafter, the Contractor shall maintain a complete list of all submittals, including completion of all data columns as described in Section 01330, SUBMITTAL PROCEDURES. Dates on which submittals are received and returned by the Government will be included in its export file to the Contractor. The Contractor shall use RMS-QC to track and transmit all submittals. ENG Form 4025, submittal transmittal form, and the submittal register update, ENG Form 4288, shall be produced using RMS-QC. RMS will be used to update, store and exchange submittal registers and transmittals, but will not be used for storage of actual submittals. #### 1.6.5 Schedule The Contractor shall develop a construction schedule consisting of pay activities, in accordance with Contract Clause "Schedules for Construction Contracts", or Section 01320, PROJECT SCHEDULE, as applicable. This schedule shall be input and maintained in the RMS-QC database either manually or by using the Standard Data Exchange Format (SDEF) (see Section 01320 PROJECT SCHEDULE). The updated schedule data shall be included with each pay request submitted by the Contractor. # 1.6.6 Import/Export of Data RMS-QC includes the ability to export Contractor data to the Government and to import submittal register and other Government-provided data, and schedule data using SDEF. #### 1.7 IMPLEMENTATION Contractor use of RMS-QC as described in the preceding paragraphs is mandatory. The Contractor shall ensure that sufficient resources are available to maintain its RMS-QC database, and to provide the Government with regular database updates. RMS-QC shall be an integral part of the Contractor's management of quality control. # 1.8 DATA SUBMISSION VIA COMPUTER DISKETTE OR CD-ROM The Government-preferred method for Contractor's submission of updates, payment requests, correspondence and other data is by E-mail with file attachment(s). For locations where this is not feasible, the Contracting Officer may permit use of computer diskettes or CD-ROM for data transfer. Data on the disks or CDs shall be exported using the RMS-QC built-in export function. If used, diskettes and CD-ROMs will be submitted in accordance with the following: #### 1.8.1 File Medium The Contractor shall submit required data on 3-1/2" double-sided high-density diskettes formatted to hold 1.44 MB of data, capable of running under Microsoft Windows 95 or newer. Alternatively, CD-ROMs may be used. They shall conform to industry standards used in the United States. All data shall be provided in English. # 1.8.2 Disk or CD-ROM Labels The Contractor shall affix a permanent exterior label to each diskette and CD-ROM submitted. The label shall indicate in English, the RMS-QC file name, full contract number, project name, project location, data date, name and telephone number of person
responsible for the data. #### 1.8.3 File Names The Government will provide the file names to be used by the Contractor with the RMS-QC software. #### 1.9 MONTHLY COORDINATION MEETING The Contractor shall update the RMS-QC database each workday. At least monthly, the Contractor shall generate and submit an export file to the Government with schedule update and progress payment request. As required in Contract Clause "Payments", at least one week prior to submittal, the contractor shall meet with the Government representative to review the planned progress payment data submission for errors and omissions. The contractor shall make all required corrections prior to Government acceptance of the export file and progress payment request. Payment requests accompanied by incomplete or incorrect data submittals will be returned. The Government will not process progress payments until an acceptable RMS-QC export file is received. #### 1.10 NOTIFICATION OF NONCOMPLIANCE The Contracting Officer will notify the Contractor of any detected noncompliance with the requirements of this specification. The Contractor shall take immediate corrective action after receipt of such notice. Such notice, when delivered to the Contractor at the work site, shall be deemed sufficient for the purpose of notification. PART 2 PRODUCTS NOT APPLICABLE PART # TITLE Text -- End of Section -- #### SECTION 01320 # PROJECT SCHEDULE 09/99 #### PART 1 GENERAL #### 1.1 REFERENCE The publications listed below form a part of the specification to the extent referenced. The publications are referenced in the text by basic designation only. #### U.S. ARMY CORPS OF ENGINEERS (USACE) EM 385-1-1 (1996) U.S. Army Corps of Engineers Safety and Health Requirements Manual ER 1-1-11 (1995) Progress, Schedules, and Network Analysis Systems #### 1.2 SUBMITTALS Government approval is required for submittals with a "GA" designation; submittals having an "FIO" designation are for information only. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-01 Preconstruction Submittals Qualifications; G A/E. Documentation showing qualifications of personnel preparing schedule reports. Narrative Report; G AR. Schedule Reports; G A/E. Three copies of the reports showing numbers, descriptions, dates, float, starts, finishes, durations, sequences, etc., as required. #### 1.3 QUALIFICATIONS The Contractor shall designate an authorized representative who shall be responsible for the preparation of all required project schedule reports. PART 2 PRODUCTS (Not Applicable) #### PART 3 EXECUTION #### 3.1 GENERAL REQUIREMENTS Pursuant to the Contract Clause, SCHEDULE FOR CONSTRUCTION CONTRACTS, a Project Schedule as described below shall be prepared. The scheduling of construction shall be the responsibility of the Contractor. The Contractor's Schedule must be compatable for loading into the RMS-W and the RMS-W QC Module Software. Contractor management personnel shall actively participate in its development. Subcontractors and suppliers working on the project shall also contribute in developing and maintaining an accurate Project Schedule. The approved Project Schedule shall be used to measure the progress of the work, to aid in evaluating time extensions, and to provide the basis of all progress payments. #### 3.2 BASIC FOR PAYMENT The schedule shall be the basis for measuring Contractor progress. Lack of an approved schedule or scheduling personnel will result in an inability of the Contracting Officer to evaluate Contractor's progress for the purposes of payment. Failure of the Contractor to provide all information, as specified below, shall result in the disapproval of the entire Project Schedule submission and the inability of the Contracting Officer to evaluate Contractor progress for payment purposes. In the case where Project Schedule revisions have been directed by the Contracting Officer and those revisions have not been included in the Project Schedule, then the Contracting Officer may hold retainage up to the maximum allowed by contract, each payment period, until revisions to the Project Schedule have been made. #### 3.3 PROJECT SCHEDULE The computer software system utilized by the Contractor to produce the Project Schedule shall be capable of providing all requirements of this specification. Failure of the Contractor to meet the requirements of this specification shall result in the disapproval of the schedule. Manual methods used to produce any required information shall require approval by the Contracting Officer. # 3.3.1 Use of the Critical Path Method The Critical Path Method (CPM) of network calculation shall be used to generate the Project Schedule. The Contractor shall provide the Project Schedule in the Precedence Diagram Method (PDM). # 3.3.2 Level of Detail Required The Project Schedule shall include an appropriate level of detail. Failure to develop or update the Project Schedule or provide data to the Contracting Officer at the appropriate level of detail, as specified by the Contracting Officer, shall result in the disapproval of the schedule. The Contracting Officer will use, but is not limited to, the following conditions to determine the appropriate level of detail to be used in the Project Schedule. #### 3.3.2.1 Activity Durations Contractor submissions shall follow the direction of the Contracting Officer regarding reasonable activity durations. Reasonable durations are those that allow the progress of activities to be accurately determined between payment periods (usually less than 2 percent of all non-procurement activities' Original Durations are greater than 20 days). #### 3.3.2.2 Procurement Activities Tasks related to the procurement of long lead materials or equipment shall be included as separate activities in the project schedule. Long lead materials and equipment are those materials that have a procurement cycle of over 90 days. Examples of procurement process activities include, but are not limited to: submittals, approvals, procurement, fabrication, and delivery. #### 3.3.2.3 Government Activities Government and other agency activities that could impact progress shall be shown. These activities include, but are not limited to: approvals, inspections, utility tie-in, Government Furnished Equipment (GFE) and Notice to Proceed (NTP) for phasing requirements. ## 3.3.2.4 Responsibility All activities shall be identified in the project schedule by the party responsible to perform the work. Responsibility includes, but is not limited to, the subcontracting firm, contractor work force, or government agency performing a given task. Activities shall not belong to more than one responsible party. The responsible party for each activity shall be identified by the Responsibility Code. # 3.3.2.5 Modification or Claim Number Any activity that is added or changed by contract modification or used to justify claimed time shall be identified by a mod or claim code that changed the activity. Activities shall not belong to more than one modification or claim item. The modification or claim number of each activity shall be identified by the Mod or Claim Number. Whenever possible, changes shall be added to the schedule by adding new activities. Existing activities shall not normally be changed to reflect modifications. # 3.3.2.6 Bid Item All activities shall be identified in the project schedule by the Bid Item to which the activity belongs. An activity shall not contain work in more than one bid item. the bid item for each appropriate activity shall be identified by the Bid Item Code. # 3.3.2.7 Category of Work All Activities shall be identified in the project schedule according to the category of work which best describes the activity. Category of work refers, but is not limited, to the procurement chain of activities including such items as submittals, approvals, procurement, fabrication, delivery, installation, start-up, and testing. The category of work for each activity shall be identified by the Category of Work Code. # 3.3.2.8 Feature of Work All activities shall be identified in the project schedule according to the feature of work to which the activity belongs. Feature of work refers, but is not limited to a work breakdown structure for the project. The feature of work for each activity shall be identified by the Feature of Work Code. # 3.3.2.9 Specification Section All activities shall be identified in the project schedule according to the specification section to which the activity belongs. #### 3.3.3 Scheduled Project Completion The schedule interval shall extend from Notice-to-Proceed to the contract completion date. #### 3.3.3.1 Project Start Date The schedule shall start no earlier than the date on which the Notice to Proceed (NTP) was acknowledged. The Contractor shall include as the first activity in the project schedule an activity called "Start Project". The "Start Project" activity shall have: an "ES" constraint date equal to the date that the NTP was acknowledged, and a zero day duration. # 3.3.3.2 Constraint of Last Activity Completion of the last activity in the schedule shall be constrained by the contract completion date. Calculation on project updates shall be such that if the early finish of the last activity falls after the contract completion date, then the float calculation shall reflect a negative float on the critical path. The Contractor shall include as the last activity in the project schedule an activity call "End Project". The "End Project" activity shall have: an "LF" constraint date equal to the completion date for the project, and a zero day duration. # 3.3.3.3 Early Project Completion In the event the project schedule shows completion of the project prior to the contract completion date, the Contractor shall identify those activities that have been accelerated and/or those activities that are scheduled in parallel to support the Contractor's "early" completion. Contractor shall
specifically address each of the activities noted in the narrative report at every project schedule update period to assist the Contracting Officer in evaluating the Contractor's ability to actually complete prior to the contract period. #### 3.3.4 Interim Completion Dates Contractually specified interim completion dates shall also be constrained to show negative float if the early finish date of the last activity in that phase falls after the interim completion date. # 3.3.5 Default Progress Data Disallowed Actual Start and Finish dates shall not be automatically updated by default mechanisms that may be included in CPM scheduling software systems. Actual Start and Finish dates on the CPM schedule shall match those dates provided from Contractor Quality Control Reports. Failure of the Contractor to document the Actual Start and Finish dates on the Daily Quality Control report for every in-progress or completed activity and failure to ensure that the data contained on the Daily Quality Control reports is the sole basis for schedule updating shall result in the disapproval of the Contractor's schedule and the inability of the Contracting Officer to evaluate Contractor progress for payment purposes. # 3.3.6 Out-of-Sequence Progress Activities that have posted progress without all preceding logic being satisfied (Out-of-Sequence Progress) will be allowed only on a case-by-case approval of the Contracting Officer. The Contractor shall propose logic corrections to eliminate all out of sequence progress or justify not changing the sequencing for approval prior to submitting an updated project schedule. #### 3.3.7 Negative Lags Lag durations contained in the project schedule shall not have a negative value. #### 3.4 PROJECT SCHEDULE SUBMISSIONS The Contractor shall provide the submissions as described below. The data disk, reports, and network diagrams required for each submission are contained in paragraph SUBMISSION REQUIREMENTS. # 3.4.1 Preliminary Project Schedule Submission The Preliminary Project Schedule, defining the Contractor's planned operations for the first 60 calendar days shall be submitted for approval within 20 calendar days after Notice to Proceed is acknowledged. The approved preliminary schedule shall be used for payment purposes not to exceed 60 calendar days after Notice to Proceed. #### 3.4.2 Initial Project Schedule Submission The Initial Project Schedule shall be submitted for approval within 40 calendar days after Notice to Proceed. The schedule shall provide a reasonable sequence of activities which represent work through the entire project and shall be at a reasonable level of detail. ## 3.4.3 Periodic Schedule Updates Based on the result of progress meetings, specified in "Periodic Progress Meetings," the Contractor shall submit periodic schedule updates. These submissions shall enable the Contracting Officer or to assess Contractor's progress. If the Contractor fails or refuses to furnish the information and project schedule data, which in the judgement of the Contracting Officer or authorized representative, is necessary for verifying the contractor's progress, the Contractor shall be deemed not to have provided an estimate upon which progress payment may be made. # 3.4.4 Standard Activity Coding Dictionary The Contractor shall use the activity coding structure defined in the Standard Data Exchange Format (SDEF) in ER 1-1-11, Appendix A. This exact structure is mandatory, even if some fields are not used. #### 3.5 SUBMISSION REQUIREMENTS The following items shall be submitted by the Contractor for the preliminary submission, and every periodic project schedule update throughout the life of the project: #### 3.5.1 Data Disks Two data disks containing the project schedule shall be provided. Data on the disks shall adhere to the SDEF format specified in ER 1-1-11, Appendix A. #### 3.5.1.1 File Medium Required data shall be submitted on 3.5 disks, formatted to hold 1.44 MB of data, under the MS-DOS Version 5. or 6.x, unless otherwise approved by the Contracting Officer. #### 3.5.1.2 Disk Label A permanent exterior label shall be affixed to each disk submitted. The label shall indicate the type of schedule (Preliminary, Initial, Update, or Change), full contract number, project name, project location, data date, name and telephone number or person responsible for the schedule, and the MS-DOS version used to format the disk. #### 3.5.1.3 File Name Each file submitted shall have a name related to either the schedule data date, project name, or contract number. The Contractor shall develop a naming convention that will ensure that the names of the files submitted are unique. The Contractor shall submit the file naming convention to the Contracting Officer for approval. #### 3.5.2 Narrative Report A Narrative Report shall be provided with the preliminary, initial, and each update of the project schedule. This report shall be provided as the basis of the Contractor's progress payment request. The Narrative Report shall include: a description of activities along the 2 most critical paths, a description of current and anticipated problem areas or delaying factors and their impact, and an explanation of corrective actions taken or required to be taken. The narrative report is expected to relay to the Government, the Contractor's thorough analysis of the schedule output and its plans to compensate for any problems, either current or potential, which are revealed through that analysis. ## 3.5.3 Approved Changes Verification Only project schedule changes that have been previously approved by the Contracting Officer shall be included in the schedule submission. The Narrative Report shall specifically reference, on an activity by activity basis, all changes made since the previous period and relate each change to documented, approved schedule changes. # 3.5.4 Schedule Reports The format for each activity for the schedule reports listed below shall contain: Activity Numbers, Activity Description, Original Duration, Remaining Duration, Early Start Date, Early Finish Date, Late Start Date, Late Finish Date, Total Float. Actual Start and Actual Finish Dates shall be printed for those activities in progress or completed. #### 3.5.4.1 Activity Report A list of all activities sorted according to activity number. ## 3.5.4.2 Logic Report A list of Preceding and Succeeding activities for every activity in ascending order by activity number. Preceding and succeeding activities shall include all information listed above in paragraph Schedule Reports. A blank line shall be left between each activity grouping. ### 3.5.4.3 Total Float Report A list of all incomplete activities sorted in ascending order of total float. Activities which have the same amount of total float shall be listed in ascending order of Early Start Dates. Completed activities shall not be shownon this report. ### 3.5.4.4 Earnings Report A compilation of the Contractor's Total Earnings on the project from the Notice to Proceed until the most recent Monthly Progress Meeting. This report shall reflect the Earnings of specific activities based on the agreements made in the field and approved between the Contractor and Contracting Officer at the most recent Monthly Progress Meeting. Provided that the Contractor has provided a complete schedule update, this report shall serve as the basis of determining Contractor Payment. Activities shall be grouped by bid item and sorted by activity numbers. This report shall: sum all activities in a bid item and provide a bid item percent; and complete and sum all bid items to provide a total project percent complete. The printed report shall contain, for each activity: the Activity Number, Activity Description, Original Budgeted Amount, Total Quantity, Quantity to Date, Percent Complete (based on cost) and Earnings to Date. ### 3.5.5 Network Diagram The network diagram shall be required on the initial schedule submission and on monthly schedule update submissions. The network diagram shall depict and display the order and interdependence of activities and the sequence in which the work is to be accomplished. The Contracting Officer will use, but is not limited to, the following conditions to review compliance with this paragraph: ### 3.5.5.1 Continuous Flow Diagrams shall show a continuous flow from left to right with no arrows from right to left. The activity number, description, duration, and estimated earned value shall be shown on the diagram. ### 3.5.5.2 Project Milestone Dates Dates shall be shown on the diagram for start of project, any contract required interim completion dates, and contract completion dates. ### 3.5.5.3 Critical Path The critical path shall be clearly shown. ### 3.5.5.4 Banding Activities shall be grouped to assist in the understanding of the activity sequence. Typically, this flow will group activities by category of work, work area and/or responsibility. ### 3.5.5.5 S-Curves Earnings curves showing projected early and late earnings and earnings to date. ### 3.6 PERIODIC PROGRESS MEETINGS Progress meetings to discuss payment shall include a monthly onsite meeting or other regular intervals mutually agreed to at the preconstruction conference. During this meeting the Contractor shall describe, on an activity by activity basis, all proposed revisions and adjustments to the project schedule required to reflect the current status of the project. The Contracting Officer will approve activity progress, proposed revisions, and adjustments as appropriate. ### 3.6.1 Meeting Attendance The Contractor's Project Manager and Scheduler shall attend the regular progress meeting. ### 3.6.2 Update Submission Following Progress Meeting A complete update of the project schedule containing all approved progress, revisions, and adjustments, based on the regular progress meeting, shall be submitted not later than 4 working days after the monthly progress meeting. ### 3.6.3 Progress Meeting Contents Update
information, including Actual Start Dates, Actual Finish Dates, Remaining Durations, and Cost-to-Date shall be subject to the approval of the Contracting Officer. As a minimum, the Contractor shall address the following items on an activity by activity basis, during each progress meeting. ### 3.6.3.1 Start and Finish Dates The Actual Start and Actual Finish dates for each activity currently in-progress or completed. ### 3.6.3.2 Time Completion The estimated Remaining Duration for each activity in-progress. Time-based progress calculations must be based on Remaining Duration for each activity. ### 3.6.3.3 Cost Completion The earnings for each activity started. Payment will be based on earnings for each in-progress or completed activity. Payment for individual activities will not be made for work that contains quality defects. A portion of the overall project amount may be retained based on delays of activities. ### 3.6.3.4 Logic Changes All logic changes pertaining to Notice to Proceed on change orders, change orders to be incorporated into the schedule, contractor proposed changes in work sequence, corrections to schedule logic for out-of-sequence progress, lag durations, and other changes that have been made pursuant to contract provisions shall be specifically identified and discussed. ### 3.6.3.5 Other Changes Other changes required due to delays in completion of any activity or group of activities include: 1) delays beyond the Contractor's control, such as strikes and unusual weather. 2) delays encountered due to submittals, Government Activities, deliveries or work stoppages which make re-planning the work necessary. 3) Changes required to correct a schedule which does not represent the actual plan prosecution and progress of the work. ### 3.7 REQUESTS FOR TIME EXTENSIONS In the event the Contractor requests an extension of the contract completion date, or any interim milestone date, the Contractor shall furnish the following for a determination as to whether or not the Contractor is entitled to an extension of time under the provisions of the contract: justification, project schedule data, and supporting evidence as the Contracting Officer may deem necessary. Submission of proof of delay, based on revised activity logic, duration, and costs (updated to the specific date that the delay occurred) is obligatory to any approvals. ### 3.7.1 Justification of Delay The project schedule shall clearly display that the Contractor has used, in full, all the float time available for the work involved with this request. The Contracting Officer's determination as to the number of allowable days of contract extension shall be based upon the project schedule updates in effect for the time period in question, and other factual information. Actual delays that are found to be caused by the Contractor's own actions, which result in the extension of the schedule, will not be a cause for a time extension to the contract completion date. ### 3.7.2 Submission Requirements The Contractor shall submit a justification for each request for a change in the contract completion date of under 2 weeks based upon the most recent schedule update at the time of the Notice to Proceed or constructive direction issued for the change. Such a request shall be in accordance with the requirements of other appropriate Contract Clauses and shall include, as a minimum: - a. A list of affected activities, with their associated project schedule activity number. - b. A brief explanation of the causes of the change. - c. An analysis of the overall impact of the changes proposed. - d. A sub-network of the affected area. Activities impacted in each justification for change shall be identified by a unique activity code contained in the required data file. ### 3.7.3 Additional Submission Requirements For any requested time extension of over 2 weeks, the Contracting Officer may request an interim update with revised activities for a specific change request. The Contractor shall provide this disk within 4 days of the Contracting Officer's request. ### 3.8 DIRECTED CHANGES If Notice to Proceed (NTP) is issued for changes prior to settlement of price and/or time, the Contractor shall submit proposed schedule revisions to the Contracting Officer within 2 weeks of the NTP being issued. The proposed revisions to the schedule will be approved by the Contracting Officer prior to inclusion of those changes within the project schedule. If the Contractor fails to submit the proposed revisions, the Contracting Officer may furnish the Contractor with suggested revisions to the project schedule. The Contractor shall include these revisions in the project schedule until revisions are submitted, and final changes and impacts have been negotiated. If the Contractor has any objections to the revisions furnished by the Contracting Officer, the Contractor shall advise the Contracting Officer within 2 weeks of receipt of the revisions. Regardless of the objections, the Contractor shall continue to update the schedule with the Contracting Officer's revisions until a mutual agreement in the revisions is reached. If the Contractor fails to submit alternative revisions within 2 weeks of receipt of the Contracting Officer's proposed revisions, the Contractor will be deemed to have concurred with the Contracting Officer's proposed revisions. The proposed revisions will then be the basis for an equitable adjustment for performance of the work. ### 3.9 OWNERSHIP OF FLOAT Float available in the schedule, at any time, shall not be considered for the exclusive use of either the Government or the Contractor. -- End of Section -- ### SECTION 01330 # SUBMITTAL PROCEDURES 09/00 ### PART 1 GENERAL ### 1.1 SUBMITTAL IDENTIFICATION Submittals required are identified by SD numbers and titles as follows: - SD-01 Preconstruction Submittals - SD-02 Shop Drawings - SD-03 Product Data - SD-04 Samples - SD-05 Design Data - SD-06 Test Reports - SD-07 Certificates - SD-08 Manufacturer's Instructions - SD-09 Manufacturer's Field Reports - SD-10 Operation and Maintenance Data - SD-11 Closeout Submittals ### 1.2 SUBMITTAL CLASSIFICATION Submittals are classified as follows: ### 1.2.1 Government Approved Government approval is required for extensions of design, critical materials, deviations, equipment whose compatibility with the entire system must be checked, and other items as designated by the Contracting Officer. Within the terms of the Contract Clause entitled "Specifications and Drawings for Construction," they are considered to be "shop drawings." ### 1.2.2 Information Only All submittals not requiring Government approval will be for information only. They are not considered to be "shop drawings" within the terms of the Contract Clause referred to above. Submittal Register ENG FORM 4288, column labeled "Reviewer", this column is blank and is understood that the reviewer is "AR" (Area Office). ### 1.3 APPROVED SUBMITTALS The Contracting Officer's approval of submittals shall not be construed as a complete check, but will indicate only that the general method of construction, materials, detailing and other information are satisfactory. Approval will not relieve the Contractor of the responsibility for any error which may exist, as the Contractor under the Contractor Quality Control (CQC) requirements of this contract is responsible for dimensions, the design of adequate connections and details, and the satisfactory construction of all work. After submittals have been approved by the Contracting Officer, no resubmittal for the purpose of substituting materials or equipment will be considered unless accompanied by an explanation of why a substitution is necessary. ### 1.4 DISAPPROVED SUBMITTALS The Contractor shall make all corrections required by the Contracting Officer and promptly furnish a corrected submittal in the form and number of copies specified for the initial submittal. If the Contractor considers any correction indicated on the submittals to constitute a change to the contract, a notice in accordance with the Contract Clause "Changes" shall be given promptly to the Contracting Officer. ### 1.5 WITHHOLDING OF PAYMENT Payment for materials incorporated in the work will not be made if required approvals have not been obtained. PART 2 PRODUCTS (Not used) PART 3 EXECUTION ### 3.1 GENERAL The Contractor shall make submittals as required by the specifications. The Contracting Officer may request submittals in addition to those specified when deemed necessary to adequately describe the work covered in the respective sections. Units of weights and measures used on all submittals shall be the same as those used in the contract drawings. submittal shall be complete and in sufficient detail to allow ready determination of compliance with contract requirements. Prior to submittal, all items shall be checked and approved by the Contractor's Quality Control (CQC) System Manager and each item shall be stamped, signed, and dated by the CQC System Manager indicating action taken. Proposed deviations from the contract requirements shall be clearly identified. Submittals shall include items such as: Contractor's, manufacturer's, or fabricator's drawings; descriptive literature including (but not limited to) catalog cuts, diagrams, operating charts or curves; test reports; test cylinders; samples; O&M manuals (including parts list); certifications; warranties; and other such required submittals. Submittals requiring Government approval shall be scheduled and made prior to the acquisition of the material or equipment covered thereby. Samples remaining upon completion of the work shall be picked up and disposed of in accordance with manufacturer's Material Safety Data Sheets (MSDS) and in compliance with existing laws and regulations. ### 3.2 SUBMITTAL REGISTER At the end of this section is one set of ENG Form 4288 listing items of equipment and materials for which submittals are required by the specifications;
this list may not be all inclusive and additional submittals may be required. The Contractor will also be given the submittal register files, containing the computerized ENG Form 4288 and instructions on the use of the files. These submittal register files will be furnished on a separate diskette. Columns "c" through "f" have been completed by the Government; the Contractor shall complete columns "a" and "g" through "i" and submit the forms (hard copy plus associated electronic file) to the Contracting Officer for approval within 30 calendar days after Notice to Proceed. The Contractor shall keep this diskette up-to-date and shall submit it to the Government together with the monthly payment request. The approved submittal register will become the scheduling document and will be used to control submittals throughout the life of the contract. The submittal register and the progress schedules shall be coordinated. The Contractor shall be responsible for loading the submittal register into the RMS-W QC module. At the end of this section is one set of ENG Form 4288 listing items of equipment and materials for which submittals are required by the specifications; this list may not be all inclusive and additional submittals may be required. The Contractor shall maintain a submittal register for the project in accordance with Section 01312 RESIDENT MANAGEMENT SYSTEM (RMS). ### 3.3 SCHEDULING Submittals covering component items forming a system or items that are interrelated shall be scheduled to be coordinated and submitted concurrently. Certifications to be submitted with the pertinent drawings shall be so scheduled. Adequate time (a minimum of 30 calendar days exclusive of mailing time) shall be allowed and shown on the register for review and approval. No delay damages or time extensions will be allowed for time lost in late submittals. An additional 30 calendar days shall be allowed and shown on the register for review and approval of submittals for refrigeration and HVAC control systems. ### 3.4 TRANSMITTAL FORM (ENG FORM 4025) Submittals covering component items forming a system or items that are interrelated shall be scheduled to be coordinated and submitted concurrently. Certifications to be submitted with the pertinent drawings shall be so scheduled. Adequate time (a minimum of 30 calendar days exclusive of mailing time) shall be allowed and shown on the register for review and approval. No delay damages or time extensions will be allowed for time lost in late submittals. An additional _30_ calendar days shall be allowed and shown on the register for review and approval of submittals for refrigeration and HVAC control systems. ### 3.5 SUBMITTAL PROCEDURE Six (6) copies of submittals shall be made as follows: ### 3.5.1 Procedures In the signature block provided on ENG Form 4025 the Contractor certifies that each item has been reviewed in detail and is correct and is in strict conformance with the contract drawings and specifications unless noted otherwise. The accuracy and completeness of submittals is the responsibility of the Contractor. Any costs due to resubmittal of documents caused by inaccuracy, lack of coordination, and/or checking shall be the responsibility of the Contractor. This shall include the handling and review time on the part of the Government. Each variation from the contract specifications and drawings shall be noted on the form; and, attached to the form, the Contractor shall set forth, in writing, the reason for and description of such variations. If these requirements are not met, the submittal may be returned for corrective action. ### 3.5.2 Deviations For submittals which include proposed deviations requested by the Contractor, the column "variation" of ENG Form 4025 shall be checked. The Contractor shall set forth in writing the reason for any deviations and annotate such deviations on the submittal. The Government reserves the right to rescind inadvertent approval of submittals containing unnoted deviations. ### 3.6 CONTROL OF SUBMITTALS The Contractor shall carefully control his procurement operations to ensure that each individual submittal is made on or before the Contractor scheduled submittal date shown on the approved "Submittal Register." ### 3.7 GOVERNMENT APPROVED SUBMITTALS Upon completion of review of submittals requiring Government approval, the submittals will be identified as having received approval by being so stamped and dated. Four (4) copies of the submittal will be retained by the Contracting Officer and two (2) copies of the submittal will be returned to the Contractor. ### 3.8 INFORMATION ONLY SUBMITTALS Normally submittals for information only will not be returned. Approval of the Contracting Officer is not required on information only submittals. The Government reserves the right to require the Contractor to resubmit any item found not to comply with the contract. This does not relieve the Contractor from the obligation to furnish material conforming to the plans and specifications; will not prevent the Contracting Officer from requiring removal and replacement of nonconforming material incorporated in the work; and does not relieve the Contractor of the requirement to furnish samples for testing by the Government laboratory or for check testing by the Government in those instances where the technical specifications so prescribe. ### 3.9 STAMPS Stamps used by the Contractor on the submittal data to certify that the submittal meets contract requirements shall be similar to the following: | CONTRACTOR | |---| | (Firm Name) | | Approved | | Approved with corrections as noted on submittal data and/or attached sheets(s). | | SIGNATURE: | | TITLE: | | DATE: | | | ### 3.10 CERTIFICATES OF COMPLIANCE: (MAY 1969) Any Certificate required for demonstrating proof of compliance of materials with specification requirements shall be executed in four (4) copies. Each certificate shall be signed by an official authorized to certify in behalf on the manufacturing company and shall contain the name and address of the Contractor, the project name and location, and the quantity and date or dates of shipment or delivery to which the certificates apply. Copies of laboratory test reports submitted with certificates shall contain the name and address of the testing laboratory and the date or dates of the tests to which the report applies. Certification shall not be construed as relieving the Contractor from furnishing satisfactory material, if, after tests are performed on selected samples, the material is found not to meet the specific requirements. (CENAB) -- End of Section -- REMARKS Ξ DATE RCD FRM APPR AUTH MAILED TO CONTR/ 9 DATE OF ACTION <u>a</u> APPROVING AUTHORITY ∢∪⊢-0Z ОООШ 0 DACA31-00-R-0041 DATE FWD DATE RCD TO OTHER FROM OTH REVIEWER REVIEWER Ξ CONTRACT NO. $\widehat{\Xi}$ DATE RCD F FROM CONTR DATE FWD TO APPR AUTH/ \equiv DATE OF ACTION CONTRACTOR ACTION 3 ∢∪⊢-0z ОООШ 9 MATERIAL NEEDED BY Ξ CONTRACTOR: SCHEDULE DATES APPROVAL I E CONTRACTOR SUBMIT (g) **SUBMITTAL REGISTER** თ o > ⊢ 0 🗠 $\alpha m > \leq \alpha$ ΑVE G A/E ΑE \triangleleft \sim \square G A/E ĄE G A/E ΑÆ ΑÆ ΑE ΑÆ ΑE G AVE G AR € വ G 1.7.2.2 1.11.4 1.10.2 # # 1.2.5 (e) 1.8.4 1.4.2 1.4.3 1.10 9. 1.7 4 4. Sensitive Compartmented Information Facility (SCIF) SD-10 Operation and Maintenance Commissioning Activity for HVAC SD-01 Preconstruction Submittals SD-01 Preconstruction Submittals SD-01 Preconstruction Submittals SD-01 Preconstruction Submittal Activity Phase Hazard Analysis Shut Down Utility Services SD-09 Manufacturer's Field ITEM SUBMITTED Operations Statemen Vehicle Registration SD-03 Product Data SD-05 Design Data Safety Supervisor SD-07 Certificates **Equipment Data** Summarization SD-04 Samples O and M Data Sample Tags **Photographs** Procedures Checklist Reports Plan Data TITLE AND LOCATION 01200 01000 01050 01060 01070 ОШБО ωшО⊢ 9 <u>a</u> z o ∢∪⊢->-⊢≻ PREVIOUS EDITION IS OBSOLETE PAGE 1 OF 20 PAGES | α | |-------------------| | Ш | | F | | S | | <u>(7</u> | | Ш | | 7 | | _ | | ᆜ | | ⋖ | | \vdash | | | | Σ | | $\mathbf{\omega}$ | | \supset | | S | | | | | | | REMARKS | (r) |----------------------------------|--|-------------------------------|---|------------------|----------------------------------|----------------|-------|------------------|----------------------------------|--------------|-------------------|-------------------------|-----------|-------|--------------------|--------------|-------|---------------|-----------------|---------------|---------------------|---------------------------|-------------------|---------------|----------------|---------------------------|-----------------|--------------------|--------------|--------------------| | | | | MAILED
TO
CONTR/
DATE RCD
FRM APPR
AUTH | (b) | ΥL | DATE
OF
ACTION | (d) | - | | THORI | ∢0⊢-0Z 000⊞ | (0) | ٦ | | | CONTRACT NO.
DACA31-00-R-0041 | | APPROVING AUTHORITY | DATE RCD
FROM OTH
REVIEWER | (u) | CONTRACT NO DACA31-00 | | API | DATE FWD (
TO OTHER P
REVIEWER F | (m) | DATE FWD
TO APPR
AUTH/
DATE RCD
FROM
CONTR | (I) | CONTRACTOR | DATE
OF
ACTION | (k) | 00 | ∢0⊢-0Z 000⊞ | (j) | | | | 4 | _ | \dashv | | | | | R:
TES | . MATERIAL
NEEDED
BY | (i) | | | | | | |
| TOR | CONTRACTOR:
SCHEDULE DATES | APPROVAL
NEEDED
BY | (h) | ER | CONTRACTOR | ၁ | SUBMIT | (6) | SUBMITTAL REGISTER | | O (| O>⊢ O | (j) | | G AVE | G AR | G A/E | | G A/E | | G A/E | G A/E | G A/E | | G A/E | G A/E | G A/E | | G A/E | | G A/E | | G A/E | G A/E | | G A/E | G A/E | G A/E | | | MITTAL | | | ₽ < U < Q U < ₽ I
| (e) | | 1.3 | 3.5.2 | 3.5.4 | | 3.2 | | 3.2.4 | 3.8.1 | 3.3 | | 3.7.1 | 3.7.1 | 3.9 | 3.7.1 | 3.6.1 | | 1.5 | | 1.9.4 | 1.9.5 | | 1.5.1 | 1.6 | 1.6 | | | SUBIL | TITLE AND LOCATION Sensitive Compartmented Information Facility (SCIF) | | DESCRIPTION
ITEM SUBMITTED | (p) | SD-01 Preconstruction Submittals | Qualifications | ort | Schedule Reports | SD-01 Preconstruction Submittals | CQC Plan | SD-05 Design Data | Notification of Changes | Punchlist | | SD-06 Test Reports | test reports | Tests | Documentation | Tests Performed | control phase | SD-02 Shop Drawings | Temporary Electrical Work | SD-05 Design Data | Facility Plan | Temporary Plan | SD-11 Closeout Submittals | Progress Prints | Final Requirements | CADD Files | SD-03 Product Data | | | TITLE AND LOCATION Sensitive Compa | | осшо ошон | (c) | 01320 | | | | 01451 | | | | | | | | | | | | 01510 | | 01561 | | | 01720 | | | | 01780 | | | E ANC | | ⊢ α ∢ z ω ≥ − ⊢ ← ∢ ⊐ z O | (q) | L | | | | \perp | \downarrow | | | | | | | | | | | | | | | | | | | ightharpoons | | | | ∏
Se | | ∢∪⊢->-⊢> ZO | (a) | PREVIOUS EDITION IS OBSOLETE PAGE 2 OF 20 PAGES | α | |----------------| | Ш | | F | | S. | | 二 | | ຕ | | Щ | | œ | | \blacksquare | | ⋖ | | \vdash | | \vdash | | ₹ | | <u> </u> | | 四 | | یر | | (C) | | | | TITLE AND LOCATION |) LOCATION | DCATION Compared Information Exal | MITTAL REGISTE | CONTRACTOR | | | | | CONTRACT NO.
DACA31-00-R-0041 | o-R-0041 | | | | |---|---|---|----------------|-----------------------|------------------------------------|----------|---------------------|--|----------------------------------|--|----------------------|--|---------| | Sensitive Compartmented Information Facility (SCIF) | ve comparmented information Facility (SCIF) | Comparimented information Facility (SCIF) | - 1 | CONTRACTOR: | | ONTRA | CTOR | | APPRO | APPROVING AUTHORITY | NRITY | | | | 90 | | 000 | | SCHEDULE DATES | | ACTION | 5 2 | | | | | | | | A A A A A A A A A A A A A A A A A A A | C T C T C T C T C T C T C T C T C T C T | C T C T C T C T C T C T C T C T C T C T | 5 | APPROVAL MA NEEDED NE | A C C C C MATERIAL O NEEDED D D BY | | DATE DATE OF ACTION | DATE FWD TO APPR AUTH/ DATE RCD D FROM T | DATE FWD DATE FREVIEWER RE | A C C C C C DATE RCD O C C C C C C C C C C C C C C C C C C | DATE
OF
ACTION | MAILED
TO
CONTR/
DATE RCD
FRM APPR
AUTH | REMARKS | | (d) (e) (b) (d) | (c) (d) | (a) (b) | $oxed{oxed}$ | (h) (p) | (j) | | (X) | € | (m) | (o) (u) | (d) | (b) | (r) | | 01780 As-Built Record of Equipment and 1.2.2 G A/E | As-Built Record of Equipment and 1.2.2 G | As-Built Record of Equipment and 1.2.2 G | | | | Н | | | | | | | | | Materials | | | | | | \dashv | | | | | | | | | igement Plan 1.3.1 G | igement Plan 1.3.1 G | igement Plan 1.3.1 G | \dashv | | | \dashv | | | | | | | | | 1.3.5 G | 1.3.5 G | 1.3.5 G | | | | + | | | | | | | | | \neg | Final Cleaning 1.6 G | Final Cleaning 1.6 G | | | \dagger | + | | | | | | | | | st Reports | SD-06 lest Reports | SD-06 lest Reports | | | | + | | | | | | | | | Farthwork 17 | 1 | 1 | + | | | + | + | | | | | | | | | | | | | | - | | | | | | | | | ficates | | | | | | | | | | | | | | | Testing 3.10 G AR | 3.10 G | 3.10 G | | | | | | | | | | | | | | SD-06 Test Reports | SD-06 Test Reports | | | | \dashv | | | | | | | | | Testing 3.14 G CE | 3.14 G | 3.14 G | + | | + | _ | | 1 | | | | | | | cates | | | 1 | + | | + | | 1 | | | | | | | 1esting Lab 3.14 G CE | l esting Lab | l esting Lab | + | | \dagger | + | \dagger | † | + | | | | | | | Gates Cates Cawings | Gates Cates Cawings | | | | \perp | | | | | | | | | pacing 3.2.1 G | pacing 3.2.1 G | pacing 3.2.1 G | | | | | | | | | | | | | ate, corner, end, and 3.2.1 G | 3.2.1 G | 3.2.1 G | | | | | | | | | | | | | pull posts | pull posts | pull posts | | | | \dashv | | | | | | | | | o, | | | \dashv | | + | \dashv | + | 1 | 1 | + | | | | | Chain-link fencing 2.1 G CE | 2.1 G | 2.1 G | | | | \vdash | | | | | | | | | Accessories 2.1.4 | | | | | | \dashv | | | | | | | | | | | | | | _ | \dashv | | _ | | | | | | | Weight in grams ounces for zinc 1.5.1 | | | + | <u> </u> | \dagger | \dashv | + | \dagger | + | + | | | | | coating | l coating l | coating | _ | _ | _ | _ | _ | _ | | | | | | PREVIOUS EDITION IS OBSOLETE PAGE 3 OF 20 PAGES REMARKS Ξ DATE RCD FRM APPR AUTH MAILED TO CONTR/ 9 DATE OF ACTION <u>a</u> APPROVING AUTHORITY ∢∪⊢-0Z ОООШ 0 DACA31-00-R-0041 DATE FWD DATE RCD TO OTHER FROM OTH REVIEWER Ξ CONTRACT NO. $\widehat{\Xi}$ DATE RCD F FROM CONTR DATE FWD TO APPR AUTH/ \equiv DATE OF ACTION CONTRACTOR ACTION 3 ∢∪⊢-0z ОООШ 9 MATERIAL NEEDED BY Ξ CONTRACTOR: SCHEDULE DATES APPROVAL I E CONTRACTOR SUBMIT (g) **SUBMITTAL REGISTER** თ o > ⊢ 0 🗠 $\alpha m > \leq \alpha$ \triangleleft \sim \square G CE G CE G CE G CE G CE G RE 빙 IJ CE G CE CE G RE G RE G RE R S RE R € $O \rightarrow A \otimes O \rightarrow F \rightarrow O A \rightarrow O A$ G വ G G G G # # 3.2.5 2.1.2 2.1.3 2.3.5 1.5.5 (e) 1.5.1 2.1.3 2.1.3 2.1.2 3.6.3 3.6.4 1.5.1 3.14 3.2 1.6 3.4 thickness of aluminum alloy coating Sensitive Compartmented Information Facility (SCIF) SD-08 Manufacturer's Instructions Lightweight Aggregate Concrete Concrete Temperature Control Cold Weather Requirements Hot Weather Requirements Contractor Quality Control Chemical composition and Testing and Inspection for Thickness of PVC coating ITEM SUBMITTED Mixture Proportions SD-06 Test Reports SD-05 Design Data ਉ SD-07 Certificates Surface Retarder SD-07 Certificates SD-04 Samples Tension wires **Padlocks** Framing Braces Fabric Gates Fence Posts Rails 02821N TITLE AND LOCATION 03300 ОШБО ωшО⊢ 9 <u>a</u> z o z o ∢∪⊢->-⊢≻ PREVIOUS EDITION IS OBSOLETE PAGE 4 OF 20 PAGES | α | |-------------------------| | Щ | | S | | 荒 | | Ш | | $\overline{\mathbf{c}}$ | | | | 4 | | | | ₩ | | 줊 | | 5 | | Ŋ | | | | | l | I | I |----------------------------------|--|-------------------------------|--|------------------|--------------------------------|---------------------|--------------------|-------------------------------|--------|-------------|--------|--------------|--------|------------------------|--------------------|----------|---------|--------------------|-------------------|-------------|---------------------|-------|-----|-------------|--------------------|--------------------|------------|----------|---------------| | | | | REMARKS | (r) | MAILED
TO
CONTR/
DATE RCD
FRM APPR
AUTH | (b) | ТУ | DATE
OF
ACTION | (d) | <u>+</u> | | THORI | ∢0⊢-0Z 000⊞ | (0) | П | ٦ | | CONTRACT NO.
DACA31-00-R-0041 | | APPROVING AUTHORITY | DATE RCD
FROM OTH
REVIEWER | (u) | CONTRACT NO. DACA31-00 | | АРР | DATE FWD
TO OTHER
REVIEWER | (m) | DATE FWD TO APPR AUTH DATE RCD FROM CONTR | (1) | CONTRACTOR | DATE
OF
ACTION | (k) | CON | ∢∪⊢-0Z ∪00⊞ | (j) | č:
ES | MATERIAL
NEEDED
BY | (i) | OR | CONTRACTOR:
SCHEDULE DATES | APPROVAL
NEEDED
BY | (h) |
 K | CONTRACTOR | SCH | SUBMIT | (b) | SUBMITTAL REGISTER | | O | ZO-+≻O-π-00≻⊢OZ | (f) | G RE | | G A/E | | G A/E | | G A/E | | | G RE | | G RE | G RE | | G RE | G RE | | G A/E | | G RE | G RE | | G RE | G RE | | | MITTAL | | | ₽ < U < Q U < ₽ I
| (e) | 1.4 | | 2.2 | | 2.6 | | 2.7 | 2.8 | | 3.2.1 | | 3.2 | 3.3 | | 1.5 | 3.1 | | 2.1 | 2.5 | 3.2 | 3.3 | | 2.1 | 3.2 | | | SUBN | TITLE AND LOCATION Sensitive Compartmented Information Facility (SCIF) | | DESCRIPTION
ITEM SUBMITTED | (p) | Quality Control Qualifications | SD-02 Shop Drawings | RETE MASONRY UNITS | (CIVIU)
SD-07 Certificates | nd Bar | Positioners | cement | irs and Rods | S | Structural Connections | SD-03 Product Data | Erection | Welding | SD-07 Certificates | Welding Inspector | Fabrication | SD-02 Shop Drawings | | S | Attachments | Holes and Openings | SD-03 Product Data | Deck Units | | SD-04 Samples | | | TITLE AND LOCATION Sensitive Compa | | отшо ошо⊢ | (0) | 03300 | 04200a | | | | | | | 05120a | | | | | | | | 05300a | | | | | | | | | | | E AND | | ⊢ α ∢ Σ ω ≥ − ⊢ ∢ ⊐ Σ Ο | (q) | Ц | _ | \perp | \perp | | | | | | | | | | \perp | | | | | | | | | \square | \dashv | $ \bot $ | | | 를
Se | | ∢∪⊢->-⊢> ZO | (a) | PREVIOUS EDITION IS OBSOLETE PAGE 5 OF 20
PAGES REMARKS Ξ DATE RCD FRM APPR AUTH MAILED TO CONTR/ 9 DATE OF ACTION <u>a</u> APPROVING AUTHORITY ∢∪⊢-0Z ОООШ 0 DACA31-00-R-0041 DATE FWD DATE RCD TO OTHER FROM OTH REVIEWER REVIEWER Ξ CONTRACT NO. $\widehat{\Xi}$ DATE RCD F FROM CONTR DATE FWD TO APPR AUTH/ \equiv DATE OF ACTION CONTRACTOR ACTION 3 ∢∪⊢-0z ОООШ 9 MATERIAL NEEDED BY Ξ CONTRACTOR: SCHEDULE DATES APPROVAL I E CONTRACTOR SUBMIT (g) **SUBMITTAL REGISTER** თ o > ⊢ 0 🗠 $\alpha m > \leq \alpha$ G A/E G A/E G A/E G A/E \triangleleft \sim \square ΑÆ ΑÆ G A/E G A/E G A/E G A/E G A/E G RE G RE G AVE G AVE RE R € $O \rightarrow A \otimes O \rightarrow F \rightarrow O A \rightarrow O A$ 2.8.8.3 # # (e) 3.3.2 2.5 9. 2.3 2.4 2.3 7. 2.1 3.2 3.1 1.7 3.1 2.1 4. 3.1 Sensitive Compartmented Information Facility (SCIF) INSTALLATION OF FRAMING Miscellaneous Metal Items Nailers and Nailing Strips Laminate Clad Casework ITEM SUBMITTED DESCRIPTION SD-02 Shop Drawings SD-02 Shop Drawings SD-02 Shop Drawings Grading and Marking SD-02 Shop Drawings SD-03 Product Data Cabinet Hardware Quality Assurance Plastic Laminates ਉ SD-07 Certificates SD-07 Certificates SD-07 Certificates Finish Schedule Wood Materials Shop Drawings SD-04 Samples Attachments Fabrications Accessories **Deck Units** Installation Deck Units 05300a 06100a 06410a 05500a TITLE AND LOCATION 06650 ОШБО ωшО⊢ <u>a</u> <u>a</u> z o z o ∢∪⊢->-⊢≻ PREVIOUS EDITION IS OBSOLETE PAGE 6 OF 20 PAGES | $\mathbf{\alpha}$ | |-------------------| | Ш | | \vdash | | ഗ | | ద | | Ш | | $\overline{\sim}$ | | _ | | ᆜ | | ্ব | | | | | | Σ | | $\mathbf{\omega}$ | | | | S | | - | | | CONTRACT NO. | | | | SUBIN | IITTAL | SUBMITTAL REGISTER | 絽 | | | | | <i>_</i> | DACA31-00 | DACA31-00-R-0041 | | | | | |---------------|---------------------------|---------------------------------------|--|----------------|--------------------|------------|-------------------------------|--------------------------|-------------|----------------------|--|---|---|----------------|-----|--|---------| | TITLE
Sen: | ANDL | TITLE AND LOCATION
Sensitive Compa | TITLE AND LOCATION Sensitive Compartmented Information Facility (SCIF) | | | CONTRACTOR | OR | | | | | | | | | | | | | | | | | O | SCF | CONTRACTOR:
SCHEDULE DATES | ۲:
ES | CONTI | CONTRACTOR
ACTION | | APPR | APPROVING AUTHORITY | ORITY | | | | | ∢∪⊢->-⊦≻ ZO | ⊢ K 4 Z 0 Σ − ⊢ − 4 ⊐ Z 0 | одшо ошо⊢ | DESCRIPTION
ITEM SUBMITTED | ₽∢₭∢₲₭∢₽ፗ
| O>⊢ O¤ <~≡ ¤≡>≥¤ | SUBMIT | APPROVAL
NEEDED
BY | MATERIAL
NEEDED
BY | ∢∪⊢-OZ ∪ООШ | DATE DOF | DATE FWD TO APPR AUTH/ DATE RCD D FROM T | DATE FWD D
TO OTHER FI
REVIEWER R | A C C C C C C C C C C C C C C C C C C C | DATE OF ACTION | | MAILED
TO
CONTR/
DATE RCD
FRM APPR
AUTH | REMARKS | | (a) | (q) | (c) | (p) | (e) | (f) | (b) | (h) | (ı) | (j) | (k) | (I) | (m) | (o) (u) | (d) (c | (b) | (t | (r) | | | | 09990 | SD-03 Product Data | | | | | | | | | | | | | | | | | | | Solid polymer material | 2.1 | G A/E | | | | | | | | | | | | | | | | | SD-04 Samples | | | | | | | | | | | - | | | | | | | | Material | 2.1 | G A/E | | | | | | | | | \downarrow | | | | | | | | Vanity Tops | 2.3.4 | G A/E | | | | | | | | | | | | | | | | | SD-06 Test Reports | | | | | | | | | | | | | | | | | | | terial | 2.1 | G A/E | | | | | | | | | \downarrow | | | | | | | | ates | | | | | | | | | | | \downarrow | | | | | | | | Fabrications | 2.3 | | | | | | | | | | $\frac{1}{1}$ | | | | | | | | \neg | 1.6 | G A/E | | | | | | | | | $\frac{1}{1}$ | | | | | | | | SD-10 Operation and Maintenance | | | | | | _ | | | | | | | | | | | | | Data | | | | | | | | | | | | | | | | | | | Solid polymer material | 2.1 | G A/E | | | | | | | | | \downarrow | | | | | | | | Clean-up | 3.3 | G A/E | | | | | | | | | _ | | | | | | | 07190N | N SD-03 Product Data | | | | | | | | | | | \downarrow | | | | | | | | Water repellents | 2.2 | G A/E | | | | | | | | | | | | | | | | | SD-06 Test Reports | | | | | | | | | | | | | | | | | | | Water absorption | 1.3.2 | G A/E | | | | | | | | | | | | | | | | | Water absorption | 2.3.1 | G A/E | | | | | | | | | | | | | | | | | hering | 2.3.1 | G A/E | | | | | | | | | | | | | | | | | Accelerated weathering | 2.3.2 | G A/E | | | | | | | | | | | | | | | | | Resistance to chloride ion | 2.3.1 | G A/E | | | | | | | | | - | | | | | | | | | | | | | | | | | | | _ | | | | | | | | Resistance to chloride ion | 2.3.2 | G A/E | | | | | | | | | - | | | | | | | | | | | | | | | | | | | _ | | | | | | | | Moisture vapor transmission | 1.3.2 | G A/E | | | | | | | | | \dashv | PREVIOUS EDITION IS OBSOLETE PAGE 7 OF 20 PAGES REMARKS Ξ DATE RCD FRM APPR AUTH MAILED TO CONTR/ 9 DATE OF ACTION <u>a</u> APPROVING AUTHORITY ∢∪⊢-0Z ОООШ 0 DACA31-00-R-0041 DATE FWD DATE RCD TO OTHER FROM OTH REVIEWER REVIEWER Ξ CONTRACT NO. $\widehat{\Xi}$ DATE RCD F FROM CONTR DATE FWD TO APPR AUTH/ \equiv DATE OF ACTION CONTRACTOR ACTION 3 ∢∪⊢-0z ОООШ 9 MATERIAL NEEDED BY Ξ CONTRACTOR: SCHEDULE DATES APPROVAL I E CONTRACTOR SUBMIT (g) **SUBMITTAL REGISTER** G AVE თ o > ⊢ 0 🗠 G A/E G A/E G A/E G A/E G A/E ΑÆ \triangleleft \sim \square $\mathbb{Z} \square > \mathbb{Z} \square$ G A/E G A/E G A/E G A/E G A/E G AVE G AVE € $O \rightarrow A \otimes O \rightarrow F \rightarrow O A \rightarrow O A$ # # 2.3.2 2.3.2 2.3.1 1.3.2 1.3.1 1.3.3 3.3.1 (e) 2.3.1 1.3.1 1.12 1.7.1 1.5 3.4 3.3 2.1 2.2 2. Sensitive Compartmented Information Facility (SCIF) SD-08 Manufacturer's Instructions SD-08 Manufacturer's Instructions Evidence of acceptable variation Water Penetration and Leakage Manufacturer's qualifications Moisture vapor transmission Moisture vapor transmission material safety data sheets Applicator's qualifications ITEM SUBMITTED Firestopping Materials Installer Qualifications Firestopping Materials SD-02 Shop Drawings Sill sealer insulation SD-03 Product Data SD-03 Product Data Scaling resistance Scaling resistance Blanket insulation SD-07 Certificates SD-07 Certificates Application Inspection Insulation Warranty Backing 07190N 07212N 07840a 07900a TITLE AND LOCATION ОШБО ωшО⊢ 9 <u>a</u> z o z o ∢∪⊢->-⊢≻ PAGE 8 OF 20 PAGES | α | |-------------------------| | Ш | | F | | Ŝ | | $\overline{\Delta}$ | | Ш | | 7 | | _ | | ᆜ | | ⋖ | | \vdash | | | | Σ | | $\overline{\mathbf{m}}$ | | 5 | | $\overline{\mathbf{o}}$ | | | | | | | | | I | ļ | |----------------------------------|--|-------------------------------|---|------------------|--------------|---------|--------------------|---------|---------------------|--------|-------|--------|--------|-------------|--------------------|-------|--------|-------------|---------------------|-------|--------------------|----------|----------|---------------|-------|--------------------|------------------|------------|----------|---------------------------------| | | | | REMARKS | (r) | MAILED
TO
CONTR/
DATE RCD
FRM APPR
AUTH | (b) | <u>L</u> | DATE
OF
ACTION | (d) | 4 | | THOR | ∢0⊢-0z 000ш | (0) | CONTRACT NO.
DACA31-00-R-0041 | | APPROVING AUTHORITY | DATE RCD
FROM OTH
REVIEWER | (u) | CONTRACT NO. DACA31-00 | | API | DATE FWD
TO OTHER
REVIEWER | (m) | DATE FWD
TO APPR
AUTH/
DATE RCD
FROM
CONTR | (I) | CONTRACTOR
ACTION | DATE
OF
ACTION | (k) | 0 1 | ∢0⊢-0z ∪00ш | (j) | Ц | | | | | | | | | | | | | | _ | | | | | | | | | | \perp | \Box | | | | JR:
TES | MATERIAL
NEEDED
BY | (j) | TOR | CONTRACTOR:
SCHEDULE DATES | APPROVAL
NEEDED
BY | (h) | ER | CONTRACTOR | SS | SUBMIT | (b) | SUBMITTAL REGISTER | | O | O>+ Ox <-m xm>>x | (t) | | | | | | ල
ල | | ල
ල | | | | ල | ß | | | Ð | | g | | | | | | | | | | MITTAL | | | ₽ ≼ K ≼ Q K ∢ P I
| (e) | 2.2 | 2.4 | | 2.4 | | 2.1 | 2.1 | 2.5 | 2.5 | 2.3 | | 2.1 | 2.5 | 2.3 | | 2.1 | | 2.1 | 1.4 | | 2.1 | | 2.3 | 2.3 | 2.3 | 2.1.2 | | SUBI | TITLE AND LOCATION Sensitive Compartmented Information Facility (SCIF) | | DESCRIPTION
ITEM SUBMITTED | (p) | Bond-Breaker | Sealant | SD-07 Certificates | Sealant | SD-02 Shop Drawings | Doors | Doors | Frames | Frames | Accessories | SD-03 Product Data | Doors | Frames | Accessories | SD-02 Shop Drawings | Doors | SD-03 Product Data | Doors | warranty | SD-04 Samples | Doors | SD-06 Test Reports | Split resistance | Cycle-slam | | Sound Transmission Class rating | | | TITLE AND LOCATION Sensitive Compartme | | осшо ошо⊢ | (0) | 07900a Bo | Se | -SD- | Se | 08110 SD- | Do | Do | Fre | Fra | Ac | SD- | Do | Fre | Ac | 08210 SD- | ۵ | SD- | <u>۵</u> | wa | SD- | Do | -OS | Sp | Ò | 훈 | So | | | AND L | | ⊢α∢zω≥-⊢⊢∢¬ zo | (q) | | | | | | | | | | | | | | | | | | 1 | | | | | | | \dashv | \dashv | | | TITLE
Sens | | ∢∪⊢->-⊢> ZO | (a) | \exists | PREVIOUS EDITION IS OBSOLETE PAGE 9 OF 20 PAGES REMARKS Ξ DATE RCD FRM APPR AUTH MAILED TO CONTR/ 9 DATE OF ACTION <u>a</u> APPROVING AUTHORITY ∢∪⊢-0Z ОООШ 0
DACA31-00-R-0041 DATE FWD DATE RCD TO OTHER FROM OTH REVIEWER Ξ CONTRACT NO. $\widehat{\Xi}$ DATE RCD F FROM CONTR DATE FWD TO APPR AUTH/ \equiv DATE OF ACTION CONTRACTOR ACTION 3 ∢∪⊢-0z ОООШ 9 MATERIAL NEEDED BY Ξ CONTRACTOR: SCHEDULE DATES APPROVAL I E CONTRACTOR SUBMIT (g) **SUBMITTAL REGISTER** თ o > ⊢ 0 🗠 $\mathbb{Z} \square > \mathbb{Z} \square$ \triangleleft \sim \square € $O \rightarrow A \otimes O \rightarrow F \rightarrow O A \rightarrow O A$ # # (e) 2.2.6 2.3.2 .3 2.2 ر 2.3 2.2 2.4 2.4 4 Sensitive Compartmented Information Facility (SCIF) SD-10 Operation and Maintenance SD-08 Manufacturer's Instructions Water-Resistant Gypsum Board Mortar, Grout, and Adhesive Mortar, Grout, and Adhesive SD-11 Closeout Submittals ITEM SUBMITTED Metal support systems SD-02 Shop Drawings SD-02 Shop Drawings Hardware Schedule Hardware schedule SD-03 Product Data 09310A SD-03 Product Data ਉ 09250A SD-07 Certificates SD-07 Certificates Hardware items **Gypsum Board** Keying system SD-04 Samples Setting-Bed Installation Key bitting Data <u>I</u> ∐e <u>l</u> 09100N TITLE AND LOCATION 08710 ОШБО ωшО⊢ <u>a</u> <u>a</u> z o z o ∢∪⊢->-⊢≻ PREVIOUS EDITION IS OBSOLETE | œ | |----------------| | Щ | | S | | Ö | | Щ | | 2 | | ᆛ | | \vdash | | 늘 | | ≥ | | 門 | | \overline{S} | | | ∢∪⊢->-⊢≻ z o z o <u>a</u> REMARKS Ξ DATE RCD FRM APPR AUTH MAILED TO CONTR/ 9 DATE OF ACTION <u>a</u> APPROVING AUTHORITY ∢∪⊢-0Z ОООШ 0 DACA31-00-R-0041 DATE FWD DATE RCD TO OTHER FROM OTH REVIEWER Ξ CONTRACT NO. $\widehat{\Xi}$ DATE RCD F FROM CONTR DATE FWD TO APPR AUTH/ \equiv DATE OF ACTION CONTRACTOR ACTION 3 ∢∪⊢-0z ОООШ 9 MATERIAL NEEDED BY Ξ CONTRACTOR: SCHEDULE DATES APPROVAL I E CONTRACTOR SUBMIT (g) ე 0 > ⊢ \circ ∢ ~ Ш $K \square > S K$ € $O \rightarrow A \otimes O \rightarrow F \rightarrow O A \rightarrow O A$ വ # # 2.1.3 2.1.6 (e) 2.1.2 2.1.4 د. 2.4 .3 3.4 7. 2.1 2.1 2.2 2.1 2.1 3.1 Sensitive Compartmented Information Facility (SCIF) SD-10 Operation and Maintenance Mortar, Grout, and Adhesive Approved Detail Drawings Regulatory Requirements SUSPENSION SYSTEM ITEM SUBMITTED Vinyl-Composition Tile DESCRIPTION SD-02 Shop Drawings Surface Preparation SD-03 Product Data SD-03 Product Data 09680A SD-03 Product Data ਉ SD-07 Certificates Acoustical Units Acoustical Units Acoustical Units SD-04 Samples Floor materials Floor materials SD-04 Samples Edging strips Installation Adhesives Wall base Carpet Data 09310A 09510A 09651N TITLE AND LOCATION одшо ошон <u>a</u> PREVIOUS EDITION IS OBSOLETE PAGE 11 OF 20 PAGES REMARKS Ξ DATE RCD FRM APPR AUTH MAILED TO CONTR/ 9 DATE OF ACTION <u>a</u> APPROVING AUTHORITY ∢∪⊢-0Z ОООШ 0 DACA31-00-R-0041 DATE FWD DATE RCD TO OTHER FROM OTH REVIEWER Ξ CONTRACT NO. $\widehat{\Xi}$ DATE RCD F FROM CONTR DATE FWD TO APPR AUTH/ \equiv DATE OF ACTION CONTRACTOR ACTION 3 ∢∪⊢-0z ОООШ 9 MATERIAL NEEDED BY Ξ CONTRACTOR: SCHEDULE DATES APPROVAL I E CONTRACTOR SUBMIT (g) **SUBMITTAL REGISTER** თ o > ⊢ 0 🗠 ∢ ~ Ш ∝ ш > ≥ « € 1.4.1.2 # # (e) 3.3.1 3.6.2 3.5 3.9 3.9 6. 3.2 ر ن ر ن 2.1 2.1 7. 2.1 Sensitive Compartmented Information Facility (SCIF) SD-10 Operation and Maintenance SD-08 Manufacturer's Instructions Manufacturer's Technical Data Moisture and Alkalinity Tests Regulatory Requirements Applicator's qualifications Cleaning and Protection Application instructions ITEM SUBMITTED SD-02 Shop Drawings Qualification Testing Piping identification SD-03 Product Data SD-06 Test Reports ਉ SD-07 Certificates SD-07 Certificates 09680A SD-04 Samples SD-04 Samples Sheets Coating Carpet Carpet Mixing stencil Data Color TITLE AND LOCATION 00660 ОШБО ωшО⊢ <u>a</u> <u>a</u> z o z o ∢∪⊢->-⊢≻ PREVIOUS EDITION IS OBSOLETE PAGE 12 OF 20 PAGES REMARKS Ξ DATE RCD FRM APPR AUTH MAILED TO CONTR/ 9 DATE OF ACTION <u>a</u> APPROVING AUTHORITY ∢∪⊢-0Z ОООШ 0 DACA31-00-R-0041 DATE FWD DATE RCD TO OTHER FROM OTH REVIEWER Ξ CONTRACT NO. $\widehat{\Xi}$ DATE RCD F FROM CONTR DATE FWD TO APPR AUTH/ \equiv DATE OF ACTION CONTRACTOR ACTION 3 ∢∪⊢-0z ОООШ 9 MATERIAL NEEDED BY Ξ CONTRACTOR: SCHEDULE DATES APPROVAL I E CONTRACTOR SUBMIT (g) **SUBMITTAL REGISTER** თ o > ⊢ 0 🗠 ∝ ш > ≥ « \triangleleft \sim \square € $O \rightarrow A \otimes O \rightarrow F \rightarrow O A \rightarrow O A$ # 0<0</p> (e) 3.1.2 د. 2.2 ر ن 2.3 2.1 2.1 3.2 3.1 3.1 3.1 Sensitive Compartmented Information Facility (SCIF) SD-10 Operation and Maintenance Testing of Electrical Resistance Manufacturer's Material Safety manufacturer's instructions Approved Detail Drawings Protection and Cleaning ITEM SUBMITTED DESCRIPTION SD-02 Shop Drawings SD-02 Shop Drawings SD-02 Shop Drawings Raised Floor System Raised Floor System Raised Floor System SD-03 Product Data SD-03 Product Data SD-06 Test Reports ਉ SD-07 Certificates Detail Drawings Interior Signage Color Schedule SD-04 Samples SD-04 Samples Data Sheets Installation Coatings: Tests Data 10160A 10440A 10270A TITLE AND LOCATION 09915 00660 ОШБО ∢∪⊢->-⊢≻ ωшО⊢ z o z o <u>a</u> <u>a</u> PREVIOUS EDITION IS OBSOLETE | $\mathbf{\alpha}$ | |-------------------| | Ш | | F | | S | | <u>(7</u> | | Ш | | \sim | | - | | 亅 | | ٩ | | | | ⊑ | | ≥ | | $\mathbf{\omega}$ | | \supset | | ഗ | | | | | | | | | REMARKS | (r) |----------------------------------|--|-------------------------------|---|-----|--------------------|-----|--------|---------------------|---------|-----------------------------|--------------------|----------|-----------------|--------------------|--------------------------------|----------------------|----------------|------------------|----------|------|--------------------|-------------|------------|---------------------------|-----------------------|--|---------------------|--------|--------|-------------------| | | | | MAILED
TO
CONTR/
DATE RCD
FRM APPR
AUTH | (b) | <u></u> | DATE
OF
ACTION | (d) | <u> </u> | | THOR | ∢0⊢-0Z 000⊞ | (0) | CONTRACT NO.
DACA31-00-R-0041 | | APPROVING AUTHORITY | DATE RCD
FROM OTH
REVIEWER | (u) | CONTRACT NO. DACA31-00 | | APP | DATE FWD
TO OTHER
REVIEWER | (m) | DATE FWD
TO APPR
AUTH/
DATE RCD
FROM
CONTR | (I) | CONTRACTOR
ACTION | DATE
OF
ACTION | (k) | 00 | ∢0⊢-0Z 000m | (D) | Ц | S ES | MATERIAL
NEEDED
BY | ()) | OR | CONTRACTOR:
SCHEDULE DATES | APPROVAL
NEEDED
BY | (h) |
 | CONTRACTOR | SCHOOL | SUBMIT | (b) | SUBMITTAL REGISTER | | O | ZO-+≻O-π-00≻⊢OZ | (f) | | ග | Ö | | , | Ú | | | | | G AE | G AE | G AE | G AE | - 1 | G AE | | G AE | | - 1 | G AE | | | G ED | - 1 | G ED | | MITTAL | | | ₽ ≼ ሺ ≼ Q ሺ ≼ ₽ I
| (a) | | 2.1 | 3.2.2 | | , | 1.3.1 | | 2.1.2 | 2.2 | | 1.12 | 3.11 | 1.5 | 1.11 | 1.10 | 2.1 | | 3.9 | | 1.20 | 1.14 | | | 1.4.1 | | 2.2 | | SUBN | TITLE AND LOCATION Sensitive Compartmented Information Facility (SCIF) | | DESCRIPTION
ITEM SUBMITTED | (p) | SD-03 Product Data | | on and | maintenance manuals | | Qualifications of installer | SD-03 Product Data | Finishes | Accessory Items | SD-03 Product Data | Respiratory Protection Program | Cleanup and Disposal | Qualifications | Training Program | irements | | SD-06 Test Reports | ent and Air | Monitoring | Local Exhaust Ventilation | Licenses, Permits and | | SD-02 Shop Drawings | System | а | Storage Batteries | | | TITLE AND LOCATION Sensitive Compa | | осшо ошо⊢ | (c) | 10520 | | | | | | 10800A | | | 13280A | | | | | | | | | | | | | 13851A | | | | | | E AND | | ⊢ Ω ∢ Z ω ∑ − ⊢ ⊢ ∢ ⊐ Z O | (q) | Ц | | | | \perp | | \perp | | | | | | | _ | | | | | | | | | $ \bot $ | Щ | \Box | \Box | | | Ser | | ∢∪⊢->-⊢> ZO | (a) | PREVIOUS EDITION IS OBSOLETE PAGE 14 OF 20 PAGES REMARKS Ξ DATE RCD FRM APPR AUTH MAILED TO CONTR/ 9 DATE OF ACTION <u>a</u> APPROVING AUTHORITY ∢∪⊢-0Z ОООШ 0 DACA31-00-R-0041 DATE FWD DATE RCD TO OTHER FROM OTH REVIEWER REVIEWER Ξ CONTRACT NO. $\widehat{\Xi}$ DATE RCD F FROM CONTR DATE FWD TO APPR AUTH/ \equiv DATE OF ACTION CONTRACTOR ACTION 3 ∢∪⊢-0z ОООШ 9 MATERIAL NEEDED BY Ξ CONTRACTOR: SCHEDULE DATES APPROVAL I E CONTRACTOR SUBMIT (g) **SUBMITTAL REGISTER** თ o > ⊢ 0 🗠 \triangleleft \sim \square $\mathbb{Z} \square > \mathbb{Z} \square$ П П € G # 0<0</p> 2.7.4 (e) 1.3.7 3.5 3.8 1.5 1.5 6. 33 3.4 3.4 3.1 6. 1.7 2.3 2.3 3.3 Fire Protection Related Submittals Sensitive Compartmented Information Facility (SCIF) SD-10 Operation and Maintenance Special Tools and Spare Parts Technical Data and Computer Technical Data and Computer Refrigerant Piping System Refrigerant Piping System Sprinkler System Installer Fire Protection Specialist Refrigerant Piping Tests ITEM SUBMITTED Hydraulic Calculations SD-02 Shop Drawings SD-06 Test Reports SD-03 Product Data SD-03 Product Data Preliminary Tests SD-07 Certificates Qualifications Qualifications Qualifications Software Software Training Testing Testing Data 13851A 13930A 15182A TITLE AND LOCATION ОШБО ωшО⊢ <u>a</u> <u>a</u> z o z o ∢∪⊢->-⊢≻ PREVIOUS EDITION IS OBSOLETE PAGE 15 OF 20 PAGES REMARKS Ξ DATE RCD FRM APPR AUTH MAILED TO CONTR/ 9 DATE OF ACTION <u>a</u> APPROVING AUTHORITY ∢∪⊢-0Z ОООШ 0 DACA31-00-R-0041 DATE FWD DATE RCD TO OTHER FROM OTH REVIEWER
REVIEWER Ξ CONTRACT NO. $\widehat{\Xi}$ DATE RCD F FROM CONTR DATE FWD TO APPR AUTH/ \equiv DATE OF ACTION CONTRACTOR ACTION 3 ∢∪⊢-0z ОООШ 9 MATERIAL NEEDED BY Ξ CONTRACTOR: SCHEDULE DATES APPROVAL I E CONTRACTOR SUBMIT (g) **SUBMITTAL REGISTER** თ o > ⊢ 0 🗠 $\mathbb{Z} \square > \mathbb{Z} \square$ ED \triangleleft \sim \square € $O \rightarrow A \otimes O \rightarrow F \rightarrow O A \rightarrow O A$ G # 0<0</p> (e) 1.6.1 3.8.1 2.1.1 3.8.1 3.8.1 1.5.1 3.9 3.8 3.4 3.3 3.4 3.2 3.1 Sensitive Compartmented Information Facility (SCIF) SD-10 Operation and Maintenance SD-10 Operation and Maintenance Tests, Flushing and Disinfection Plumbing Fixture Schedule Verification of Dimensions Refrigerant Piping Tests ITEM SUBMITTED Maintenance Manuals SD-02 Shop Drawings Service Organization SD-02 Shop Drawings SD-02 Shop Drawings Gas Piping System SD-03 Product Data SD-06 Test Reports SD-06 Test Reports ਉ Plumbing System Plumbing System SD-07 Certificates Plumbing System SD-07 Certificates Demonstrations Installation Welding Bolts Data Data 15182A 15190A 15400A 15565A TITLE AND LOCATION ОШБО ωшО⊢ <u>a</u> <u>a</u> z o z o $\triangleleft \cup \vdash - > - \vdash \succ$ PREVIOUS EDITION IS OBSOLETE PAGE 16 OF 20 PAGES | 2 | |--------------| | Ш | | F | | S | | 二 | | \mathbf{g} | | Щ | | œ | | \Box | | ⋖ | | \vdash | | \vdash | | ₹ | | <u> </u> | | <u>m</u> | | Ξ | | ഗ | | | | | | | | | 1 | | | | | | | | | | | | | | | | | I | | | | | | | | | | | |----------------------------------|--|-------------------------------|---|--------------|--------------------|--------|---------------------------------|-----|------|--------|-----|-----|----------------------------|--------------------------|----------------|--------------------|-------------------------|--|-----------|----------|-------------------|--------|---------------------------------|------|-----|---------------------|-----|--------|---------|--------------------| | | | | REMARKS | (r) | MAILED
TO
CONTR/
DATE RCD
FRM APPR
AUTH | (b) | ТҮ | DATE
OF
ACTION | (d) | 14 | | THOR | ∢0⊢-0Z 000⊞ | (0) | CONTRACT NO.
DACA31-00-R-0041 | | APPROVING AUTHORITY | DATE RCD
FROM OTH
REVIEWER | (u) | CONTRACT NO. DACA31-00 | | APF | DATE FWD
TO OTHER
REVIEWER | (m) | DATE FWD
TO APPR
AUTH/
DATE RCD
FROM
CONTR | (1) | CONTRACTOR
ACTION | DATE
OF
ACTION | (k) | CO CO | ∢0⊢-0Z 000⊞ | (D | Ц | | | | _ | 1 | | | | | | | | | | | | | | | | | | \Box | \perp | | | | | R:
TES | MATERIAL
NEEDED
BY | (i) | OR | CONTRACTOR:
SCHEDULE DATES | APPROVAL
NEEDED
BY | (h) | IR
I | CONTRACTOR | CC
SCF | SUBMIT | (b) | SUBMITTAL REGISTER | | 9 | O>+ OK 4/m Km>≥K | (J) | | G ED | | - 1 | G ED | | Ŋ | Ŋ | ß | ß | Ŋ | | Ö | | ß | | ß | Ŋ | | | ß | | Ŋ | | Ŋ | Ō | | AITTAL | | | ₽<& | (e) | | 3.2 | | | 3.3 | | 2.4 | 3.5 | 1.5.1 | 3.4 | 3.5 | | 3.3 | | 3.4 | | 2.4 | 2.1 | | | 3.5 | | 3.1 | | 2.1 | 3.1.1.1 | | SUBN | TITLE AND LOCATION Sensitive Compartmented Information Facility (SCIF) | | DESCRIPTION
ITEM SUBMITTED | (p) | SD-06 Test Reports | \neg | SD-10 Operation and Maintenance | | | | | | Verification of Dimensions | System Performance Tests | Demonstrations | SD-06 Test Reports | nt Tests, Charging, and | | nce Tests | | Unitary Equipment | \neg | SD-10 Operation and Maintenance | Data | 6 | SD-02 Shop Drawings | | | uipment | Welding Procedures | | | TITLE AND LOCATION Sensitive Compart | | одшо ошо⊢ | (c) | 15565A S | | 3) | | | 15700A | | | | | | 3) | | | | <u> </u> | | | 0, | | | 15895A S | | 3) | | | | | Sitive | | ⊢ α ∢ Σ ω Σ − ⊢ ⊢ ∢ ⊐ Z Ο | (q) | TITLE
Sen | | ∢∪⊢->-⊢> ZO | (a) | PREVIOUS EDITION IS OBSOLETE PAGE 17 OF 20 PAGES REMARKS Ξ DATE RCD FRM APPR AUTH MAILED TO CONTR/ 9 DATE OF ACTION <u>a</u> APPROVING AUTHORITY ∢∪⊢-0Z ОООШ 0 DACA31-00-R-0041 DATE FWD DATE RCD TO OTHER FROM OTH REVIEWER REVIEWER Ξ CONTRACT NO. $\widehat{\Xi}$ DATE RCD F FROM CONTR DATE FWD TO APPR AUTH/ \equiv DATE OF ACTION CONTRACTOR ACTION 3 ∢∪⊢-0z ОООШ 9 MATERIAL NEEDED BY Ξ CONTRACTOR: SCHEDULE DATES APPROVAL I E CONTRACTOR SUBMIT (g) **SUBMITTAL REGISTER** თ o > ⊢ 0 🗠 $\alpha m > \leq \alpha$ \triangleleft \sim \square 밃 В ED 읪 ED 읪 € $O \rightarrow A \otimes O \rightarrow F \rightarrow O A \rightarrow O A$ വ G G വ G 2.5.2.2 # 0<0</p> (e) 3.6.2 3.5.3 1.5 3.8 3.8 3.6 9. 9. 3.6 3.4 1.6 3.7 Sensitive Compartmented Information Facility (SCIF) SD-10 Operation and Maintenance SD-10 Operation and Maintenance Testing, Adjusting and Balancing Maintenance and Repair Manual Equipment Compliance Booklet Performance Verification Test Performance Verification Test Operating and Maintenance Commissioning Procedures ITEM SUBMITTED Commissioning Report **HVAC Control System** 15990A SD-02 Shop Drawings SD-02 Shop Drawings Performance Tests SD-03 Product Data SD-06 Test Reports SD-06 Test Reports Operation Manual ਉ SD-07 Certificates Field Training Procedures Instructions Training Data Bolts Data 15951A 15895A TITLE AND LOCATION ОШБО ωшО⊢ <u>a</u> <u>a</u> z o z o $\triangleleft \cup \vdash - > - \vdash \succ$ PREVIOUS EDITION IS OBSOLETE PAGE 18 OF 20 PAGES | $\mathbf{\alpha}$ | |---------------------| | Ш | | F | | Ŝ | | $\overline{\Delta}$ | | 9 | | Щ | | œ | | | | ⋖ | | \vdash | | 느 | | ₹ | | 8 | | = | | ಸ | | 0, | | | | | I | | I | | | | | | I |----------------------------------|--|-------------------------------|---|-----|----------------------------|--------------|--------------------|-----------------------------|----------------|-------------|-------------------------|---------------|------------------|--------------------|----------------------|-------------------------|------------|-------------------------|--------------------|-----------------------|----------|----------------|--------|--------------------|--------|-------------------|--------------|--------------------|--------------------|--------------------| | | | | REMARKS | (r) | MAILED
TO
CONTR/
DATE RCD
FRM APPR
AUTH | (b) | ТҮ | DATE
OF
ACTION | (d) | <u>+</u> | | THORI | ∢∪⊢-OZ ∪ООШ | (0) | П | П | ٦ | | CONTRACT NO.
DACA31-00-R-0041 | | APPROVING AUTHORITY | DATE RCD
FROM OTH
REVIEWER | (u) | CONTRACT NO. DACA31-00 | | APP | DATE FWD
TO OTHER
REVIEWER | (m) | · | | DATE FWD
TO APPR
AUTH/
DATE RCD
FROM
CONTR | (1) | CONTRACTOR
ACTION | DATE
OF
ACTION | (k) | CON | ∢0⊢-0z 000ш | ()) | R:
TES | MATERIAL
NEEDED
BY | ()) | R | CONTRACTOR:
SCHEDULE DATES | APPROVAL
NEEDED
BY | (h) | <u>ال</u> ا | CONTRACTOR | CC
SCF | SUBMIT | (b) | SUBMITTAL REGISTER | | 9 | ZO1≻O-11-000≻CO | (f) | G ED | | - 1 | | - 1 | - 1 | - 1 | G ED | G ED | | G ED | | G ED | G ED | - 1 | G ED | - 1 | G ED | | G ED | | G ED | ß | | Ŋ | | | MITTAL | | | ₽ < K < Q K < ₽ I
| (e) | 3.3 | | | 3.2 | 3.5.1 | 1.4 | 3.5.2 | 3.5.1 | 3.5.4 | | 3.1 | 3.5.2 | 3.5.3 | 3.5.4 | | 3.4 | 1.5.1 | 1.5.2 | | 3.1 | | 1.2.6 | 3.22.2 | | 3.20 | | | SUBI | TITLE AND LOCATION Sensitive Compartmented Information Facility (SCIF) | | DESCRIPTION
ITEM SUBMITTED | (p) | TAB Schematic Drawings and | Report Forms | SD-03 Product Data | TAB Related HVAC Submittals | TAB Procedures | Calibration | Systems Readiness Check | TAB Execution | TAB Verification | SD-06 Test Reports | Design Review Report | Systems Readiness Check | TAB Report | TAB Verification Report | SD-07 Certificates | Ductwork Leak Testing | TAB Firm | TAB Specialist | יכט | Commissioning Team | 0) | As-Built Drawings | Onsite Tests | SD-06 Test Reports | Field Test Reports | SD-07 Certificates | | | TITLE AND LOCATION Sensitive Compa | | осшо ошо⊢ | (c) | 15990A | | | | | | | | | | | | | | | | | | 15995A | | 16415A | | | | | | | | E AND | | ⊢ α ∢ Σ ω ≥ − ⊢ ∢ ¬ Σ Ο | (q) | Ц | | | \perp | \perp | | | | | | | | | | \downarrow | | | | | | Щ | | \square | | \square | \Box | | | Se | | ∢∪⊢->-⊢> ZO | (a) | PREVIOUS EDITION IS OBSOLETE PAGE 19 OF 20 PAGES REMARKS Ξ DATE RCD FRM APPR AUTH MAILED TO CONTR/ 9 DATE OF ACTION <u>a</u> APPROVING AUTHORITY ∢∪⊢-0Z ОООШ 0 DACA31-00-R-0041 DATE FWD DATE RCD TO OTHER FROM OTH REVIEWER Ξ CONTRACT NO. $\widehat{\Xi}$ DATE RCD F FROM CONTR DATE FWD TO APPR AUTH/ \equiv DATE
OF ACTION CONTRACTOR ACTION 3 ∢∪⊢-0z ОООШ 9 MATERIAL NEEDED BY Ξ CONTRACTOR: SCHEDULE DATES APPROVAL I E CONTRACTOR SUBMIT (g) **SUBMITTAL REGISTER** თ o > ⊢ 0 🗠 ∢ ~ Ш $\mathbb{K} \square > \mathbb{K} \mathbb{K}$ 胐胐 RE ED € $O \rightarrow A \otimes O \rightarrow F \rightarrow O A \rightarrow O A$ വ G G # 0<0</p> (e) 3.1.2 1.3.1 3.9.1 1.3.1 <u>~</u> 4 1, 4. 1, 2.1 Manufacturer's Recommendations Sensitive Compartmented Information Facility (SCIF) SD-10 Operation and Maintenance Premises Distribution System Premises Distribution System Materials and Equipment Materials and Equipment ITEM SUBMITTED 16528A SD-02 Shop Drawings SD-02 Shop Drawings Record Keeping and SD-06 Test Reports SD-03 Product Data SD-07 Certificates Lighting System Documentation Lighting System Operating Test Qualifications Data 16415A <u>a</u> <u>a</u> z o z o одшо ошон $\triangleleft \cup \vdash - > - \vdash \succ$ TITLE AND LOCATION 16710A SUBMITTAL FORM, Jan 96 | | TRANSMITTAL OF SHOP DRAWINGS, EQUIPMENT DATA, MATERIAL SAMPLES, OR | DUIPMENT DATA, MATERIAL SA | MPLES, OR | DATE | | | TRANSMITTAL NO. | | | |-----------------------|---|--|--|----------------------|--|---|--|----------------------------------|----------------------| | | MANUFACTURER'S CERTIFICATES OF (Read instructions on the reverse side prior to initial) | ANUFACTURER'S CERTIFICATES OF COMPLIANCE (Read instructions on the reverse side prior to initiating this form) | | | | | | | | | | SECTION I - | SECTION I - REQUEST FOR APPROVAL OF TH | APPROVAL OF THE FOLLOWING ITEMS (This section will be initiated by the contractor) | This section will be | initiated by the cont. | actor) | | | | | 10: | 999999999999999999999999999999999999999 | FROM: | | CONTR | CONTRACT NO. | | CHECK ONE: | | | | | | | | - | | | THIS IS A NEW TRANSMITTAL THIS IS A RESUBMITTAL OF TRANSMITTAL | / TRANSMITTAL
Ubmittal of | | | SPECIFICATION (| SPECIFICATION SEC. NO. (Cover only one section with each transmital) | PROJECT TITLE AND LOCATION | |

 | | | | | 1 | | ITEM
NO. | DESCRIPTION OF ITEM SUBMITTED (Type size, model numberjete.) | BMITTED
or/occ.) | MFG OR CONTR. | R. NO. | | CONTRACT REFERENCE
DOCUMENT | FOR | VARIATION
(See | FOR | | ė | 4 | | DRAWING UR
BROCHURE NO.
(See instruction no. 8)
E. | | S SPEC.
PARA. NO. | DRAWING
SHEET NO. | use code | instruction
No. 6)
A. | USE
CODE | : | | 3 | | | | | 1 | | : | | | | | | | | | | | | | | | | | | i i | 1 | | | | | | | | | | | | | | | | | | | *** | | : : | | | | | | | | | REMÄRKS | | | | | l certify that the
in detail and are
contract drawin | above submitted i
correct and in stri
gs and specificatio | I certify that the above submitted items have been reviewed in detail and are correct and in strict conformance with the contract drawings and specifications except as other wise stated. | riewed
th the
wise stated. | | | | | | | | | į | | | | | | | | | | | NAME AND SIG | NAME AND SIGNATURE OF CONTRACTOR | CTOR | | | | | SECTION II | SECTION II - APPROVAL ACTION | | | | : | | | | ENCLOSURES RE | ENCLOSURES RETURNED (List by Item No.) | NAME, TITL | NAME, TITLE AND SIGNATURE OF APPROVING AUTHORITY | ING AUTHORITY | | | DATE | | | | ENG FORM 4025, May 91 | (25, May 91 | | EDITION OF AUG 89 IS OBSOLETE. | | SHEET OF | | | (Proponent: | (Proponent: CEMP-CE) | # INSTRUCTIONS - 1. Section I will be initiated by the Contractor in the required number of copies. - number for identifying each submittal. For new submittals or resubmittals mark the appropriate box; on resubmittals, insert transmittal number of last submission as Each transmittal shall be numbered consecutively in the space provided for "Transmittal No.". This number, in addition to the contract number, will form a serial well as the new submittal number. 2 - 3. The "Item No." will be the same "Item No." as indicated on ENG FORM 4288 for each entry on this form. - Submittals requiring expeditious handling will be submitted on a separate form. - Separate transmittal form will be used for submittals under separate sections of the specifications. - A check shall be placed in the "Variation" column when a submittal is not in accordance with the plans and specifications-also, a written statement to that effect shall be included in the space provided for "Remarks". œ. - 7. Form is self-transmittal, letter of transmittal is not required. - When a sample of material or Manufacturer's Certificate of Compliance is transmitted, indicate "Sample" or "Certificate" in column c, Section I. œ. - addition they will ensure enclosures are indicated and attached to the form prior to return to the contractor. The Contractor will assign action codes as indicated below U.S. Army Corps of Engineers approving authority will assign action codes as indicated below in space provided in Section I, column i to each item submitted. In in Section I, column g, to each item submitted. oj. # THE FOLLOWING ACTION CODES ARE GIVEN TO ITEMS SUBMITTED | Disapproved (See attached). | Receipt acknowledged. | Receipt acknowledged, does not comply as noted with contract requirements. | Other (Specify) | |-----------------------------|--|--|--| | : | : | : | : | | ш | ш. | ĸ | 9 | | Approved as submitted. | Approved, except as noted on drawings. | Approved, except as noted on drawings.
Refer to attached sheet resubmission required. | Will be returned by separate correspondence. | | ; | 1 | 1 | ı | | ⋖ | 8 | ၁ | | 10. Approval of items does not relieve the contractor from complying with all the requirements of the contract plans and specifications. ### SECTION 01420 # SOURCES FOR REFERENCE PUBLICATIONS 09/01 ### PART 1 GENERAL ### 1.1 REFERENCES Various publications are referenced in other sections of the specifications to establish requirements for the work. These references are identified in each section by document number, date and title. The document number used in the citation is the number assigned by the standards producing organization, (e.g. ASTM B 564 Nickel Alloy Forgings). However, when the standards producing organization has not assigned a number to a document, an identifying number has been assigned for reference purposes. ### 1.2 ORDERING INFORMATION The addresses of the standards publishing organizations whose documents are referenced in other sections of these specifications are listed below, and if the source of the publications is different from the address of the sponsoring organization, that information is also provided. Documents listed in the specifications with numbers which were not assigned by the standards producing organization should be ordered from the source by title rather than by number. The designations "AOK" and "LOK" are for administrative purposes and should not be used when ordering publications. ACI INTERNATIONAL (ACI) P.O. Box 9094 Farmington Hills, MI 48333-9094 Ph: 248-848-3700 Fax: 248-848-3701 Internet: www.aci-int.org AOK 5/01 LOK 2/01 AIR CONDITIONING AND REFRIGERATION INSTITUTE (ARI) 4301 North Fairfax Dr., Suite 425 ATTN: Pubs Dept. Arlington, VA 22203 Ph: 703-524-8800 Fax: 703-528-3816 E-mail: ari@ari.org Internet: www.ari.org AOK 5/01 AOK 5/01 LOK 2/01 AIR MOVEMENT AND CONTROL ASSOCIATION (AMCA) 30 W. University Dr. Arlington Heights, IL 60004-1893 Ph: 847-394-0150 Fax: 847-253-0088 Internet: www.amca.org AOK 5/01 LOK 2/01 AMERICAN ARCHITECTURAL MANUFACTURERS ASSOCIATION (AAMA) 1827 Walden Ofc. Sq. Suite 104 Schaumburg, IL 60173-4268 847-303-5664 Ph: Fax: 847-303-5774 Internet: www.aamanet.org AOK 5/01 LOK 2/01 AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO) 444 N. Capital St., NW, Suite 249 Washington, DC 20001 Ph: 800-231-3475 202-624-5800 Fax: 800-525-5562 202-624-5806 Internet: www.transportation.org AOK 5/01 LOK 2/01 AMERICAN ASSOCIATION OF TEXTILE CHEMISTS AND COLORISTS (AATCC) P.O. Box 12215 Research Triangle Park, NC 27709-2215 Ph: 919-549-8141 Fax: 919-549-8933 Internet: www.aatcc.org AOK 5/01 LOK 2/01 AMERICAN BEARING MANUFACTURERS ASSOCIATION (ABMA) 2025 M Street, NW, Suite 800 Washington, DC 20036 Ph: 202-429-5155 Fax: 202-828-6042 Internet: www.abma-dc.org AOK 5/01 LOK 2/01 AMERICAN CONFERENCE OF GOVERNMENTAL INDUSTRIAL HYGIENISTS (ACGIH) 1330 Kemper Meadow Dr. Suite 600 Cincinnati, OH 45240 Ph: 513-742-2020 Fax: 513-742-3355 Internet: www.acgih.org E-mail: pubs@acgih.org AOK 5/01 LOK 2/01 AMERICAN FOREST & PAPER ASSOCIATION (AF&PA) American Wood Council ATTN: Publications Dept. 1111 Nineteenth St. NW, Suite 800 Washington, DC 20036 Ph: 800-294-2372 202-463-2700 Fax: 202-463-2471 AOK 5/01 LOK 6/00 Internet: www.afandpa.org ``` AMERICAN GAS ASSOCIATION (AGA) 400 N. Capitol St. N.W.Suite 450 Washington, D.C. 20001 202-824-7000 Ph: Fax: 202-824-7115 Internet: www.aga.org AOK 5/01 LOK 2/01 AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) One East Wacker Dr., Suite 3100 Chicago, IL 60601-2001 Ph: 312-670-2400 Publications: 800-644-2400 Fax: 312-670-5403 Internet: www.aisc.org AOK 5/01 LOK 3/01 AMERICAN INSTITUTE OF TIMBER CONSTRUCTION (AITC) 7012 So. Revere Parkway, Suite 140 Englewood, CO 80112 Ph: 303-792-9559 Fax: 303-792-0669 Internet:
www.aitc-glulam.org AOK 5/01 LOK 3/01 AMERICAN IRON AND STEEL INSTITUTE (AISI) 1101 17th St., NW Suite 1300 Washington, DC 20036 Ph: 202-452-7100 Internet: www.steel.org AOK 5/01 LOK 3/01 AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) 1819 L Street, NW, 6th Floor Washington, DC 20036 Ph: 202-293-8020 Fax: 202-293-9287 Internet: www.ansi.org/ Acoustical Society of America Standards and Publications Fulfillment Center P. O. Box 1020 Sewickley, PA 15143-9998 412-741-1979 Ph: Fax: 412-741-0609 Internet: http://asa.aip.org General e-mail: asa@aip.org Publications 3 e-mail: asapubs@abdintl.com AOK 5/01 LOK 6/00 AMERICAN PETROLEUM INSTITUTE (API) ``` 1220 L St., NW Washington, DC 20005-4070 Ph: 202-682-8000 Fax: 202-682-8223 Internet: www.api.org AOK 5/01 LOK 3/01 AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) 100 Barr Harbor Drive West Conshohocken, PA 19428-2959 Ph: 610-832-9585 Fax: 610-832-9555 Internet: www.astm.org AOK 5/01 LOK 3/01 AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE) 1791 Tullie Circle, NE Atlanta, GA 30329 Ph: 800-527-4723 or 404-636-8400 Fax: 404-321-5478 Internet: www.ashrae.org AOK 5/01 LOK 3/01 AMERICAN SOCIETY OF SANITARY ENGINEERING (ASSE) 901 Canterbury, Suite A Westlake, OH 44145 Ph: 440-835-3040 Fax: 440-835-3488 E-mail: asse@ix.netcom.com Internet: www.asse-plumbing.org AOK 5/01 LOK 3/01 AMERICAN WATER WORKS ASSOCIATION (AWWA) 6666 West Quincy Denver, CO 80235 Ph: 800-926-7337 - 303-794-7711 Fax: 303-794-7310 Internet: www.awwa.org AOK 5/01 LOK 3/01 AMERICAN WELDING SOCIETY (AWS) 550 N.W. LeJeune Road Miami, FL 33126 Ph: 800-443-9353 - 305-443-9353 Fax: 305-443-7559 Internet: www.amweld.org AOK 5/01 LOK 3/01 AMERICAN WOOD-PRESERVERS' ASSOCIATION (AWPA) P.O. Box 5690 Grandbury, TX 76049-0690 Ph: 817-326-6300 Fax: 817-326-6306 Internet: www.awpa.com AOK 5/01 LOK 3/01 APA - THE ENGINEERED WOOD ASSOCIATION (APA) P.O.Box 11700 Tacoma, WA 98411-0700 Ph: 253-565-6600 Fax: 253-565-7265 Internet: www.apawood.org AOK 5/01 LOK 6/00 ARCHITECTURAL WOODWORK INSTITUTE (AWI) 1952 Isaac Newton Square West Reston, VA 20190 Ph: 703-733-0600 Fax: 703-733-0584 Internet: www.awinet.org AOK 5/01 LOK 6/00 ASME INTERNATIONAL (ASME) Three Park Avenue New York, NY 10016-5990 Ph: 212-591-7722 Fax: 212-591-7674 Internet: www.asme.org AOK 5/01 LOK 6/00 ASSOCIATED AIR BALANCE COUNCIL (AABC) 1518 K St., NW, Suite 503 Washington, DC 20005 Ph: 202-737-0202 Fax: 202-638-4833 Internet: www.aabchq.com E-mail: aabchq@aol.com AOK 5/01 LOK 6/00 BUILDERS HARDWARE MANUFACTURERS ASSOCIATION (BHMA) 355 Lexington Ave. 17th floor New York, NY 10017-6603 Ph: 212-297-2122 Fax: 212-370-9047 Internet: www.buildershardware.com AOK 5/01 LOK 6/00 CALIFORNIA REDWOOD ASSOCIATION (CRA) 405 Enfrente Drive., Suite 200 Novato, CA 94949 Ph: 415-382-0662 Fax: 415-382-8531 Internet: www.calredwood.org AOK 5/01 LOK 6/00 ``` CARPET AND RUG INSTITUTE (CRI) 310 Holiday Ave. Dalton, GA 30720 P.O. Box 2048 Dalton, GA 30722-2048 Ph: 706-278-0232 Fax: 706-278-8835 Internet: www.carpet-rug.com AOK 5/01 LOK 6/00 CAST IRON SOIL PIPE INSTITUTE (CISPI) 5959 Shallowford Rd., Suite 419 Chattanooga, TN 37421 Ph: 423-892-0137 Fax: 423-892-0817 Internet: www.cispi.org AOK 5/01 LOK 6/00 CEILINGS & INTERIOR SYSTEMS CONSTRUCTION ASSOCIATION (CISCA) 1500 Lincoln Highway, Suite 202 St. Charles, IL 60174 Ph: 630-584-1919 Fax: 630-584-2003 Internet: www.cisca.org AOK 5/01 LOK 6/00 COMPRESSED GAS ASSOCIATION (CGA) 1725 Jefferson Davis Highway, Suite 1004 Arlington, VA 22202-4102 Ph: 703-412-0900 Fax: 703-412-0128 Internet: www.cganet.com e-mail: Customer Service@cganet.com AOK 5/01 LOK 6/00 COPPER DEVELOPMENT ASSOCIATION (CDA) 260 Madison Ave. New York, NY 10016 Ph: 212-251-7200 Fax: 212-251-7234 Website: www.copper.org E-mail: staff@cda.copper.org AOK 5/01 LOK 6/00 DOOR AND HARDWARE INSTITUTE (DHI) 14150 Newbrook Dr.Suite 200 Chantilly, VA 20151-2223 Ph: 703-222-2010 Fax: 703-222-2410 Internet: www.dhi.org e-mail: techdept@dhi.org AOK 5/01 LOK 6/00 ``` ELECTRONIC INDUSTRIES ALLIANCE (EIA) ``` 2500 Wilson Blvd. Arlington, VA 22201-3834 Ph: 703-907-7500 Fax: 703-907-7501 Internet: www.eia.org AOK 5/01 LOK 6/00 FACTORY MUTUAL ENGINEERING AND RESEARCH (FM) 500 River Ridge Drive Norwood, MA 02062 Ph: 781-255-6681 Ph: (Toll-Free): 877-364-6726 Fax: 781-255-0181 Internet: www.fmglobal.com AOK 5/01 LOK 6/00 FOUNDATION FOR CROSS-CONNECTION CONTROL AND HYDRAULIC RESEARCH (FCCCHR) University of South California Kaprielian Hall 200 Los Angeles, CA 90089-2531 Ph: 213-740-2032 Fax: 213-740-8399 Internet: www.usc.edu/dept/fccchr AOK 5/01 LOK 6/00 GYPSUM ASSOCIATION (GA) 810 First St. NE, Suite 510 Washington, DC 20002 Ph: 202-289-5440 Fax: 202-289-3707 Internet: www.gypsum.org AOK 5/01 LOK 6/00 ILLUMINATING ENGINEERING SOCIETY OF NORTH AMERICA (IESNA) 120 Wall St., 17th Floor New York, NY 10005-4001 Ph: 212-248-5000 Fax: 212-248-5017 Internet: www.iesna.org AOK 5/01 LOK 6/00 INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE) 445 Hoes Ln, P. O. Box 1331 Piscataway, NJ 08855-1331 Ph: 732-981-0060 OR 800-701-4333 Fax: 732-981-9667 Internet: www.ieee.org E-mail: customer.services@ieee.org AOK 5/01 LOK 6/00 ``` INSULATED CABLE ENGINEERS ASSOCIATION (ICEA) P.O. Box 440 South Yarmouth, MA 02664 Ph: 508-394-4424 Fax: 508-394-1194 E-mail: Internet: www.icea.net AOK 5/01 LOK 6/00 INTERNATIONAL APPROVAL SERVICES (IAS) 8501 East Pleasant Valley Rd. Cleveland, OH 44131 Ph: 216-524-4990 Fax: 216-328-8118 Internet: www.iasapprovals.org AOK 5/01 LOK 6/00 INTERNATIONAL CODE COUNCIL (ICC) 5203 Leesburg Pike, Suite 600 Falls Church, VA 22041 Ph: 703-931-4533 Fax: 703-379-1546 Internet: www.intlcode.org AOK 5/01 LOK 6/00 INTERNATIONAL CONFERENCE OF BUILDING OFFICIALS (ICBO) 5360 Workman Mill Rd. Whittier, CA 90601-2298 Ph: 800-284-4406 Ph: 562-699-0541 Fax: 562-692-3853 Internet: icbo.org AOK 5/01 LOK 6/00 MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS) 127 Park St., NE Vienna, VA 22180-4602 Ph: 703-281-6613 Fax: 703-281-6671 Internet: www.mss-hq.com e-mail: info@mss-hq.com AOK 5/01 LOK 6/00 MARBLE INSTITUTE OF AMERICA (MIA) 30 Eden Alley, Suite 301 Columbus, OH 43215 Ph: 614-228-6194 Fax: 614-461-1497 Internet: www.marble-institute.com e-mail: stoneassociations@hotmail.com AOK 5/01 LOK 6/00 MASTER PAINTERS INSTITUTE (MPI) 4090 Graveley Street Burnaby, BC CANADA V5C 3T6 PH: 888-674-8937 Fx: 888-211-8708 www.paintinfo.com/mpi AOK 9/01 LOK 0/00 METAL LATH/STEEL FRAMING ASSOCIATION (ML/SFA) NAAMM Headquarters 8 South Michigan Avenue, Suite 1000 Chicago, IL 60603 PH: 312-332-0405 FAX: 312-332-0706 www.naamm.org/mlsfa.htm AOK 6/01 LOK 0/00 MIDWEST INSULATION CONTRACTORS ASSOCIATION (MICA) 2017 So. 139th Cir. Omaha, NE 68144 Ph: 402-342-3463 Fax: 402-330-9702 Internet: www.micainsulation.org e-mail: info@micainsulation.org AOK 5/01 LOK 6/00 NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA) 1300 N. 17th St., Suite 1847 Rosslyn, VA 22209 Ph: 703-841-3200 Fax: 703-841-3300 Internet: http//www.nema.org/ AOK 5/01 LOK 6/00 NATIONAL ENVIRONMENTAL BALANCING BUREAU (NEBB) 8575 Grovemont Circle Gaithersburg, MD 20877-4121 Ph: 301-977-3698 Fax: 301-977-9589 Internet: www.nebb.org AOK 5/01 LOK 6/00 NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) 1 Batterymarch Park P.O. Box 9101 Quincy, MA 02269-9101 Ph: 617-770-3000 Fax: 617-770-0700 Internet: www.nfpa.org AOK 5/01 LOK 8/00 NATIONAL HARDWOOD LUMBER ASSOCIATION (NHLA) P.O. Box 34518 Memphis, TN 38184-0518 Ph: 901-377-1818 Fax: 901-382-6419 e-mail: info@natlhardwood.org Internet: natlhardwood.org AOK 5/01 LOK 6/00 NATIONAL INSTITUTE FOR CERTIFICATION IN ENGINEERING TECHNOLOGIES (NICET) 1420 King Street Alexandria, VA 22314-2794 Ph: 888-476-4238 Internet: www.nicet.org AOK 5/01 LOK 6/00 NATIONAL INSTITUTE FOR OCCUPATIONAL SAFETY AND HEALTH (NIOSH) Mail Stop C-13 4676 Columbia Parkway Cincinnati, OH 45226-1998 Ph: 800-356-4674 Fx: 513-533-8573 Internet: www.cdc.gov/niosh/homepage.html To order pubs for which a fee is charged, order from: Superintendent of Documents U.S. Government Printing Office 732 North Capitol Street, NW Mailstop: SDE Washington, DC 20401 Ph: 202-512-1530 Fax: 202-512-1262 Internet: www.gpo.gov AOK 5/01 LOK 6/00 NATIONAL READY-MIXED CONCRETE ASSOCIATION (NRMCA) 900 Spring St. Silver Spring, MD 20910 Ph: 301-587-1400 Fax: 301-585-4219 Internet: www.nrmca.org AOK 5/01 LOK 6/00 NORTHEASTERN LUMBER MANUFACTURERS ASSOCIATION (NELMA) 272 Tuttle Road P.O. Box 87A Cumberland Center, ME 04021 Ph: 207-829-6901 Fax: 207-829-4293 Internet: www.nelma.org e-mail: nelma@javanet.com AOK 5/01 LOK 6/00 NSF INTERNATIONAL (NSF) ATTN: Publications 789 North Dixboro Rd. P.O. Box 130140 Ann Arbor, MI 48113-0140 Ph: 734-769-8010 Fax: 734-769-0109 Toll Free: 800-NSF-MARK Internet: www.nsf.org AOK 5/01 LOK 6/00 PLASTIC PIPE AND FITTINGS ASSOCIATION (PPFA) 800 Roosevelt Rd., Bldg C, Suite 20 Glen Ellyn, IL 60137 Ph: 630-858-6540 Fax: 630-790-3095 Internet: www.ppfahome.org AOK 5/01 LOK 6/00 PLUMBING AND DRAINAGE INSTITUTE (PDI) 45 Bristol Dr. South Easton, MA 02375 Ph: 508-230-3516 or 800-589-8956 Fax: 508-230-3529 Internet: www.pdionline.org E-Mail: info@pdionline.org AOK 5/01 LOK 6/00 PLUMBING-HEATING-COOLING CONTRACTORS NATIONAL ASSOCIATION (NAPHCC) 180 S. Washington Street P.O. Box 6808 Falls Church, VA 22040 Ph: 800-533-7694 Fax: 703-237-7442 Internet: www.naphcc.org AOK 5/01 LOK 6/00 SHEET METAL & AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA) 4201 Lafayette Center Dr., Chantilly, VA 20151-1209 Ph: 703-803-2980 Fax: 703-803-3732 Internet: www.smacna.org e-mail: info@smacna.org AOK 5/01 LOK 6/00 SOCIETY OF AUTOMOTIVE ENGINEERS INTERNATIONAL (SAE) 400 Commonwealth Dr. Warrendale, PA 15096-0001 Ph: 724-776-4841 Fax: 724-776-5760 Internet: www.sae.org e-mail: custsvc@sae.org AOK 5/01 LOK 6/00 SOUTHERN CYPRESS MANUFACTURERS ASSOCIATION (SCMA) 400 Penn Center Boulevard, Suite 530 Pittsburgh, PA 15235 Ph: 412-829-0770 Fax: 412-829-0844 Internet: www.cypressinfo.org AOK 5/01 LOK 6/00 SOUTHERN PINE
INSPECTION BUREAU (SPIB) 4709 Scenic Highway Pensacola, FL 32504-9094 Ph: 850-434-2611 Fax: 850-433-5594 e-mail: spib@spib.org Internet: www.spib.org AOK 5/01 LOK 6/00 STEEL DECK INSTITUTE (SDI) P.O. Box 25 Fox River Grove, IL 60021-0025 Ph: 847-462-1930 Fax: 847-462-1940 Internet: www.sdi.org e-mail: Steve@sdi.org AOK 5/01 LOK 6/00 STEEL DOOR INSTITUTE (SDOI) 30200 Detroit Rd. Cleveland, OH 44145-1967 Ph: 440-899-0010 Fax: 440-892-1404 Internet: www.steeldoor.org AOK 5/01 LOK 6/00 THE SOCIETY FOR PROTECTIVE COATINGS (SSPC) 40 24th Street, 6th Floor Pittsburgh, PA 15222-4656 Ph: 412-281-2331 Fax: 412-281-9992 Internet: www.sspc.org AOK 5/01 LOK 6/00 TILE COUNCIL OF AMERICA (TCA) 100 Clemson Research Blvd Anderson, SC 29625 Ph: 864-646-8453 FAX: 864-646-2821 Internet: www.tileusa.com e-mail: literature@tileusa.com AOK 5/01 LOK 6/00 SECTION 01420 Page 12 UNDERWRITERS LABORATORIES (UL) Northbrook, IL 60062-2096 333 Pfingsten Rd. Ph: 847-272-8800 Fax: 847-272-8129 Internet: www.ul.com/ e-mail: northbrook@us.ul.com AOK 5/01 LOK 6/00 ## U.S. ARMY CORPS OF ENGINEERS (USACE) Order CRD-C DOCUMENTS from: U.S. Army Engineer Waterways Experiment Station ATTN: Technical Report Distribution Section, Services Branch, TIC 3909 Halls Ferry Rd. Vicksburg, MS 39180-6199 Ph: 601-634-2664 Fax: 601-634-2388 Internet: www.wes.army.mil/SL/MTC/handbook/handbook.htm Order Other Documents from: USACE Publications Depot Attn: CEIM-SP-D 2803 52nd Avenue Hyattsville, MD 20781-1102 Ph: 301-394-0081 Fax: 301-394-0084 Internet: www.usace.army.mil/publications or www.hnd.usace.army.mil/techinfo/index.htm AOK 5/01 LOK 6/00 # U.S. DEPARTMENT OF COMMERCE (DOC) Order Publications From: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Ph: 703-605-6000 Fax: 703-605-6900 Internet: www.ntis.gov AOK 5/01 LOK 6/00 # U.S. DEPARTMENT OF DEFENSE (DOD) Order DOD Documents from: National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Ph: 703-605-6000 FAX: 703-605-6900 Internet: www.ntis.gov Order Military Specifications, Standards and Related Publications Department of Defense Single Stock Point for (DODSSP) Defense Automation and Production Service (DAPS) Bldg 4D 700 Robbins AV Philadelphia, PA 19111-5094 215-697-2179 Ph: Fax: 215-697-1462 Internet: www.dodssp.daps.mil AOK 5/01 LOK 6/00 U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA) Ariel Rios Building 1200 Pennsylvania Avenue, N.W. Washington, DC 20460 Ph: 202-260-2090 FAX: 202-260-6257 Internet: www.epa.gov National Technical Information Services (NTIS) 5285 Port Royal Rd. Springfield, VA 22161 Ph: 703-605-6000 Fax: 703-605-6900 Internet: www.ntis.gov AOK 5/01 LOK 6/00 #### U.S. GENERAL SERVICES ADMINISTRATION (GSA) Order from: General Services Administration Federal Supply Service Bureau 470 E L'Enfant Plaza, S.W., Suite 8100 Washington, DC 20407 Ph: 202-619-8925 Fx: 202-619-8978 Internet: fss.gsa.gov/pub/fed-specs.cfm AOK 5/01 LOK 6/00 U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA) 700 Pennsylvania Avenue, N.W. Washington, D.C. 20408 Phone: 800-234-8861 website: nara.gov Order documents from: Superintendent of Documents U.S.Government Printing Office 732 North Capitol Street, NW Washington, DC 20401 Mailstop: SDE Ph: 202-512-1530 Fax: 202-512-1262 Internet: www.gpo.gov E-mail: gpoaccess@gpo.gov AOK 5/01 U.S. NAVAL FACILITIES ENGINEERING SERVICE CENTER (NFESC) 1100 23rd Avenue Port Hueneme, CA 93043-4370 Ph: 805-982-4980 Internet: www.nfesc.navy.mil AOK 5/01 LOK 6/00 WATER ENVIRONMENT FEDERATION (WEF) 601 Wythe St. Alexandria, VA 22314-1994 Ph: 703-684-2452 Fax: 703-684-2492 Internet: www.wef.org AOK 5/01 LOK 6/00 WATER QUALITY ASSOCIATION (WQA) 4151 Naperville Rd. Lisle, IL 60532 Ph: 630-505-0160 Fax: 630-505-9637 Internet: www.wqa.org e-mail: info@mail.wqa.org AOK 5/01 LOK 6/00 WEST COAST LUMBER INSPECTION BUREAU (WCLIB) P.O. Box 23145 Portland, OR 97281 Ph: 503-639-0651 Fax: 503-684-8928 internet: www.wclib.org e-mail: info@wclib.org AOK 5/01 LOK 6/00 WESTERN WOOD PRESERVERS INSTITUTE (WWPI) 7017 N.E. Highway 99 # 108 Vancover, WA 98665 Ph: 360-693-9958 Fax: 360-693-9967 Internet: www.wwpinstitute.org e-mail: wwpi@teleport.com AOK 5/01 LOK 6/00 WESTERN WOOD PRODUCTS ASSOCIATION (WWPA) Yeon Bldg. 522 SW 5th Ave. Suite 500 Portland, OR 97204-2122 Ph: 503-224-3930 Fax: 503-224-3934 Internet: www.wwpa.org e-mail: info@wwpa.org AOK 5/01 LOK 6/00 # WINDOW AND DOOR MANUFACTURERS ASSOCIATION (WDMA) 1400 East Touhy Ave., Suite 470 Des Plaines, IL 60018 Ph: 847-299-5200 or 800-223-2301 Fax: 708-299-1286 Internet: www.wdma.com e-mail: admin@wdma.com AOK 5/01 LOK 6/00 WOOD MOULDING AND MILLWORK PRODUCERS ASSOCIATION (WMMPA) 507 First Street Woodland, CA 95695 Ph: 916-661-9591 Fax: 916-661-9586 Internet: www.wmmpa.com AOK 5/01 LOK 6/00 -- End of Section -- #### SECTION 01451 # CONTRACTOR QUALITY CONTROL 11/01 #### PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) ASTM E 329 (2000b) Agencies Engaged in the Testing and/or Inspection of Materials Used in Construction #### 1.2 PAYMENT Separate payment will not be made for providing and maintaining an effective Quality Control program, and all costs associated therewith shall be included in the applicable unit prices or lump-sum prices contained in the Bidding Schedule. #### 1.3 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-01 Preconstruction Submittals CQC Plan; G A/E. Identifies personnel, procedures, control, instructions, test, records, and forms to be used. SD-05 Design Data Notification of Changes; G A/E Any changes made by the Contractor. Punchlist;G A/E Near the completion of all work, the CQC System Manager shall prepare a list of items which do not conform to the approved drawings and specifications. Minutes; G A/E Prepared by the Government and signed by both the Contractor and the Contracting Officer and shall become a part of the contract file. SD-06 Test Reports test reports; G A/E Tests; G A/E Specified or required tests shall be done by the Contractor to verify that control measures are adequate. Documentation; G A/E Results of tests taken. Tests Performed; G A/E control phase; G A/E An information copy provided directly to the Contracting Officer. PART 2 PRODUCTS (Not Applicable) PART 3 EXECUTION #### 3.1 GENERAL REQUIREMENTS The Contractor is responsible for quality control and shall establish and maintain an effective quality control system in compliance with the Contract Clause titled "Inspection of Construction." The quality control system shall consist of plans, procedures, and organization necessary to produce an end product which complies with the contract requirements. The system shall cover all construction operations, both onsite and offsite, and shall be keyed to the proposed construction sequence. The site project superintendent will be held responsible for the quality of work on the job and is subject to removal by the Contracting Officer for non-compliance with the quality requirements specified in the contract. The site project superintendent in this context shall be the highest level manager responsible for the overall construction activities at the site, including quality and production. The site project superintendent shall maintain a physical presence at the site at all times, except as otherwise acceptable to the Contracting Officer, and shall be responsible for all construction and construction related activities at the site. #### 3.2 CQC PLAN #### 3.2.1 General The Contractor shall furnish for review by the Government, not later than 30 days after receipt of notice to proceed, the Contractor Quality Control (CQC) Plan proposed to implement the requirements of the Contract Clause titled "Inspection of Construction." The plan shall identify personnel, procedures, control, instructions, tests, records, and forms to be used. The Government will consider an interim plan for the first 60 days of operation. Construction will be permitted to begin only after acceptance of the CQC Plan or acceptance of an interim plan applicable to the particular feature of work to be started. Work outside of the features of work included in an accepted interim plan will not be permitted to begin until acceptance of a CQC Plan or another interim plan containing the additional features of work to be started. #### 3.2.2 Content of the CQC Plan The CQC Plan shall include, as a minimum, the following to cover all construction operations, both onsite and offsite, including work by subcontractors, fabricators, suppliers, and purchasing agents: - a. A description of the quality control organization, including a chart showing lines of authority and acknowledgment that the CQC staff shall implement the three phase control system for all aspects of the work specified. The staff shall include a CQC System Manager who shall report to the project superintendent. - b. The name, qualifications (in resume format), duties, responsibilities, and authorities of each person assigned a CQC function. - c. A copy of the letter to the CQC System Manager signed by an authorized official of the firm which describes the responsibilities and delegates sufficient authorities to adequately perform the functions of the CQC System Manager, including authority to stop work which is not in compliance with the contract. The CQC System Manager shall issue letters of direction to all other various quality control representatives outlining duties, authorities, and responsibilities. Copies of these letters shall also be
furnished to the Government. - d. Procedures for scheduling, reviewing, certifying, and managing submittals, including those of subcontractors, offsite fabricators, suppliers, and purchasing agents. These procedures shall be in accordance with Section 01330 SUBMITTAL PROCEDURES. - e. Control, verification, and acceptance testing procedures for each specific test to include the test name, specification paragraph requiring test, feature of work to be tested, test frequency, and person responsible for each test. The Contractor shall include a copy of his proposed laboratory's latest Corps of Engineers inspection report in the Quality Control Plan. The inspection report details the tests that the lab has been validated to perform under Corps of Engineers contracts. (Laboratory facilities will be approved by the Contracting Officer.) - f. Procedures for tracking preparatory, initial, and follow-up control phases and control, verification, and acceptance tests including documentation. - g. Procedures for tracking construction deficiencies from identification through acceptable corrective action. These procedures shall establish verification that identified deficiencies have been corrected. - h. Reporting procedures, including proposed reporting formats. - i. A list of the definable features of work. A definable feature of work is a task which is separate and distinct from other tasks, has separate control requirements, and may be identified by different trades or disciplines, or it may be work by the same trade in a different environment. Although each section of the specifications may generally be considered as a definable feature of work, there are frequently more than one definable features under a particular section. This list will be agreed upon during the coordination meeting. #### 3.2.3 Acceptance of Plan Acceptance of the Contractor's plan is required prior to the start of construction. Acceptance is conditional and will be predicated on satisfactory performance during the construction. The Government reserves the right to require the Contractor to make changes in his CQC Plan and operations including removal of personnel, as necessary, to obtain the quality specified. # 3.2.4 Notification of Changes After acceptance of the CQC Plan, the Contractor shall notify the Contracting Officer in writing of any proposed change. Proposed changes are subject to acceptance by the Contracting Officer. #### 3.3 COORDINATION MEETING After the Preconstruction Conference, before start of construction, and prior to acceptance by the Government of the CQC Plan, the Contractor shall meet with the Contracting Officer or Authorized Representative and discuss the Contractor's quality control system. The CQC Plan shall be submitted for review a minimum of 14 calendar days prior to the Coordination Meeting. During the meeting, a mutual understanding of the system details shall be developed, including the forms for recording the CQC operations, control activities, testing, administration of the system for both onsite and offsite work, and the interrelationship of Contractor's Management and control with the Government's Quality Assurance. Minutes of the meeting shall be prepared by the Government and signed by both the Contractor and the Contracting Officer. The minutes shall become a part of the contract file. There may be occasions when subsequent conferences will be called by either party to reconfirm mutual understandings and/or address deficiencies in the CQC system or procedures which may require corrective action by the Contractor. # 3.4 QUALITY CONTROL ORGANIZATION #### 3.4.1 Personnel Requirements The requirements for the CQC organization are a CQC System Manager and sufficient number of additional qualified personnel to ensure safety and contract compliance. The Safety and Health Manager shall receive direction and authority from the CQC System Manager and shall serve as a member of the CQC staff. Personnel identified in the technical provisions as requiring specialized skills to assure the required work is being performed properly will also be included as part of the CQC organization. The Contractor's CQC staff shall maintain a presence at the site at all times during progress of the work and have complete authority and responsibility to take any action necessary to ensure contract compliance. The CQC staff shall be subject to acceptance by the Contracting Officer. The Contractor shall provide adequate office space, filing systems and other resources as necessary to maintain an effective and fully functional CQC organization. Complete records of all letters, material submittals, show drawing submittals, schedules and all other project documentation shall be promptly furnished to the CQC organization by the Contractor. The CQC organization shall be responsible to maintain these documents and records at the site at all times, except as otherwise acceptable to the Contracting Officer. #### 3.4.2 CQC System Manager The Contractor shall identify as CQC System Manager an individual within the onsite work organization who shall be responsible for overall management of CQC and have the authority to act in all CQC matters for the Contractor. a construction person with a minimum of $_{7}$ years in related work. This CQC System Manager shall be on the site at all times during construction and shall be employed by the prime Contractor. The CQC System Manager shall be assigned as System Manager but may have duties as project superintendent in addition to quality control. An alternate for the CQC System Manager shall be identified in the plan to serve in the event of the System Manager's absence. The requirements for the alternate shall be the same as for the designated CQC System Manager. #### 3.4.3 COC Personnel In addition to CQC personnel specified elsewhere in the contract, the Contractor shall provide as part of the CQC organization specialized personnel to assist the CQC System Manager for the following areas: electrical, mechanical, civil, structural, These individuals may be employees of the prime or subcontractor; be responsible to the CQC System Manager; be physically present at the construction site during work on their areas of responsibility; have the necessary education and/or experience in accordance with the experience matrix listed herein. These individuals may perform other duties but must be allowed sufficient time to perform their assigned quality control duties as described in the Quality Control Plan. # Experience Matrix | | <u>Area</u> | Qualifications | |----|---------------|--| | a. | Civil | Graduate Civil Engineer with
2 years experience in the
type of work being
performed on this project or
technician with 5 yrs
related experience | | b. | Mechanical | Graduate Mechanical Engineer with 2 yrs experience or person with 5 yrs related experience | | C. | Electrical | Graduate Electrical Engineer with 2 yrs related experience or person with 5 yrs related experience | | d. | Structural | Graduate Structural Engineer with 2 yrs experience or person with 5 yrs related experience | | e. | Architectural | Graduate Architect with 2 yrs experience or person | ### Experience Matrix Area Qualifications with 5 yrs related experience f. Environmental Graduate Environmental Engineer with 3 yrs experience g. Submittals Submittal Clerk with 1 yr experience i. Concrete, Pavements and Soils Materials Technician with 2 yrs experience for the appropriate area # 3.4.4 Additional Requirement In addition to the above experience and/or education requirements the CQC System Manager shall have completed the course entitled "Construction Quality Management for Contractors" within 45 calendar days after NTP is a mandatory requirement for the position of the Quality Control Systems Manager. Certification is good for five (5) years at which time re-training is required. The Contractor's QC Systems Manager may be appointed and serve fully in that capacity pending certification. If the CQC Systems Manager fails to successfully complete the training, the Contractor should promptly appoint a new CQSM who shall then attend the next available course. The course is nine (9) hours long (1 day). The Construction Quality Management Course (CQMC) will be taught at least nine (9) times per year by the Baltimore District Corps of Engineers, at various locations around Baltimore and Washington, DC, or at another site if conditions warrant. The CQMC cost will be borne by the Contractor and is one hundred and twenty-five dollars (\$125.00) per course, per person. Payment shall be made by check payable to either sponsors of the course: Associated Builders and Contractors, Inc, (ABC) 14120 Park Long Court, Suite 111, Chantilly , Virginia 20151 (Phone: 703-968-6205), or to The Associated General Contractors of America (AGC), Maryland Chapter, 1301 York Road, Heaver Plaza, Suite 202, Lutherville, Maryland 21093 (Phone: 410-321-7870) prior to the start of the course. Reservations to attend the course should be made directly to the organization sponsoring the course they attend. The Contractor has forty-five (45) calendar days to attend the course after the issuance of the NTP. The contractor shall contact the Contracting Officer upon award of the contract for arrangements for the course. #### 3.4.5 Organizational Changes The Contractor shall maintain the CQC staff at full strength at all times. When it is necessary to make changes to the CQC staff, the Contractor shall revise the CQC Plan to reflect the changes and submit the changes to the Contracting Officer for acceptance. # 3.5 SUBMITTALS Submittals, if needed, shall be made as specified in Section 01330 SUBMITTAL PROCEDURES. The CQC organization shall be responsible for certifying that all submittals and deliverables are in compliance
with the contract requirements. #### 3.6 CONTROL Contractor Quality Control is the means by which the Contractor ensures that the construction, to include that of subcontractors and suppliers, complies with the requirements of the contract. At least three phases of control shall be conducted by the CQC System Manager for each definable feature of work as follows: # 3.6.1 Preparatory Phase This phase shall be performed prior to beginning work on each definable feature of work, after all required plans/documents/materials are approved/accepted, and after copies are at the work site. This phase shall include: - a. A review of each paragraph of applicable specifications, reference codes, and standards. A copy of those sections of referenced codes and standards applicable to that protion of the work to be accomplished in the field shall be made available by the Contractor at the preparatory inspection. These copies shall be maintained in the field and available for use by Government personnel until final acceptance of the work. - b. A review of the contract drawings. - c. A check to assure that all materials and/or equipment have been tested, submitted, and approved. - d. Review of provisions that have been made to provide required control inspection and testing. - e. Examination of the work area to assure that all required preliminary work has been completed and is in compliance with the contract. - f. A physical examination of required materials, equipment, and sample work to assure that they are on hand, conform to approved shop drawings or submitted data, and are properly stored. - g. A review of the appropriate activity hazard analysis to assure safety requirements are met. - h. Discussion of procedures for controlling quality of the work including repetitive deficiencies. Document construction tolerances and workmanship standards for that feature of work. - i. A check to ensure that the portion of the plan for the work to be performed has been accepted by the Contracting Officer. - j. Discussion of the initial control phase. - k. The Government shall be notified at least 72 hours in advance of beginning the preparatory control phase. This phase shall include a meeting conducted by the CQC System Manager and attended by the superintendent, other CQC personnel (as applicable), and the foreman responsible for the definable feature. The results of the preparatory phase actions shall be documented by separate minutes prepared by the CQC System Manager and attached to the daily CQC report. The Contractor shall instruct applicable workers as to the acceptable level of workmanship required in order to meet contract specifications. #### 3.6.2 Initial Phase This phase shall be accomplished at the beginning of a definable feature of work. The following shall be accomplished: - a. A check of work to ensure that it is in full compliance with contract requirements. Review minutes of the preparatory meeting. - b. Verify adequacy of controls to ensure full contract compliance. Verify required control inspection and testing. - c. Establish level of workmanship and verify that it meets minimum acceptable workmanship standards. Compare with required sample panels as appropriate. - d. Resolve all differences. - e. Check safety to include compliance with and upgrading of the safety plan and activity hazard analysis. Review the activity analysis with each worker. - f. The Government shall be notified at least 72 hours in advance of beginning the initial phase. Separate minutes of this phase shall be prepared by the CQC System Manager and attached to the daily CQC report. Exact location of initial phase shall be indicated for future reference and comparison with follow-up phases. - g. The initial phase should be repeated for each new crew to work onsite, or any time acceptable specified quality standards are not being met. # 3.6.3 Follow-up Phase Daily checks shall be performed to assure control activities, including control testing, are providing continued compliance with contract requirements, until completion of the particular feature of work. The checks shall be made a matter of record in the CQC documentation. Final follow-up checks shall be conducted and all deficiencies corrected prior to the start of additional features of work which may be affected by the deficient work. The Contractor shall not build upon nor conceal non-conforming work. # 3.6.4 Additional Preparatory and Initial Phases Additional preparatory and initial phases shall be conducted on the same definable features of work if the quality of on-going work is unacceptable, if there are changes in the applicable CQC staff, onsite production supervision or work crew, if work on a definable feature is resumed after a substantial period of inactivity, or if other problems develop. #### 3.7 TESTS #### 3.7.1 Testing Procedure The Contractor shall perform specified or required tests to verify that control measures are adequate to provide a product which conforms to contract requirements. Upon request, the Contractor shall furnish to the Government duplicate samples of test specimens for possible testing by the Government. Testing includes operation and/or acceptance tests when specified. The Contractor shall procure the services of a Corps of Engineers approved testing laboratory or establish an approved testing laboratory at the project site. The Contractor shall perform the following activities and record and provide the following data: - a. Verify that testing procedures comply with contract requirements. - b. Verify that facilities and testing equipment are available and comply with testing standards. - c. Check test instrument calibration data against certified standards. - d. Verify that recording forms and test identification control number system, including all of the test documentation requirements, have been prepared. - e. Results of all tests taken, both passing and failing tests, shall be recorded on the CQC report for the date taken. Specification paragraph reference, location where tests were taken, and the sequential control number identifying the test shall be given. If approved by the Contracting Officer, actual test reports may be submitted later with a reference to the test number and date taken. An information copy of tests performed by an offsite or commercial test facility shall be provided directly to the Contracting Officer. Failure to submit timely test reports as stated may result in nonpayment for related work performed and disapproval of the test facility for this contract. #### 3.7.2 Testing Laboratories ### 3.7.2.1 Capability Check The Government reserves the right to check laboratory equipment in the proposed laboratory for compliance with the standards set forth in the contract specifications and to check the laboratory technician's testing procedures and techniques. Laboratories utilized for testing soils, concrete, asphalt, and steel shall meet criteria detailed in ASTM E 329. #### 3.7.2.2 Laboratory Approval The Contractor shall use a testing laboratory that has been previously approved by the Corps of Engineers or obtain approval for a laboratory established at the project site. Approved laboratories are listed at the following web site: http://www.wes.army.mil/SL/MTC/ValStatesTbl.htm If the Contractor elects to set up an on-site laboratory at the project site, the Contractor will be assessed \$4500.00 for the cost of inspection of this lab by the Corps of Engineers. # 3.7.3 Onsite Laboratory The Government reserves the right to utilize the Contractor's control testing laboratory and equipment to make assurance tests, and to check the Contractor's testing procedures, techniques, and test results at no additional cost to the Government. # 3.7.4 Furnishing or Transportation of Samples for Testing Furnishing or Transportation of Samples for Testing: Costs incidental to the transportation of samples or materials will be borne by the Contractor. Samples of materials for test verification and acceptance testing by the Government shall be delivered to the following address: Field Exploration Unit or Soils Laboratory Unit (indicate which on shipping or mailing forms) Fort McHenry Yard Baltimore, Maryland 21230" #### 3.8 COMPLETION INSPECTION ### 3.8.1 Punch-Out Inspection Near the completion of all work or any increment thereof established by a completion time stated in the Special Clause in Section 00800 of the Solicitation entitled "Commencement, Prosecution, and Completion of Work," or stated elsewhere in the specifications, the CQC System Manager shall conduct an inspection of the work and develop a punchlist of items which do not conform to the approved drawings and specifications. Such a list of deficiencies shall be included in the CQC documentation, as required by paragraph DOCUMENTATION below, and shall include the estimated date by which the deficiencies will be corrected. The CQC System Manager or staff shall make a second inspection to ascertain that all deficiencies have been corrected. Once this is accomplished, the Contractor shall notify the Government that the facility is ready for the Government Pre-Final inspection. #### 3.8.2 Pre-Final Inspection The Government will perform pre-final inspection to verify that the facility is complete and ready to be occupied. A Government Pre-Final Punch List may be developed as a result of this inspection. The Contractor's CQC System Manager shall ensure that all items on this list have been corrected before notifying the Government so that a Final inspection with the customer can be scheduled. Any items noted on the Pre-Final inspection shall be corrected in a timely manner. These inspections and any deficiency corrections required by this paragraph shall be accomplished within the time slated for completion of the entire work or any particular increment of the work if the project is divided into increments by separate completion dates. #### 3.8.3 Final Acceptance Inspection The
Contractor's Quality Control Inspection personnel, plus the superintendent or other primary management person, and the Contracting Officer's Representative shall be in attendance at the final acceptance inspection. Additional Government personnel including, but not limited to, those from Base/Post Civil Facility Engineer user groups, and major commands may also be in attendance. The final acceptance inspection will be formally scheduled by the Contracting Officer based upon results of the Pre-Final inspection. Notice shall be given to the Contracting Officer at least 14 days prior to the final acceptance inspection and shall include the Contractor's assurance that all specific items previously identified to the Contractor as being unacceptable, along with all remaining work performed under the contract, will be complete and acceptable by the date scheduled for the final acceptance inspection. Failure of the Contractor to have all contract work acceptably complete for this inspection will be cause for the Contracting Officer to bill the Contractor for the Government's additional inspection cost in accordance with the contract clause titled "Inspection of Construction". #### 3.9 DOCUMENTATION The Contractor shall maintain current records providing factual evidence that required quality control activities and/or tests have been performed. These records shall include the work of subcontractors and suppliers and shall be on an acceptable form that includes, as a minimum, the following information: - a. Contractor/subcontractor and their area of responsibility. - b. Operating plant/equipment with hours worked, idle, or down for repair. - c. Work performed each day, giving location, description, and by whom. When Network Analysis (NAS) is used, identify each phase of work performed each day by NAS activity number. - d. Test and/or control activities performed with results and references to specifications/drawings requirements. The control phase shall be identified (Preparatory, Initial, Follow-up). List deficiencies noted along with corrective action. - e. Quantity of materials received at the site with statement as to acceptability, storage, and reference to specifications/drawings requirements. - f. Submittals and deliverables reviewed, with contract reference, by whom, and action taken. - g. Off-site surveillance activities, including actions taken. - h. Job safety evaluations stating what was checked, results, and instructions or corrective actions. - i. Instructions given/received and conflicts in plans and/or specifications. - j. Contractor's verification statement. These records shall indicate a description of trades working on the project; the number of personnel working; weather conditions encountered; and any delays encountered. These records shall cover both conforming and deficient features and shall include a statement that equipment and materials incorporated in the work and workmanship comply with the contract. The original and one copy of these records in report form shall be furnished to the Government daily within 24 hours after the date covered by the report, except that reports need not be submitted for days on which no work is performed. As a minimum, one report shall be prepared and submitted for every 7 days of no work and on the last day of a no work period. All calendar days shall be accounted for throughout the life of the contract. The first report following a day of no work shall be for that day only. Reports shall be signed and dated by the CQC System Manager. The report from the CQC System Manager shall include copies of test reports and copies of reports prepared by all subordinate quality control personnel. # 3.10 SAMPLE FORMS Sample forms as follows: | Contractor's Name: _
 Address: _
 Phone Number: _ | | - | | | | |---|-----------------------|----------------------|------------|-----------|------------| | CONSTRUCTION QUALITY C | | T | | | | | PROJECT NAME:
LOCATION: | | DATE: | | | | | LOCATION: CONTRACT NUMBER: | | REPOR | RT NO.: | | | | SUPERINTENDENT: | | | CONSTRUCT | 'ION | NUMBER | | | | | IT ON SITE | | | | | CLIDGONIED | | | | | | COMPANY RESPON | SUBCONTR
ISIBILITY | | | NO. | OF WORKERS | | | TOTAL |

 -
 | | | | | NO OF HODKERS HODAY | Z MANIIOITO C | monay I | MANIIOIDO | L EOD MII | IG DEDIOD | | NO. OF WORKERS TODAY | MANHOURS | TODAY | MANHOURS | FOR TH. | IS PERIOD | | CONTRACT MATERIALS A | _
AND EQUIPMENT |
' DELIVE | ERED TO SI | TE: | | |
 WEATHER: | SITE | CONDITI | ONS: | | | | DID A DELAY OR WORK IF YES, EXPLAIN. | STOPPAGE OCC | UR TOD <i>e</i> | Y? | _ | | | HAS ANYTHING DEVELOR OR FINDING OF FACT? | | | | D TO A (| CHANGE | | DESCRIPTION OF ALL WORK PERFORMED TODAY (LIST BY DEFINABLE FEATURES OF WORK) | |--| | | | PREPARATORY INSPECTION: | | LIST ALL INSPECTIONS BY SUBJECT AND SPECIFICATION LOCATION. ATTACH MINUTES OF MEETING AND LIST OF ALL ATTENDEES. | | | | HAVE ALL REQUIRED SUBMITTALS AND SAMPLES OF CONSTRUCTION BEEN APPROVED. | | DO THE MATERIALS AND EQUIPMENT TO BE USED CONFORM TO THE SUBMITTALS? | | HAS ALL PRELIMINARY WORK BEEN INSPECTED, TESTED, AND COMPLETED? | | TEST REQUIRED AND INSPECTION TECHNIQUES TO BE EXECUTED TO PROVE CONTRACT COMPLIANCE (INCLUDE BOTH EXPECTED AND ACTUAL RESULTS) | | HAS A PHASE HAZARD ANALYSIS BEEN PERFORMED? | | COMMENTS AND DEFICIENCIES NOTED AND CORRECTIVE ACTIONS TAKEN: | ALL INSTRUCTIONS RECEIVED FROM QA PERSONNEL AND ACTIONS TAKEN: | JOB SAFETY (INCLUDE MEETINGS HELD AND DEFICIENCIES NOTED WITH CORRECTIVE ACTIONS): | |---| | | | INITIAL INSPECTION: | | LIST ALL INSPECTIONS BY SUBJECT AND SPECIFICATION LOCATION. COMMENTS AND/OR DEFICIENCIES NOTED AND CORRECTIVE ACTION TAKEN: | | FOLLOW-UP INSPECTION: | | LIST ALL INSPECTIONS BY SUBJECT AND SPECIFICATION LOCATION. COMMENTS AND/OR DEFICIENCIES NOTED AND CORRECTIVE ACTION TAKEN. | | SIGNATURE:QUALITY CONTROL REPRESENTATIVE/MANAGER | | THE ABOVE REPORT IS COMPLETE AND CORRECT. ALL MATERIALS AND EQUIPMENT USED AND ALL WORK PERFORMED DURING THIS REPORTING PERIOD ARE IN COMPLIANCE WITH THE CONTRACT SPECIFICATIONS, AND SUBMITTALS, EXCEPT AS NOTED ABOVE. | | SIGNATURE: CONTRACTOR'S APPROVED AUTHORIZED REPRESENTATIVE | # 3.11 NOTIFICATION OF NONCOMPLIANCE The Contracting Officer will notify the Contractor of any detected noncompliance with the foregoing requirements. The Contractor shall take immediate corrective action after receipt of such notice. Such notice, when delivered to the Contractor at the work site, shall be deemed sufficient for the purpose of notification. If the Contractor fails or refuses to comply promptly, the Contracting Officer may issue an order stopping all or part of the work until satisfactory corrective action has been taken. No part of the time lost due to such stop orders shall be made the subject of claim for extension of time or for excess costs or damages by the Contractor. -- End of Section -- | _ | | | | | | - | |--------------|---|----------------------|------------|----------------|-------------|----------| | |
 Contrac
 Address | tor's Name
: | : | |
 | | | |
 Phone Na

 | umber: | | |

 | | | | COI | NSTRUCTION | QUALITY (| CONTROL R | EPORT | | | | | r name: | | | | | | | | | | | _ DATE: | | | | CONTRA | CT NUMBER: | | | _ REPORT N | 10.: | | | | | | | | | | SUPERINTENDE | ENT: | | | | | | | TYPE OF WORK | TYPE OF WORKERS NUMBER TYPES OF CONSTRUCTION NUMBER EQUIPMENT ON SITE | | | | | NUMBER | | | | | | | | | | | |

 | | | | | | | | _ | | | | | | | | | ONTRACTOR | | | | | COMPANY | RESPON | SIBILITY | FORE | MAN | NO. OF | WORKERS | | | | | | | | | | | | | - | | | | | | | |
 | | | | | | | | _ | | | | | | , | | TOTALS | | | | | NO. OF WORK | ERS TODAY | MANHOUR | S TODAY | MANHOU
 | RS FOR THI | S PERIOD | | CON | TRACT MAT | l—————
Ertals and | EOUT PMEN' |
T_delitver | ED TO SITE | 1: | | | | | 2011111 | | 20 10 211 | | | WEATHER: | | SI | TE CONDIT | IONS: | | | | | | | | | | | | DID A DELAY | | STOPPAGE O | CCUR TODA | Y? | _ | | | HAS ANYTHIN | | | | | D TO A CHA | ANGE | SECTION 01451 PAGE 1 OF 3 PAGES SECTION 01451 PAGE 2 OF 3 PAGES | ALL INSTRUCTIONS RECEIVED FROM QA PERSONNEL AND ACTIONS TAKEN: | |--| | | | | | | | JOB SAFETY (INCLUDE MEETINGS HELD AND DEFICIENCIES NOTED WITH CORRECTIVE ACTIONS): | | | | | | | | | | INITIAL INSPECTION: | | LIST ALL INSPECTIONS BY SUBJECT AND SPECIFICATION LOCATION. COMMENTS AND/OR DEFICIENCIES NOTED AND CORRECTIVE ACTION TAKEN: | | COPPENTS AND/OR DEFICIENCEES NOTED AND CORRECTIVE ACTION TAKEN. | | | | | | | | FOLLOW-UP INSPECTION: | | | | LIST ALL INSPECTIONS BY SUBJECT AND SPECIFICATION LOCATION. COMMENTS AND/OR DEFICIENCIES NOTED AND CORRECTIVE ACTION TAKEN. | | | | | | | | | | SIGNATURE: | | QUALITY CONTROL REPRESENTATIVE/MANAGER | | THE ABOVE REPORT IS COMPLETE AND CORRECT. ALL MATERIALS AND | | EQUIPMENT USED AND ALL WORK PERFORMED DURING THIS REPORTING PERIOD | | ARE IN COMPLIANCE WITH THE CONTRACT SPECIFICATIONS, AND SUBMITTALS, EXCEPT AS NOTED ABOVE. | | | | SIGNATURE: | | CONTRACTOR'S APPROVED AUTHORIZED REPRESENTATIVE | | | SECTION 01451 PAGE 3 OF 3 PAGES #### SECTION 01510 # TEMPORARY CONSTRUCTION ITEMS 01/01 # PART 1 GENERAL #### 1.1 General The work covered by this section consists of furnishing all labor, materials, equipment, and services and performing all work required for or incidental
to the items herein specified. No separate payment will be made for the construction and services required by this section, and all costs in connection therewith shall be included in the overall cost of the work unless specifically stated otherwise. #### 1.2 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: #### SD-02 Shop Drawings Temporary Electrical Work; G A/E. The Contractor shall submit a temporary power distribution sketch prior to the installation of any temporary power. # 1.3 PROJECT SIGN: (AUG 1974) A project sign shall be provided and erected at a location designated by the Contracting Officer. The sign shall conform to the requirements as shown on Attachment No. 1, a copy of which is attached hereto. The sign shall be erected as soon as possible and within 15 days after the date of receipt of notice to proceed. Upon completion of the project, the sign shall be removed and disposed of by the Contractor. (CENAB) # 1.4 SAFETY SIGN (AUG 1974) A safety sign shall be provided and erected at a location designated by the Contracting Officer. The sign shall conform to the requirements as shown on Attachment No. 2, a copy of which is attached hereto. The sign shall be erected as soon as possible and within 15 days after the date of receipt of notice to proceed. The data required by the sign shall be corrected daily, with light colored metallic or non-metallic numerals. Numerals, including mounting hardware, shall be subject to the approval of the Contracting Officer. Upon completion of the project, the sign shall be removed and disposed of by the Contractor. (CENAB) # 1.5 TEMPORARY ELECTRICAL WORK: (APR 1962 REV JUL 2000) Temporary electrical work shall be in accordance with Sections 7 and 11 of EM 385-1-1 U.S. Army Corps of Engineers Safety and Health Requirements Manual. The Contractor shall submit for approval a temporary power distribution sketch prior to the installation of any temporary power. The sketch shall include location, voltages, and means of protection for all temporary distribution system wiring and components to include lighting, receptacles, grounding, disconnecting means, and GFCIs. The Contractor shall test the temporary power system and devices for polarity, ground continuity, and ground resistance prior to the initial use and before use after any modification. The Contractor shall verify to the satisfaction of the Contracting Officer or his representative by a calibrated light meter that the minimum illumination required by Table 7-1 of the EM 385-1-1 is being provided.(CENAB-EN-DT) #### 1.6 GOVERNMENT FIELD OFFICE # 1.6.1 Resident Engineer's Office The Contractor shall provide the Government Resident Engineer with an office, approximately 200 square feet in floor area, located where directed, and providing space heat, electric light and power, toilet facilities consisting of one lavatory and one water closet complete with connections to water and sewer mains. A mail slot shall be provided in the door, or an apartment-type lockable mail box mounted on the surface of the door. At completion of the project, the office shall remain the property of the Contractor and shall be removed from the site. All utility connections shall be connected and disconnected in accordance with local codes and to the satisfaction of the Contracting Officer. If a window style air conditioner is used then the refrigerant shall be one of the fluorocarbon gases that is in accordance with FS BB-F-1421 and has an Ozone Depletion Potential (ODP) of less than or equal to 0.05. # 1.6.2 Trailer-Type Mobile Office (Contractor's Option) In lieu of constructing, maintaining and, at end of construction period, removing a temporary type field office, the Contractor may, at his option, furnish and maintain a trailer-type mobile office acceptable to the Contracting Officer and providing as a minimum the facilities specified above. The trailer shall be securely anchored to the ground at all four corners to guard against movement during high winds. ## 1.7 TEMPORARY PAVING PATCH The Contractor shall place a temporary patch of cold mixed asphalt of adequate size and thickness immediately after utility trenches or other road or paved area openings are backfilled and compacted as specified in DIVISION II. The temporary patch shall be maintained by the Contractor until he permanently repairs the opening as delineated in DIVISION II. (SUGG NO. 75-183) #### 1.8 PLANT COMMUNICATION (JAN 63) Whenever the Contractor has the individual elements of his plant so located that operation by normal voice between these elements is not satisfactory, the Contractor shall install a satisfactory means of communication, such as telephone or other suitable devices. The facilities shall be made available for use by Government personnel. (CENAB) #### 1.9 BARRICADES The Contractor shall erect and maintain temporary barricades to limit public access to hazardous areas. Such barricades shall be required whenever safe public access to paved areas such as roads, parking areas or sidewalks is prevented by construction activities or as otherwise necessary to ensure the safety of both pedestrian and vehicular traffic. Barricades shall be securely placed, clearly visible with adequate illumination to provide sufficient visual warning of the hazardous areas during both day and night. (CENAB) PART 2 PRODUCT NOT APPLICABLE PART 3 EXECUTION NOT APPLICABLE ATTACHMENTS: Text Attachment 1 Project Sign Attachment 2 Safety Sign -- End of Section -- # SIGN MATERIALS BE RED; LETTERING SHALL BE BLACK; BE INSTALLED FLUSH ON BACK SIDE SIDE WHITE, HOUSE PAINT-2 COATS POST 4"x4";3/4" EXTERIOR PLY-WOOD 4'-0"x6'-0", 2"x2" FRAMING BOTH SIDES AND EDGES; COLORS IN AND PROJECTING IN FRONT. OUT-OIL FOR LETTERING - LAMP BLACK AND BULLETIN RED; CASTLE SHALL WITH MITERED CORNERS. FRAMING THE CROSS SHALL BE GREEN FURNISHED BY THE GOVERNMENT IN THE CASTLE INSIGNIA SHALL BE PRESSURE SENSITIVE VINYL FOR AFFIXING BY THE CONTRACTOR. #### SECTION 01561 # ENVIRONMENTAL PROTECTION 01/01 #### PART 1 GENERAL The work covered by this section consists of furnishing all labor, materials and equipment and performing all work required for the prevention of environmental pollution during, and as the result of, construction operations under this contract except for those measures set forth in the Technical Provisions of these specifications. For the purpose of this specification, environmental pollution is defined as the presence of chemical, physical, or biological elements or agents which adversely affect human health or welfare; unfavorably alter ecological balances of importance to human life or affect other species of importance to man. The control of environmental pollution requires consideration of air, water, and land. #### 1.1 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-05 Design Data Facility Plan; G A/E. Location of storage and service facilities. Temporary Plan; G A/E. Temporary excavation and embankments. #### 1.2 APPLICABLE REGULATIONS The Contractor and his subcontractors in the performance of this contract, shall comply with all applicable Federal, State, and local laws and regulations concerning environmental pollution control and abatement in effect on the date of this solicitation, as well as the specific requirements stated elsewhere in the contract specifications. # 1.3 NOTIFICATION The Contracting Officer will notify the Contractor of any non-compliance with the foregoing provisions and the action to be taken. The Contractor shall, after receipt of such notice, immediately take corrective action. If the Contractor fails or refuses to comply promptly, the Contracting Officer may issue an order stopping all or part of the work until satisfactory corrective action has been taken. No part of time lost due to any such stop order shall be made the subject of a claim for extension of time or for excess costs or damages by the Contractor unless it is later determined that the Contractor was in compliance. #### 1.4 SUBCONTRACTORS Compliance with the provisions of this section by subcontractors will be the responsibility of the Contractor. # 1.5 PROTECTION OF WATER RESOURCES The Contractor shall not pollute streams, lakes or reservoirs with fuels, oils, bitumens, calcium chloride, acid construction wastes or other harmful materials. All work under this contract shall be performed in such a manner that objectionable conditions will not be created in streams through or adjacent to the project areas. #### 1.6 EROSION AND SEDIMENTATION CONTROL The Contractor shall accomplish the erosion and sedimentation control in accordance with the contract drawings. At the outset of construction, the Contractor will be required to accept by signature a Transfer of Authority letter. The acceptance of the Transfer of Authority places responsibility on the Contractor to fully adhere to the provisions of the General Permit for erosion and sedimentation control and stormwater management. #### 1.7 BURNING Burning will be allowed only if permitted in other sections of the specifications or authorized in writing by the Contracting Officer. The specific time, location and manner of burning shall be subject to the approval of the Contracting Officer. Fires shall be confined to a closed vessel, guarded at all times and shall be under constant surveillance until they have burned out or have been
extinguished. All burning shall be so thorough that the materials will be reduced to ashes. # 1.8 DUST CONTROL The Contractor shall maintain all work area free from dust which would contribute to air pollution. Approved temporary methods of stabilization consisting of sprinkling, chemical treatment, light bituminous treatment or similar methods will be permitted to control dust. Sprinkling, where used, must be repeated at such intervals as to keep all parts of the disturbed area at least damp at all times. Dust control shall be performed as the work proceeds and whenever a dust nuisance or hazard occurs. # 1.9 PROTECTION OF LAND RESOURCES #### 1.9.1 General It is intended that the land resources within the project boundaries and outside the limits of permanent work performed under this contract be preserved in their present condition or be restored to a condition after completion of construction that will appear to be natural and not detract from the appearance of the project. Insofar as possible, the Contractor shall confine his construction activities to areas defined by the plans and specifications or to be cleared for other operations. The following additional requirements are intended to supplement and clarify the requirements of the CONTRACT CLAUSES: #### 1.9.2 Protection of trees retained # 1.9.2.1 Contractors Responsibility The Contractor shall be responsible for the protection of the tops, trunks and roots of all existing trees that are to be retained on the site. Protection shall be maintained until all work in the vicinity has been completed and shall not be removed without the consent of the Contracting Officer. If the Contracting Officer finds that the protective devices are insufficient, additional protection devices shall be installed. # 1.9.2.2 Stockpiling Heavy equipment, vehicular traffic, or stockpiling of any materials shall not be permitted within the drip line of trees to be retained. # 1.9.2.3 Storage No toxic materials shall be stored within 100 feet $(30\ 5\ m)$ from the drip line of trees to be retained. #### 1.9.2.4 Confined Area Except for areas shown on the plans to be cleared, the Contractor shall not deface, injure, or destroy trees or shrubs, nor remove or cut them without special authority. Existing near by trees shall not be used for anchorage unless specifically authorized by the Contracting Officer. Where such special emergency use is permitted, the Contractor shall first adequately protect the trunk with a sufficient thickness of burlap over which softwood cleats shall be tied. # 1.9.2.5 Tree Defacing No protective devices, signs, utility boxes or other objects shall be nailed to trees to be retained on the site. # 1.9.3 Restoration of landscape damage Any trees or other landscape feature scarred or damaged by the Contractor's operations shall be restored as nearly as possible to its original condition at the Contractor's expense. The Contracting Officer will decide what method of restoration shall be used, and whether damaged trees shall be treated and healed or removed and disposed of. All scars made on trees, designated on the plans to remain, and all cuts for the removal of limbs larger than 1-inch in diameter shall be coated as soon as possible with an approved tree wound dressing. All trimming or pruning shall be performed in an approved manner by experienced workmen with saws or pruning shears. Tree trimming with axes will not be permitted. tree climbing is necessary, the use of climbing spurs will not be permitted. Trees that are to remain, either within or outside established clearing limits, that are subsequently damaged by the Contractor and are beyond saving in the opinion of the Contracting Officer, shall be immediately removed and replaced with a nursery-grown tree of the same species. Replacement trees shall measure no less than 2 inches in diameter at 6 inches above the ground level. # 1.9.4 Location of Storage and Services Facilities The location on Government property of the Contractor's storage and service facilities, required temporarily in the performance of the work, shall be upon cleared portions of the job site or areas to be cleared. The preservation of the landscape shall be an imperative consideration in the selection of all sites and in the construction of buildings. A facility plan showing storage and service facilities shall be submitted for approval to the Contracting Officer. Where buildings or platforms are constructed on slopes, the Contracting Officer may require cribbing to be used to obtain level foundations. Benching or leveling of earth may not be allowed, depending on the location of the proposed facility. # 1.9.5 Temporary Excavation and Embankment If the Contractor proposes to construct temporary roads, embankments or excavations for plant and/or work areas, he shall submit a temporary plan for approval prior to scheduled start of such temporary work. # 1.10 MEASUREMENT AND PAYMENT Except as noted in paragraph, PERFORMANCE AND PAYMENT BOND REIMBURSEMENT above, no separate measurement and payment will be made for the work performed in this Section 01561, ENVIRONMENTAL PROTECTION specified herein and all costs in connection therewith shall be considered a subsidiary obligation of the Contractor, and shall be included in the overall cost of the work. PART 2 PRODUCT NOT APPLICABLE PART 3 EXECUTION NOT APPLICABLE -- End of Section -- #### SECTION 01572 # CONSTRUCTION AND DEMOLITION WASTE MANAGEMENT 07/00 #### PART 1 GENERAL1.1 GOVERNMENT POLICY Government policy is to apply sound environmental principles in the design, construction and use of facilities. As part of the implementation of that policy the Contractor shall: (1) practice efficient waste management when sizing, cutting, and installing products and materials and (2) use all reasonable means to divert construction and demolition waste from landfills and incinerators and to facilitate their recycling or reuse. #### 1.2 MANAGEMENT The Contractor shall take a pro-active, responsible role in the management of construction and demolition waste and require all subcontractors, vendors, and suppliers to participate in the effort. Construction and demolition waste includes products of demolition or removal, excess or unusable construction materials, packaging materials for construction products, and other materials generated during the construction process but not incorporated into the work. In the management of waste consideration shall be given to the availability of viable markets, the condition of the material, the ability to provide the material in suitable condition and in a quantity acceptable to available markets, and time constraints imposed by internal project completion mandates. The Contractor shall be responsible for implementation of any special programs involving rebates or similar incentives related to recycling of waste. Revenues or other savings obtained for salvage, or recycling shall accrue to the Contractor. Firms and facilities used for recycling, reuse, and disposal shall be appropriately permitted for the intended use to the extent required by federal, state, and local regulations. ## 1.3 PLAN A waste management plan shall be submitted within 15 days after contract award and prior to initiating any site preparation work. The plan shall include the following: - a. Name of individuals on the Contractor's staff responsible for waste prevention and management. - b, Actions that will be taken to reduce solid waste generation. - c. Description of the specific approaches to be used in recycling/reuse of the various materials generated, including the areas and equipment to be used for processing, sorting, and temporary storage of wastes. - d. Characterization, including estimated types and quantities, of the waste to be generated. - e. Name of landfill and/or incinerator to be used and the estimated costs for use, assuming that there would be no salvage or recycling on the project. - f. Identification of local and regional reuse programs, including non-profit organizations such as schools, local housing agencies, and organizations that accept used materials such as materials exchange networks and Habitat for Humanity. - g. List of specific waste materials that will be salvaged for resale, salvaged and reused, or recycled. Recycling facilities that will be used shall be identified. - h. Identification of materials that cannot be recycled/reused with an explanation or justification. - i. Anticipated net cost savings determined by subtracting Contractor program management costs and the cost of disposal from the revenue generated by sale of the materials and the incineration and/or landfill cost avoidance. #### 1.4 RECORDS Records shall be maintained to document the quantity of waste generated; the quantity of waste diverted through sale, reuse, or recycling; and the quantity of waste disposed by landfill or incineration. The records shall be made available to the Contracting Officer during construction, and a copy of the records shall be delivered to the Contracting Officer upon completion of the construction. #### 1.5 COLLECTION The necessary containers, bins and storage areas to facilitate effective waste management shall be provided and shall be clearly and appropriately identified. Recyclable materials shall be handled to prevent contamination of materials from incompatible products and materials and separated by one of the following methods: # 1.5.1 Source Separated Method. Waste products and materials that are recyclable shall be separated from trash and sorted into appropriately marked separate containers and then transported to the respective recycling facility for further processing. # 1.5.2 Co-Mingled Method. Waste products and recyclable materials shall be placed into a single container and then transported to a recycling facility where the recyclable materials are sorted and processed. #### 1.5.3 Other Methods. Other methods proposed by the Contractor may be
used when approved by the Contracting Officer. #### 1.6 DISPOSAL Except as otherwise specified in other sections of the specifications, disposal shall be in accordance with the following: # 1.6.1 Reuse. First consideration shall be given to salvage for reuse since little or no re-processing is necessary for this method, and less pollution is created when items are reused in their original form. Sale or donation of waste suitable for reuse shall be considered. Salvaged materials, other than those specified in other sections to be salvaged and reinstalled, shall not be used in this project. # 1.6.2 Recycle. Waste materials not suitable for reuse, but having value as being recyclable, shall be made available for recycling whenever economically feasible. #### 1.6.3 Waste. Materials with no practical use or economic benefit shall be disposed at a landfill or incinerator. Contarctor to remove PCB ballasts and mercury containing lampa and dispose of in an approved EPA manner at the Fort Meade Rock Ave Recycling Center. -- End of Section -- #### SECTION 01670 # RECYCLED / RECOVERED MATERIALS 09/00 # PART 1 GENERAL #### 1.1 OBJECTIVES Government procurement policy is to acquire, in a cost effective manner, items containing the highest percentage of recycled and recovered materials practicable consistent with maintaining a satisfactory level of competition without adversely affecting performance requirements or exposing suppliers' employees to undue hazards from the recovered materials. The Environmental Protection Agency (EPA) has designated certain items which must contain a specified percent range of recovered or recycled materials. EPA designated products specified in this contract comply with the stated policy and with the EPA guidelines. The Contractor shall make all reasonable efforts to use recycled and recovered materials in providing the EPA designated products and in otherwise utilizing recycled and recovered materials in the execution of the work. # 1.2 EPA DESIGNATED ITEMS INCORPORATED IN THE WORK Various sections of the specifications contain requirements for materials that have been designated by EPA as being products which are or can be made with recovered or recycled materials. These items, when incorporated into the work under this contract, shall contain at least the specified percentage of recycled or recovered materials unless adequate justification (non-availability) for non-use is provided. When a designated item is specified as an option to a non-designated item, the designated item requirements apply only if the designated item is used in the work. #### 1.3 EPA PROPOSED ITEMS INCORPORATED IN THE WORK The items listed in Table 1 have been identified by EPA as being products which are proposed as possible designated items at some time in the future. It is recommended that these items, when incorporated in the work under this contract, contain the highest practicable percentage of recycled or recovered materials providing specified requirements are also met. # TABLE 1 EPA PROPOSED ITEMS | PRODUCT | MA | TERIAL | POSTCONSUMER CONTENT (%) | RECOVERED MATERIALS CONTENT (%) | |-------------------------|-------|---------|--------------------------|---------------------------------| | Carpet Backing | | | | | | Carpet Cushion | | | | | | Flowable Fill | | | | | | Railroad Grade | | | | | | Crossings/Surfaces | | | | | | Landscaping Timbers & P | Posts | Plastic | | | | Park and Recreational | | | | | | Furniture | | | | | | | | | | | | | | | RECOVERED | |----------------------|--------------------|--------------|-------------| | | | POSTCONSUMER | MATERIALS | | PRODUCT | MATERIAL | CONTENT (%) | CONTENT (%) | | Playground Equipment | | | | | Parking Stops | Plastic or Rubber | 100 | | | | Fly Ash (concrete) |) | 20-40 | | | Slag (concrete) | | 25-70 | | Signage | | | | | | | | | 1.4 EPA LISTED ITEMS USED IN CONDUCT OF THE WORK BUT NOT INCORPORATED IN THE WORK There are many products listed in 40 CFR 247 which have been designated or proposed by EPA to include recycled or recovered materials that may be used by the Contractor in performing the work but will not be incorporated into the work. These products include office products, temporary traffic control products, and pallets. It is recommended that these non-construction products, when used in the conduct of the work, contain the highest practicable percentage of recycled or recovered materials. ******************** -- End of Section -- #### SECTION 01720 # AS-BUILT DRAWINGS - CADD 01/01 #### PART 1 GENERAL #### 1.1 Preparation This section covers the preparation of as-built drawings complete, as a requirement of this contract. The terms "drawings," "contract drawings," "drawing files," and "final as-built drawings" refer to a set of computer-aided design and drafting (CADD) contract drawings in electronic file format which are to be used for as-built drawings. #### 1.2 PROGRESS MARKED UP AS-BUILT PRINTS The Contractor shall revise one set of paper prints to show the as-built conditions during the prosecution of the project. These as-built marked prints shall be kept current and available on the jobsite at all times. All changes from the contract plans which are made in the work or additional information which might be uncovered in the course of construction shall be accurately and neatly recorded as they occur by means of details and notes. The as-built marked prints will be jointly reviewed for accuracy and completeness by the Contracting Officer and a responsible representative of the construction Contractor prior to submission of each monthly pay estimate. If the Contractor fails to maintain the as-built drawings as specified herein, the Contracting Officer will deduct from the monthly progress payment an amount representing the estimated cost of maintaining the as-built drawings and will continue the monthly deduction of the 10% retainage even after 50% completion of the contract. This monthly deduction will continue until an agreement can be reached between the Contracting Officer and a representative of the Contractor regarding the accuracy and completeness of updated drawings. The prints shall show the following information, but not be limited thereto: # 1.2.1 Location and Description The location and description of any utility lines or other installations of any kind or description known to exist within the construction area. The location includes dimensions to permanent features. ## 1.2.2 Location and Dimensions The location and dimensions of any changes within the building or structure. #### 1.2.3 Corrections Correct grade, cross section, or alignment of roads, earthwork, structures or utilities if any changes were made from contract plans. Correct elevations if changes were made in site grading. # 1.2.4 Changes Changes in details of design or additional information obtained from working drawings specified to be prepared and/or furnished by the Contractor; including but not limited to fabrication, erection, installation plans and placing details, pipe sizes, insulation material, dimensions of equipment foundations, etc. The topography, invert elevations and grades of all drainage installed or affected as a part of the project construction. All changes or modifications which result from the final inspection. # 1.2.5 Options Where contract drawings or specifications present options, only the option selected for construction shall be shown on the as-built prints. #### 1.3 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-11 Closeout Submittals Progress Prints; G A/E. Preparation of two copies of as-builts from the Contractor to the Contracting Officer for review and approval. Final Requirements; G A/E. CADD Files; G A/E Shall consist of two sets of completed as-built contract drawings on separate media consisting of both CADD files (compatible with the Using Agency/Sponsor's system on electronic storage media identical to that supplied by the Government) and a CALS Type 1, Group 4, Raster Image File of each contract drawing. Receipt by the Contractor of the approved marked as-built prints. #### 1.4 PRELIMINARY SUBMITTAL At the time of final inspection, the Contractor shall prepare two copies of the progress as-built prints and these shall be delivered to the Contracting Officer for review and approval. These as-built marked prints shall be neat, legible and accurate. The review by Government personnel will be expedited to the maximum extent possible. Upon approval, one copy of the as-built marked prints will be returned to the Contractor for use in preparation of final as-built drawings. If upon review, the as-built marked prints are found to contain errors and/or omissions, they shall be returned to the Contractor for corrections. The Contractor shall complete the corrections and return the as-built marked prints to the Contracting Officer within ten (10) calendar days. # 1.5 DRAWING PREPARATION # 1.5.1 As-Built Drawings Approval Upon approval of the Progress Printsas-built submitted, the Contractor will be furnished by the Government one set of contract drawings, with all amendments incorporated, to be used for as-built drawings. These contract drawings will be furnished on CD-ROM. These drawings shall be modified as may be necessary to correctly show all the features of the project as it has been constructed by bringing the contract set into agreement with the approved as-built prints, adding such additional drawings as may be necessary. These drawings are part of the permanent records of this project and the Contractor shall be responsible for the protection and safety thereof until returned to the Contracting Officer. Any
drawings damaged or lost by the Contractor shall be satisfactorily replaced by the Contractor at no expense to the Government. # 1.5.2 Proficient Personnel Only personnel proficient in the preparation of engineering CADD drawings to standards satisfactory and acceptable to the Government shall be employed to modify the contract drawings or prepare additional new drawings. All additions and corrections to the contract drawings shall be equal in quality to that of the originals. Line work, line weights, lettering, layering conventions, and symbols shall be the same as the original line work, line weights, lettering, layering conventions, and symbols. If additional drawings are required, they shall be prepared using the specified electronic file format applying the same guidance specified for original drawings. The title block and drawing border to be used for any new as-built drawings shall be identical to that used on the contract drawings. All additions and corrections to the contract drawings shall be accomplished using CADD media files supplied by the Government. These contract drawings will already be compatible with the Using Agency/Sponsor's system when received by the Contractor. The Using Agency/Sponsor uses AutoCAD Release 2000 CADD software system. The media files will be supplied on ISO 9660 Format CD-ROM. The Contractor is responsible for providing all program files and hardware necessary to prepare as-built drawings. The Contracting Officer will review all as-built drawings for accuracy and the Contractor shall make all required corrections, changes, additions, and deletions. # 1.5.3 Final Revisions When final revisions have been completed, the cover sheet drawing shall show the wording "RECORD DRAWING AS-BUILT" followed by the name of the General Contractor in letters at least 3/16 inch high. All other contract drawings shall be marked either "As-Built" drawing denoting no revisions on the sheet or "Revised As-Built" denoting one or more revisions. All original contract drawings shall be dated in the revision block (SEE ATTACHMENTS 1 and 2) located at the end of this section. # 1.6 FINAL REQUIREMENTS After receipt by the Contractor of the approved marked as-built prints and the original contract drawing files the Contractor will, within 30 days for contracts less than \$5 million or 60 days for contracts \$5 million and above, make the final as-built submittal. The submittal shall consist of the following: a) Two sets of the as-built contract drawing CADD Fileson separate CD's (ISO 9660 Format CD-ROM) consisting of the updated CADD files and a CALS Type 1 Group 4 Raster Image File of each contract drawing plate. The CALS files shall be exact duplicates of the full sized plots of the completed as-built contract drawings at a resolution of 400 dpi and may be either plotted to CALS files directly from the CADD files, or scanned to file from the prints. - b) Two sets of full size paper prints (plots) of the completed as-built contract drawings. - c) The return of the approved marked as-built prints. They shall be complete in all details and identical in form and function to the contract drawing files supplied by the Government. Any translations or adjustments necessary to accomplish this is the responsibility of the Contractor. The Government reserves the right to reject any drawing files it deems incompatible with its CADD system. All paper prints, drawing files and storage media submitted will become the property of the Government upon final approval. Failure to submit as-built drawing files and marked prints as required herein shall be cause for withholding any payment due the Contractor under this contract. Approval and acceptance of final as-built drawings shall be accomplished before final payment is made to the Contractor. #### 1.7 PAYMENT No separate payment will be made for the as-built drawings required under this contract, and all costs in connection therewith shall be considered a subsidiary obligation of the Contractor. PART 2 PRODUCT NOT APPLICABLE PART 3 EXECUTION NOT APPLICABLE -- End of Section -- # RECORD DRAWING AS-BUILT XYZ CONTRACTOR Plate: Sheet COVER SHEET PENNSYLVANIA PENNSYLVANIA COVER SHEET | U.S. ARMY ENGINEER DISTRICT, BALTIMORE | Designed by: | | Date:
JAN 2001 | Rev. | |---|--------------|------------|--------------------------------------|------| | CORPS OF ENGINEERS
BALTIMORE, MARYLAND | Dwn by: | Ckd by: | Design file no. | | | A/E FIRM/CONTRACTOR | Reviewed by | <i>'</i> : | Drawing Number | | | 3 LINES
PROVIDED OR LOGO | Submitted b | y: | File name: FILEN,
Plot date: 12/2 | | | | Chief, Bran | nch | Plot scale: 1=1 | | | | | | | | | | ` | |------|-----------------------------|-----------|-----------|------|-------------|------|-------| AS-BUILT | 10 SEP 02 | | | | | | | /3\ | REVISED SECTION A-A AND C-C | 5 JAN 01 | A.E. D.P. | | | | | | /2\ | REVISED PER AMENDMENT NO. 2 | 30 DEC 00 | A.E. D.P. | | | | | | /1\ | REVISED PER AMENDMENT NO. 1 | 25 DEC 00 | A.E. D.P. | | | | | | Mark | Description | Date | Appr. | Mark | Description | Date | Appr. | #### SECTION 01780 # CLOSEOUT SUBMITTALS 11/99 #### PART 1 GENERAL #### 1.1 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: #### SD-03 Product Data As-Built Record of Equipment and Materials; G A/E Twocopies of the record listing the as-built materials and equipment incorporated into the construction of the project. Warranty Management Plan; G A/E One set of the warranty management plan containing information relevant to the warranty of materials and equipment incorporated into the construction project, including the starting date of warranty of construction. The Contractor shall furnish with each warranty the name, address, and telephone number of each of the guarantor's representatives nearest to the project location. Warranty Tags; G A/E Two record copies of the warranty tags showing the layout and design. Final Cleaning; G A/E Two copies of the listing of completed final clean-up items. # 1.2 PROJECT RECORD DOCUMENTS ## 1.2.1 Government Furnished Materials One set of electronic CADD files in the specified software and format revised to reflect all bid amendments will be provided by the Government at the preconstruction conference for projects requiring CADD file as-built drawings. # 1.2.2 As-Built Record of Equipment and Materials The Contractor shall furnish one copy of preliminary record of equipment and materials used on the project 15 days prior to final inspection. This preliminary submittal will be reviewed and returned 2 days after final inspection with Government comments. Two sets of final record of equipment and materials shall be submitted 10 days after final inspection. The designations shall be keyed to the related area depicted on the contract drawings. The record shall list the following data: #### RECORD OF DESIGNATED EQUIPMENT AND MATERIALS DATA | Description | Specification | Manufacturer | Composition | Where | |-------------|---------------|---------------|-------------|-------| | | Section | and Catalog, | and Size | Used | | | | Model, and | | | | | | Serial Number | | | # 1.2.3 Construction Contract Specifications The Contractor shall furnish final as-built construction contract specifications, including modifications thereto, 30 days after transfer of the completed facility. # 1.2.4 Real Property Equipment The Contractor shall furnish a list of installed equipment furnished under this contract. The list shall include all information usually listed on manufacturer's name plate. The "EQUIPMENT-IN-PLACE LIST" shall include, as applicable, the following for each piece of equipment installed: description of item, location (by room number), model number, serial number, capacity, name and address of manufacturer, name and address of equipment supplier, condition, spare parts list, manufacturer's catalog, and warranty. A draft list shall be furnished at time of transfer. The final list shall be furnished30 days after transfer of the completed facility. # 1.3 WARRANTY MANAGEMENT # 1.3.1 Warranty Management Plan The Contractor shall develop a warranty management plan which shall contain information relevant to the clause Warranty of Construction. . At least 30 days before the planned pre-warranty conference, the Contractor shall submit the warranty management plan for Government approval. The warranty management plan shall include all required actions and documents to assure that the Government receives all warranties to which it is entitled. The plan shall be in narrative form and contain sufficient detail to render it suitable for use by future maintenance and repair personnel, whether tradesmen, or of engineering background, not necessarily familiar with this contract. The term "status" as indicated below shall include due date and whether item has been submitted or was accomplished. Warranty information made available during the construction phase shall be submitted to the Contracting Officer for approval prior to each monthly pay estimate. Approved information shall be assembled in a binder and shall be turned over to the Government upon acceptance of the work. The construction warranty period shall begin on the date of project acceptance and shall continue for the full product warranty period. A joint 4 month and 9 month warranty inspection shall be conducted, measured from time of acceptance, by the Contractor, Contracting Officer and the Customer Representative. Information contained in the warranty management plan shall include, but shall not be limited to, the following: a.
Roles and responsibilities of all personnel associated with the warranty process, including points of contact and telephone numbers within the organizations of the Contractors, subcontractors, manufacturers or suppliers involved. - b. Listing and status of delivery of all Certificates of Warranty for extended warranty items, to include roofs, HVAC balancing, pumps, motors, transformers, and for all commissioned systems such as fire protection and alarm systems, sprinkler systems, lightning protection systems, etc. - c. A list for each warranted equipment, item, feature of construction or system indicating: - 1. Name of item. - 2. Model and serial numbers. - 3. Location where installed. - 4. Name and phone numbers of manufacturers or suppliers. - 5. Names, addresses and telephone numbers of sources of spare parts. - 6. Warranties and terms of warranty. This shall include one-year overall warranty of construction. Items which have extended warranties shall be indicated with separate warranty expiration dates. - 7. Cross-reference to warranty certificates as applicable. - 8. Starting point and duration of warranty period. - 9. Summary of maintenance procedures required to continue the warranty in force. - 10. Cross-reference to specific pertinent Operation and Maintenance manuals. - 11. Organization, names and phone numbers of persons to call for warranty service. - 12. Typical response time and repair time expected for various warranted equipment. - d. The Contractor's plans for attendance at the 4 and 9 month post-construction warranty inspections conducted by the Government. - e. Procedure and status of tagging of all equipment covered by extended warranties. - f. Copies of instructions to be posted near selected pieces of equipment where operation is critical for warranty and/or safety reasons. #### 1.3.2 Performance Bond The Contractor's Performance Bondshall remain effective throughout the construction period. - a. In the event the Contractor fails to commence and diligently pursue any construction warranty work required, the Contracting Officer will have the work performed by others, and after completion of the work, will charge the remaining construction warranty funds of expenses incurred by the Government while performing the work, including, but not limited to administrative expenses. - b. In the event sufficient funds are not available to cover the construction warranty work performed by the Government at the Contractor's expense, the Contracting Officer will have the right to recoup expenses from the bonding company. - c. Following oral or written notification of required construction warranty repair work, the Contractor shall respond in a timely manner. Written verification will follow oral instructions. Failure of the Contractor to respond will be cause for the Contracting Officer to proceed against the Contractor. # 1.3.3 Pre-Warranty Conference Prior to contract completion, and at a time designated by the Contracting Officer, the Contractor shall meet with the Contracting Officer to develop a mutual understanding with respect to the requirements of this section. Communication procedures for Contractor notification of construction warranty defects, priorities with respect to the type of defect, reasonable time required for Contractor response, and other details deemed necessary by the Contracting Officer for the execution of the construction warranty shall be established/reviewed at this meeting. In connection with these requirements and at the time of the Contractor's quality control completion inspection, the Contractor shall furnish the name, telephone number and address of a licensed and bonded company which is authorized to initiate and pursue construction warranty work action on behalf of the Contractor. This point of contact will be located within the local service area of the warranted construction, shall be continuously available, and shall be responsive to Government inquiry on warranty work action and status. This requirement does not relieve the Contractor of any of its responsibilities in connection with other portions of this provision. # 1.3.4 Contractor's Response to Construction Warranty Service Requirements Following oral or written notification by the Contracting Officer, the Contractor shall respond to construction warranty service requirements in accordance with the "Construction Warranty Service Priority List" and the three categories of priorities listed below. The Contractor shall submit a report on any warranty item that has been repaired during the warranty period. The report shall include the cause of the problem, date reported, corrective action taken, and when the repair was completed. If the Contractor does not perform the construction warranty within the timeframes specified, the Government will perform the work and backcharge the construction warranty payment item established. - a. First Priority Code 1. Perform onsite inspection to evaluate situation, and determine course of action within 4 hours, initiate work within 6 hours and work continuously to completion or relief. - b. Second Priority Code 2. Perform onsite inspection to evaluate situation, and determine course of action within 8 hours, initiate work within 24 hours and work continuously to completion or relief. - c. Third Priority Code 3. All other work to be initiated within 3 work days and work continuously to completion or relief. - d. The "Construction Warranty Service Priority List" is as follows: # Code 1-Air Conditioning Systems - (1) Recreational support. - (2) Air conditioning leak in part of building, if causing damage. - (3) Air conditioning system not cooling properly. ## Code 1-Doors (1) Overhead doors not operational, causing a security, fire, or safety problem. (2) Interior, exterior personnel doors or hardware, not functioning properly, causing a security, fire, or safety problem. #### Code 3-Doors - (1) Overhead doors not operational. - (2) Interior/exterior personnel doors or hardware not functioning properly. # Code 1-Electrical - (1) Power failure (entire area or any building operational after 1600 hours). - (2) Security lights - (3) Smoke detectors #### Code 2-Electrical - (1) Power failure (no power to a room or part of building). - (2) Receptacle and lights (in a room or part of building). #### Code 3-Electrical Street lights. ## Code 1-Gas - (1) Leaks and breaks. - (2) No gas to family housing unit or cantonment area. #### Code 1-Heat - (1). Area power failure affecting heat. - (2). Heater in unit not working. # Code 2-Kitchen Equipment - (1) Dishwasher not operating properly. - (2) All other equipment hampering preparation of a meal. #### Code 1-Plumbing - (1) Hot water heater failure. - (2) Leaking water supply pipes. #### Code 2-Plumbing - (1) Flush valves not operating properly. - (2) Fixture drain, supply line to commode, or any water pipe leaking. - (3) Commode leaking at base. # Code 3 -Plumbing Leaky faucets. #### Code 3-Interior - (1) Floors damaged. - (2) Paint chipping or peeling. - (3) Casework. #### Code 1-Roof Leaks Temporary repairs will be made where major damage to property is occurring. #### Code 2-Roof Leaks Where major damage to property is not occurring, check for location of leak during rain and complete repairs on a Code 2 basis. Code 2-Water (Exterior) No water to facility. Code 2-Water (Hot) No hot water in portion of building listed. Code 3-All other work not listed above. # 1.3.5 Warranty Tags At the time of installation, each warranted item shall be tagged with a durable, oil and water resistant tag approved by the Contracting Officer. Each tag shall be attached with a copper wire and shall be sprayed with a silicone waterproof coating. The date of acceptance and the QC signature shall remain blank until project is accepted for beneficial occupancy. The tag shall show the following information. | a. | Type of product/material | |----|--------------------------------------| | b. | Model number | | c. | Serial number | | d. | Contract number | | e. | Warranty periodfromto | | f. | Inspector's signature | | g. | Construction Contractor | | | Address | | | Telephone number | | h. | Warranty contact | | | Address | | | Telephone number | | i. | Warranty response time priority code | - j. WARNING PROJECT PERSONNEL TO PERFORM ONLY OPERATIONAL MAINTENANCE DURING THE WARRANTY PERIOD. - 1.4 MECHANICAL TESTING, ADJUSTING, BALANCING, AND COMMISSIONING Prior to final inspection and transfer of the completed facility; all reports, statements, certificates, and completed checklists for testing, adjusting, balancing, and commissioning of mechanical systems shall be submitted to and approved by the Contracting Officer as specified in applicable technical specification sections. # 1.5 OPERATION AND MAINTENANCE MANUALS Operation manuals and maintenance manuals shall be submitted as specified. Operation manuals and maintenance manuals provided in a common volume shall be clearly differentiated and shall be separately indexed. #### 1.6 FINAL CLEANING The premises shall be left broom clean. Stains, foreign substances, and temporary labels shall be removed from surfaces. Carpet and soft surfaces shall be vacuumed. Equipment and fixtures shall be cleaned to a sanitary condition. Filters of operating equipment shall be replaced. Debris shall be removed from roofs, drainage systems, gutters, and downspouts. Paved areas shall be swept and landscaped areas shall be raked clean. The site shall have waste, surplus materials, and rubbish removed. The project area shall have temporary structures, barricades, project signs, and construction facilities removed. A list of completed clean-up items shall be submitted on the day of final inspection. PART 2 PRODUCTS (NOT USED) PART 3 EXECUTION (NOT USED) -- End of Section -- # SECTION 02300 # SITE GRADING AND EARTHWORK FOR ROADWAYS 12/97 # PART 1 GENERAL # 1.1 REFERENCES The publications listed below form a part of this specification to the
extent referenced. The publications are referred to in the text by basic designation only and represents the latest edition in force when this contract is awarded. # AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM C 117 | (1995) Materials Finer Than 75 micrometer (No. 200) Sieve in Mineral Aggregates by Washing | |-------------|--| | ASTM C 127 | (1988; R 1993el) Specific Gravity and
Absorption of Coarse Aggregate | | ASTM C 128 | (1997) Specific Gravity and Absorption of Fine Aggregate | | ASTM C 136 | (1996a) Sieve Analysis of Fine and Coarse
Aggregates | | ASTM D 1140 | (2000) Amount of Material in Soils Finer than the No. 200 (75-micrometer) Sieve | | ASTM D 1556 | (2000) Density and Unit Weight of Soil in Place by the Sand-Cone Method | | ASTM D 1557 | (2000) Laboratory Compaction
Characteristics of Soil Using Modified
Effort (56,000 ft-lbf/cu. ft. (2,700
kN-m/cu.m.)) | | ASTM D 2167 | (1994) Density and Unit Weight of Soil in
Place by the Rubber Balloon Method | | ASTM D 2487 | (2000) Classification of Soils for
Engineering Purposes (Unified Soil
Classification System) | | ASTM D 2922 | (1996el) Density of Soil and
Soil-Aggregate in Place by Nuclear Methods
(Shallow Depth) | | ASTM D 2937 | (1994) Density of Soil in Place by the
Drive-Cylinder Method | | ASTM D 3017 | (1988; R 1996el) Water Content of Soil and
Rock in Place by Nuclear Methods (Shallow
Depth) | ASTM D 422 (1963; R 1998) Particle-Size Analysis of Soils ASTM D 4318 (2000) Liquid Limit, Plastic Limit, and Plasticity Index of Soils ASTM E 11 (1995) Wire-Cloth Sieves for Testing Purposes #### 1.2 DEFINITIONS # 1.2.1 Satisfactory Materials This paragraph covers the material requirements outside the building limits. The requirements for fill, embankment, and backfill within the building lines of structures, and for a distance of 5 feet outside the building lines are specified in SECTION 02315 EXCAVATION, FILLING, AND BACKFILLING FOR BUILDINGS. # 1.2.1.1 Fill, Embankment and Backfill Fill, embankment, and backfill beneath paved areas and for a distance of feet outside paved areas shall be those materials classified in ASTM D 2487 as GW, GW-GM, SW, SP, or SP-SM. Materials for use outside these areas may also include those classified as GC,SC, GM, SM or combinations thereof. The maximum particle size for fill and backfill materials shall be 75 mm. # 1.2.1.2 Subgrade Satisfactory materials the subgrade shall consist of all subgrade soils except as specified hereinafter in paragraph Unsatisfactory Materials, Subgrade. # 1.2.2 Unsatisfactory Materials This paragraph covers the material requirements outside the building limits. The requirements for fill, embankment, and backfill within the building lines of structures, and for a distance of 5 feet outside the building lines are specified in SECTION 02315 EXCAVATION, FILLING, AND BACKFILLING FOR BUILDINGS. # 1.2.2.1 Fill, Embankment and Backfill Unsatisfactory materials for fill, embankment, and backfill shall be those materials not meeting the requirements of the Satisfactory Materials as defined above within the different areas, respectively. In addition, materials classified in ASTM D 2487 as Pt, OH and OL or combinations thereof are unsatisfactory. # 1.2.2.2 Subgrade a. General: Satisfactory subgrade soils which are rendered unsuitable by the contractor due to inadequate site and/or excavation drainage or due to negligence on the part of the contractor by working (remolding) or compacting otherwise satisfactory in-place subgrade soils under adverse moisture conditions shall be removed and replaced with satisfactory fill materials, or shall be worked or altered until rendered suitable at no additional cost to the Government. b. Materials: Unsatisfactory materials for the subgrade shall be those materials classified in ASTM D 2487 as Pt, OH, OL or combinations thereof. Unsatisfactory materials also include man-made fills; trash; refuse; backfills from previous construction; and material which contains roots and other organic matter or frozen material. # 1.2.3 Cohesionless and Cohesive Materials Cohesionless materials include materials classified in ASTM D 2487 as GW, GP, SW, and SP. Cohesive materials include materials classified as GC, SC, ML, CL, MH, and CH. Materials classified as GM and SM will be identified as cohesionless only when the fines are nonplastic. Testing required for classifying materials shall be in accordance with ASTM D 4318, ASTM C 136, ASTM D 422, and ASTM D 1140. # 1.2.4 Degree of Compaction Degree of compaction required is expressed as a percentage of the maximum density obtained by the test procedure presented in ASTM D 1557, Procedure C. Abbreviated as a percent of laboratory maximum density. #### 1.3 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-06 Test Reports Testing. Within 24 hours of conclusion of physical tests, copies of test results, including calibration curves and results of calibration tests. Earthwork. Procedure and location for disposal of unused satisfactory material. Proposed source of borrow material. Earthwork. Advance notice on shoulder construction for rigid pavements. SD-07 Certificates Testing; G AR. Qualifications of the commercial testing laboratory or Contractor's testing facilities. #### 1.4 SUBSURFACE DATA Subsurface soil boring logs are shown on the drawings. The subsoil investigation report and samples of materials taken from subsurface investigations may be examined as indicated in specification section 01050 JOB CONDITIONS, paragraph 1.2.2 Explorations. These data represent the best subsurface information available; however, variations may exist in the subsurface between boring locations. #### 1.5 CLASSIFICATION OF EXCAVATION No consideration will be given to the nature of the materials, and all excavation will be designated as unclassified excavation. #### 1.6 BLASTING Blasting will not be permitted. #### 1.7 UTILIZATION OF EXCAVATED MATERIALS Unsatisfactory Earthworkmaterials removed from excavations shall be disposed of in the spoil areas indicated in paragraph SPOIL AREAS. Satisfactory material removed from excavations shall be used, insofar as practicable, in the construction of fills, embankments, subgrades, shoulders, bedding (as backfill), and for similar purposes. No satisfactory excavated material shall be wasted without specific written authorization. Satisfactory material authorized to be wasted shall be disposed of in the spoil areas indicated in paragraph SPOIL AREAS. Newly designated waste areas on Government-controlled land shall be cleared and grubbed before disposal of waste material thereon. Coarse rock from excavations shall be stockpiled and used for constructing slopes or embankments adjacent to streams, or sides and bottoms of channels and for protecting against erosion. No excavated material shall be disposed of to obstruct the flow of any stream, endanger a partly finished structure, impair the efficiency or appearance of any structure, or be detrimental to the completed work in any way. # 1.8 SPOIL AREAS Spoil materials shall be disposed of in spoil areas located outside the limits of Government-controlled land at the contractor's expense and responsibility. #### 1.9 BORROW AREAS Where satisfactory materials are not available in sufficient quantity from required excavations, approved materials shall be obtained from approved sources outside the limits of Government-controlled land at the Contractor's expense and responsibility. # PART 2 PRODUCTS (Not Applicable) #### PART 3 EXECUTION #### 3.1 STRIPPING OF TOPSOIL Topsoil shall be stripped to its full depth within the designated excavations and grading lines. inches. Topsoil shall be spread on areas already graded and prepared for topsoil, or transported and deposited in stockpiles convenient to areas that are to receive application of the topsoil later, or at locations indicated or specified. Topsoil shall be kept separate from other excavated materials, brush, litter, objectionable weeds, roots, stones larger than 2 inches in diameter, and other materials that would interfere with planting and maintenance operations. Any surplus of topsoil from excavations and grading shall be disposed of as indicated in paragraph spoil areas, however, approval of the Contracting Officer is required prior to removing topsoil from the site. #### 3.2 GENERAL EXCAVATION The Contractor shall perform excavation of every type of material encountered within the limits of the project to the lines, grades, and elevations indicated and as specified. Grading shall be in conformity with the typical sections shown and the tolerances specified in paragraph FINISHING. Satisfactory excavated materials shall be transported to and placed in fill or embankment within the limits of the work. Unsatisfactory materials encountered within the limits of the work shall be excavated below grade and replaced with satisfactory materials as directed. Such excavated material and the satisfactory material ordered as replacement shall be included in excavation. Surplus satisfactory excavated material not required for fill or embankment shall be disposed of in the spoil areas indicated in paragraph SPOIL AREAS. Unsatisfactory excavated material shall be disposed of in the spoil areas indicated in paragraph SPOIL AREAS. During construction, excavation and fill shall be performed in a manner and sequence that will provide proper drainage at all times. Material required for fill or embankment in excess of that produced by excavation
within the grading limits shall be excavated from the borrow areas as indicated in paragraph Borrow Areas. ## 3.2.1 Drainage Structures Excavations shall be made to the lines, grades, and elevations shown, or as directed. Trenches and foundation pits shall be of sufficient size to permit the placement and removal of forms for the full length and width of structure footings and foundations as shown. When concrete or masonry is to be placed in an excavated area, the bottom of the excavation shall not be disturbed. Excavation to the final grade level shall not be made until just before the concrete or masonry is to be placed. # 3.3 SELECTION OF BORROW MATERIAL Approved borrow material shall be obtained from borrow areas as specified in paragraph BORROW AREAS. #### 3.4 BACKFILL Backfill adjacent to any and all types of structures shall be placed and compacted to at least 90 percent laboratory maximum density for cohesive materials or 95 percent laboratory maximum density for cohesionless materials at an in place moisture content within plus or minus 2 percent of optimum, in such a manner as to prevent wedging action or eccentric loading upon or against the structure. Ground surface on which backfill is to be placed shall be prepared as specified in paragraph PREPARATION OF GROUND SURFACE FOR EMBANKMENTS. Compaction requirements for backfill materials shall also conform to the applicable portions of paragraphs PREPARATION. Compaction shall be accomplished by sheepsfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, vibratory compactors, or other approved equipment. #### 3.5 PREPARATION OF GROUND SURFACE FOR EMBANKMENTS # 3.5.1 General Requirements Ground surface on which fill is to be placed shall be stripped of live, dead, or decayed vegetation, rubbish, debris, and other unsatisfactory material; plowed, disked, or otherwise broken up to a depth of 150 mm; pulverized; moistened or aerated as necessary; to achieve an in place moisture content within plus or minus 2 percent of optimum; thoroughly mixed; and compacted to at least 90 percent laboratory maximum density for cohesive materials or 95 percent laboratory maximum density for cohesionless materials. Compaction shall be accomplished by sheepsfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, vibratory compactors, or other approved equipment. The prepared ground surface shall be scarified and moistened or aerated as required just prior to placement of embankment materials to assure adequate bond between embankment material and the prepared ground surface. #### 3.5.2 Frozen Material Embankment shall not be placed on a foundation which contains frozen material, or which has been subjected to freeze-thaw action. This prohibition encompasses all foundation types, including the natural ground, all prepared subgrades (whether in an excavation or on an embankment) and all layers of previously placed and compacted earth fill which become the foundations for successive layers of earth fill. All material that freezes or has been subjected to freeze-thaw action during the construction work, or during periods of temporary shutdowns, such as, but not limited to, nights, holidays, weekends, winter shutdowns, or earthwork operations, shall be removed to a depth that is acceptable to the Contracting Officer and replaced with new material. Alternatively, the material will be thawed, dried, reworked, and recompacted to the specified criteria before additional material is placed. The Contracting Officer will determine when placement of fill shall cease due to cold weather. The Contracting Officer may elect to use average daily air temperatures, and/or physical observation of the soils for his determination. Embankment material shall not contain frozen clumps of soil, snow, or ice. # 3.6 EMBANKMENTS # 3.6.1 Earth Embankments Earth embankments shall be constructed from satisfactory materials free of organic or frozen material and rocks with any dimension greater than 3 inches. The material shall be placed in successive horizontal layers of loose material not more than 200 inchesin depth. Each layer shall be spread uniformly on a soil surface that has been moistened or aerated as necessary and scarified or otherwise broken up in such a manner that the fill will bond with the surface on which it is placed. After spreading, each layer shall be plowed, disked, or otherwise broken up; moistened or aerated as necessary; to achieve an in place moisture content within plus or minus 2 percent of optimum; thoroughly mixed; and compacted to at least 90 percent laboratory maximum density for cohesive materials or 95 percent laboratory maximum density for cohesionless materials. Compaction requirements for the upper portion of earth embankments forming subgrade for pavements shall be identical with those requirements specified in paragraph SUBGRADE PREPARATION. Compaction shall be accomplished by sheepsfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, vibratory compactors, or other approved equipment. #### 3.7 SUBGRADE PREPARATION BENEATH PAVEMENTS # 3.7.1 Construction Subgrade shall be shaped to line, grade, and cross section, and compacted as specified. This operation shall include plowing, disking, and any moistening or aerating required to obtain specified compaction. Soft or otherwise unsatisfactory material shall be removed and replaced with satisfactory excavated material or other approved material as directed. After rolling, the surface of the subgrade for roadways shall not show deviations greater than 1/2 inch when tested with a 10 foot straightedge applied both parallel and at right angles to the centerline of the area. The elevation of the finish subgrade shall not vary more than 0.05 foot from the established grade and cross section. # 3.7.2 Compaction Compaction shall be accomplished by sheepsfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, vibratory compactors, or other approved equipment. Each layer of the embankment shall be aerated or moistened to within plus or minus 2% of optimum and compacted to at least 90 percent of laboratory maximum density for cohesive soils and 95 percent of maximum density for cohesionless soils. #### 3.8 FINISHING The surface of excavations, embankments, and subgrades shall be finished to a smooth and compact surface in accordance with the lines, grades, and cross sections or elevations shown. The degree of finish for graded areas shall be within 0.1 foot of the grades and elevations indicated except that the degree of finish for subgrades shall be specified in paragraph SUBGRADE PREPARATION. Gutters and ditches shall be finished in a manner that will result in effective drainage. The surface of areas to be turfed shall be finished to a smoothness suitable for the application of turfing materials. # 3.9 PLACING TOPSOIL On areas to receive topsoil, the surface shall be free of materials that would hinder planting or maintenance operations. The compacted subgrade soil shall be scarified to a 2 inch depth for bonding of topsoil with subsoil. Topsoil then shall be spread evenly to a thickness of 100 inches and graded to the elevations and slopes shown and left free of surface irregularities. Topsoil shall not be spread when frozen or excessively wet or dry or in a condition that is otherwise detrimental to seeding, planting, or proper grading. Topsoil shall be compacted by one pass of a cultipacker, roller, or other approved equipment weighing 100 to 160 pounds per linear foot of roller. Material required for topsoil in excess of that produced by excavation within the grading limits shall be obtained from offsite areas. #### 3.10 TESTING Testing shall be the responsibility of the Contractor and shall be performed at no additional cost to the Government. Testing shall be performed by an approved commercial testing laboratory or by the Contractor subject to approval. If the Contractor elects to establish testing facilities, no work requiring testing will be permitted until the Contractor's facilities have been inspected and approved by the Contracting Officer. The first inspection be at the expense of the Government. Cost incurred for any subsequent inspections required because of failure of the first inspection will be charged to the Contractor. Moisture-density relations shall be determined in accordance with ASTM D 1557, Procedure CField in-place density shall be determined in accordance with ASTM D 1556, ASTM D 2167, ASTM D 2922. When ASTM D 2922 is used, the calibration curves shall be checked and adjusted using only the sand cone method as described in ASTM D 1556. ASTM D 2922 results in a wet unit weight of soil and when using this method ASTM D 3017 shall be used to determine the moisture content of the soil. The calibration curves furnished with the moisture gauges shall also be checked along with density calibration checks as described in ASTM D 3017; the calibration checks of both the density and moisture gauges shall be made at the beginning of a job on each different type of material encountered and at intervals as directed by the Contracting Officer. ASTM D 2937, the Drive Cylinder Method shall be used only for soft, fine-grained, cohesive soils. When test results indicate, as determined by the Contracting Officer, that compaction is not as specified, the material shall be removed, replaced and recompacted to meet specification requirements. Tests on recompacted areas shall be performed to determine conformance with specification requirements. Sieve analyses shall be performed in accordance with the latest ASTM C 117, ASTM C 127, ASTM C 128, ASTM C 136 and ASTM D 422; sieves shall conform to the latest ASTM E 11; and liquid limit and plasticity index determinations shall be performed in accordance with ASTM D 4318. Copies of these test results shall be furnished to the Contracting Officer. Inspections and test results shall be certified by a registered professional civil engineer. These
certifications shall state that the tests and observations were performed by or under the direct supervision of the engineer and that the results are representative of the materials or conditions being certified by the tests. The following number of tests, if performed at the appropriate time, will be the minimum acceptable for each type operation. # 3.10.1 Subgrade, Fill and Backfill Material Gradation One sieve analysis (and one liquid limit and plasticity index determination for cohesive soils) for the subgrade and per 1000 cubic yards or fraction thereof of fill and backfill. Additional gradation, liquid limit, plasticity index determinations, and moisture-density curves shall be required if there are any changes in gradation or particle shape or when any change occurs in the material which may effect the optimum moisture content or maximum laboratory density. # 3.10.2 In-Place Densities Subgrade, Fill and Backfill: One test per 1000 square of the subgrade. yards, One test per 300 square metersof each lift of fill or backfill in paved areas. One test per 500 square yards, or fraction thereof, of each lift of fill or backfill in other areas . #### 3.10.3 Check Tests on In-Place Densities If ASTM D 2922 is used, every fifth test shall be checked by ASTM D 1556. # 3.10.4 Subgrade, Embankment, Fill or Backfill Areas compacted by Hand # Operated Machines The minimum number of field density tests and check tests specified above shall be tripled in areas where compaction is accomplished by hand-operated machines. #### 3.10.5 Moisture Contents A minimum of one test per 1000 square yards or fraction thereof of the subgrade prior to placement of embankment, fill, or backfill thereon during stable weather conditions. In the stockpile, excavation, or borrow areas, a minimum of two tests per day per type of material or source of material being placed during stable weather conditions shall be performed. During unstable weather, tests shall be made as dictated by local conditions and approved by the Contracting Officer. # 3.10.6 Optimum Moisture and Laboratory Maximum Density Tests shall be made for each type material or source of material including borrow material to determine the optimum moisture and laboratory maximum density values. One representative test per 2000 cubic yards of fill and backfill, or when any change in material occurs which may affect the optimum moisture content or laboratory maximum density. One test shall be taken for each type of subgrade materials. # 3.10.7 Tolerance Tests for Subgrades Continuous checks on the degree of finish specified in paragraph SUBGRADE PREPARATION shall be made during construction of the subgrades. #### 3.11 SUBGRADE AND EMBANKMENT PROTECTION During construction, embankments, excavations and other graded areas shall be kept shaped and drained. Ditches and drains along subgrade shall be maintained to drain effectively at all times. The finished subgrade shall not be disturbed by traffic or other operation and shall be protected and maintained by the Contractor in a satisfactory condition until ballast, subbase, base, or pavement is placed. The storage or stockpiling of materials on the finished subgrade will not be permitted. No subbase, base course, ballast, or pavement shall be laid until the subgrade has been checked and approved, and in no case shall subbase, base, surfacing, pavement, or ballast be placed on a muddy, spongy, or frozen subgrade. Any settlement or washing away that may occur from any cause, prior to acceptance, shall be repaired and grades reestablished to the required elevations and slopes. All work shall be conducted in accordance with the environmental protection requirements of the contract. -- End of Section -- # SECTION 02315 # EXCAVATION, FILLING AND BACKFILLING FOR BUILDINGS 08/98 # PART 1 GENERAL # 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only and represents the latest edition in force when this contract is awarded. # AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM C 117 | (1995) Materials Finer Than 75 micrometer (No. 200) Sieve in Mineral Aggregates by Washing | |-------------|--| | ASTM C 127 | (1988; R 1993el) Specific Gravity and
Absorption of Coarse Aggregate | | ASTM C 128 | (1997) Specific Gravity and Absorption of Fine Aggregate | | ASTM C 136 | (1996a) Sieve Analysis of Fine and Coarse
Aggregates | | ASTM D 1556 | (2000) Density and Unit Weight of Soil in Place by the Sand-Cone Method | | ASTM D 1557 | (2000) Laboratory Compaction
Characteristics of Soil Using Modified
Effort (56,000 ft-lbf/cu. ft. (2,700
kN-m/cu.m.)) | | ASTM D 2167 | (1994) Density and Unit Weight of Soil in
Place by the Rubber Balloon Method | | ASTM D 2216 | (1998) Laboratory Determination of Water
(Moisture) Content of Soil and Rock | | ASTM D 2487 | (2000) Classification of Soils for
Engineering Purposes (Unified Soil
Classification System) | | ASTM D 2922 | (1996el) Density of Soil and
Soil-Aggregate in Place by Nuclear Methods
(Shallow Depth) | | ASTM D 2937 | (1994) Density of Soil in Place by the Drive-Cylinder Method | | ASTM D 3017 | (1988; R 1996el) Water Content of Soil and
Rock in Place by Nuclear Methods (Shallow | Depth) ASTM D 422 (1963; R 1998) Particle-Size Analysis of Soils ASTM D 4318 (2000) Liquid Limit, Plastic Limit, and Plasticity Index of Soils ASTM E 11 (1995) Wire-Cloth Sieves for Testing Purposes #### 1.2 DEGREE OF COMPACTION Degree of compaction is expressed as a percentage of the maximum density obtained by the test procedure presented in ASTM D 1557 Procedure C, abbreviated as percent laboratory maximum density. #### 1.3 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-06 Test Reports Testing; G CE Copies of all laboratory and field test reports within 24 hours of the completion of the test. SD-07 Certificates Testing Lab; G CE. Qualifications of the commercial testing laboratory or Contractor's testing facilities. # 1.4 SPOIL AREAS Spoil materials shall be disposed of in spoil areas located outside the limits of Government-controlled land at the contractor's expense and responsibility. #### 1.5 BORROW AREAS Where satisfactory materials are not available in sufficient quantity from required excavations, approved materials shall be obtained from approved sources outside the limits of Government-controlled land at the Contractor's expense and responsibility. # PART 2 PRODUCTS ## 2.1 MATERIALS # 2.1.1 Satisfactory Materials # 2.1.1.1 Satisfactory Fill Materials Fill, embankment, and backfill within the building lines of structures and to a distance of 5 feet outside the building lines shall be those materials classified in ASTM D 2487 as GW, GP, GM, GC, SW, SM, SC, SP or combinations thereof, properly worked by the contractor to obtain the specified compaction while maintaining the moisture content as specified hereinafter. Satisfactory materials shall also be free of trash, debris, roots or other organic matter, or stones larger than 3 inchesin any dimension # 2.1.1.2 Satisfactory Subgrade Soils Satisfactory soils for the subgrade within the building lines of structures, beneath appurtenant structures, and beneath abutting paved areas shall consist of all subgrade soils, except as specified hereinafter in the paragraph UNSATISFACTORY MATERIAL, SUBGRADE. # 2.1.2 Unsatisfactory Materials # 2.1.2.1 Fill, Embankment, and Backfill Unsatisfactory materials for fill, embankment, and backfill within the building lines of structures, beneath appurtenant structures, and beneath abutting paved areas shall be those materials not meeting the requirements of paragraph Satisfactory Fill Materials, as defined above. # 2.1.2.2 Subgrade a. General: Satisfactory subgrade soils which are rendered unsuitable by the contractor due to inadequate site and/or excavation drainage or due to negligence by working (remolding) or compacting otherwise satisfactory in place subgrade soils under adverse moisture conditions shall be removed and replaced with satisfactory fill material or shall be worked or altered until rendered suitable as determined by the Contracting Officer, except under concrete foundations as specified hereinafter in paragraph EXCAVATION, at no additional cost to the Government. b. Building Lines: Unsatisfactory materials for the subgrade within the building lines of structures and for a distance of 5 feet outside these building lines shall be those materials classified in ASTM D 2487 as Pt, OH, OL or combinations thereof. Unsatisfactory material also includes materials which contain root and other organic matter, frozen material, and stones larger than 75 inches #### 2.1.3 Cohesionless and Cohesive Materials Cohesionless materials include materials classified in ASTM D 2487 as GW, GP, SW, and SP. Cohesive materials include materials classified as GC, SC, ML, CL, MH, and CH. Materials classified as GM, GP-GM, GW-GM, SW-SM, SP-SM, and SM shall be identified as cohesionless only when the fines are nonplastic. # 2.2 Capillary Water Barrier The capillary water barrier shall conform to the requirements of ASTM D 448 #57 stone. # PART 3 EXECUTION #### 3.1 CLEARING AND GRUBBING The areas within lines 5 feet outside of each building and structure line shall be cleared and grubbed of trees, stumps, roots, brush and other vegetation, debris, existing foundations, pavements, utility lines, structures, fences, and other items that would interfere
with construction operations. Stumps, logs, roots, and other organic matter shall be completely removed and the resulting depressions shall be filled with satisfactory material, placed and compacted in accordance with paragraph FILLING AND BACKFILLING. Materials removed shall be disposed of outside the limits of Government-controlled property at the Contractor's responsibility as indicated in paragraph Spoil Areas. #### 3.2 TOPSOIL Topsoil shall be stripped to its full depth within the designated excavations and grading lines and deposited in storage piles for later use. Excess topsoil shall be disposed as specified for excess excavated material. #### 3.3 EXCAVATION Excavation shall conform to the dimensions and elevations indicated for each building, structure, and footing except as specified. Excavation shall extend a sufficient distance from walls and footings to allow for placing and removal of forms. Excavations below indicated depths will not be permitted except to remove unsatisfactory material. Unsatisfactory material encountered below the grades shown shall be removed as directed and replaced with satisfactory material except that overdepth excavation under concrete foundations shall be backfilled with concrete having a minimum 28 day compressive strength of 14 MPa, unless otherwise directed by the contracting officer. Payment therefor will be made in conformance with the CHANGES clause of the CONTRACT CLAUSES. Satisfactory material removed below the depths indicated, without specific direction of the Contracting Officer, shall be replaced, at no additional cost to the Government. Satisfactory material shall be placed and compacted as specified in paragraph FILLING AND BACKFILLING. Determination of elevations and measurements of approved overdepth excavation of unsatisfactory material below grades indicated shall be done under the direction of the Contracting Officer. #### 3.4 DRAINAGE AND DEWATERING # 3.4.1 Drainage Surface water shall be directed away from excavation and construction sites to prevent erosion and undermining of foundations. Diversion ditches, dikes and grading shall be provided and maintained as necessary during construction. Excavated slopes and backfill surfaces shall be protected to prevent erosion and sloughing. Excavation shall be performed so that the site, the area immediately surrounding the site, and the area affecting operations at the site shall be continually and effectively drained. # 3.4.2 Dewatering Groundwater flowing toward or into excavations shall be controlled to prevent sloughing of excavation slopes and walls, boils, uplift and heave in the excavation and to eliminate interference with orderly progress of construction. French drains, sumps, ditches or trenches will not be permitted within 3 feet of the foundation of any structure, except with specific written approval, and after specific contractual provisions for restoration of the foundation area have been made. Control measures shall be taken by the time the excavation reaches the water level in order to maintain the integrity of the in situ material. While the excavation is open, the water level shall be maintained continuously below the working level. #### 3.5 SHORING Shoring, including sheet piling, shall be furnished and installed as necessary to protect workmen, banks, adjacent paving, structures, and utilities. Shoring, bracing, and sheeting shall be removed as excavations are backfilled, in a manner to prevent caving. #### 3.6 CLASSIFICATION OF EXCAVATION Excavation will be unclassified regardless of the nature of material encountered. #### 3.7 BLASTING Blasting will not be permitted. ## 3.8 BORROW Where satisfactory materials are not available in sufficient quantity from required excavations, approved materials shall be obtained as specified in paragraph Borrow Areas. #### 3.9 EXCAVATED MATERIALS Satisfactory excavated material required for fill or backfill shall be placed in the proper section of the permanent work required under this section or shall be separately stockpiled if it cannot be readily placed. Satisfactory material in excess of that required for the permanent work and all unsatisfactory material shall be disposed of as specified in paragraph Spoil Areas. # 3.10 FINAL GRADE OF SURFACES TO SUPPORT CONCRETE Excavation to final grade shall not be made until just before concrete is to be placed. # 3.11 INSPECTION OF FOUNDATION SUBGRADES Prior to the placement of concrete, foundation subgrades shall be inspected and approved by the Contracting Officer. Any existing fill materials, rubble, trash, debris, organics or similar materials shall be removed to their full depth and replaced with lean concrete (14 MPa). All such work shall be done under the direction of the Contracting Officer. # 3.12 SUBGRADE PREPARATION IN NON-FOUNDATION AREAS Unsatisfactory material in surfaces to receive fill or in excavated areas shall be removed and replaced with satisfactory materials as directed by the Contracting Officer. The surface shall be scarified to a depth of 6 inches before the fill is started. Sloped surfaces steeper than 1 vertical to 4 horizontal shall be plowed, stepped, benched, or broken up so that the fill material will bond with the existing material. When subgrades are less than the specified density, the ground surface shall be broken up to a minimum depth of 6 inches, pulverized, and compacted to the specified density. When the subgrade is part fill and part excavation or natural ground, the excavated or natural ground portion shall be scarified to a depth of 12 inches and compacted as specified for the adjacent fill. Material shall not be placed on surfaces that are muddy, frozen, or contain frost. Compaction shall be accomplished by sheepsfoot rollers, pneumatic-tired rollers, steel-wheeled rollers, or other approved equipment well suited to the soil being compacted. Material shall be moistened or aerated as necessary to plus or minus 2 percent of optimum moisture and compacted to 90% of maximum density for cohesive soils and 95% of maximum density for cohesionless soils. #### 3.13 FILLING AND BACKFILLING Satisfactory materials shall be used in bringing fills and backfills to the lines and grades indicated and for replacing unsatisfactory materials. Satisfactory materials shall be placed in horizontal layers not exceeding 8 inches in loose thickness, or 6 inches when hand-operated compactors are used. After placing, each layer shall be plowed, disked, or otherwise broken up, moistened or aerated as necessary to obtain plus or minus 2 percent of optimum moisture, thoroughly mixed and compacted as specified. Backfilling shall not begin until construction below finish grade has been approved, underground utilities systems have been inspected, tested and approved, forms removed, and the excavation cleaned of trash and debris. Backfill shall be brought to indicated finish grade. Backfill shall not be placed in wet or frozen areas. Where pipe is coated or wrapped for protection against corrosion, the backfill material up to an elevation 2 feet above sewer lines and 1 foot above other utility lines shall be free from stones larger than 1 inch in any dimension. Heavy equipment for spreading and compacting backfill shall not be operated closer to foundation or retaining walls than a distance equal to the height of backfill above the top of footing; the area remaining shall be compacted in layers not more than 4 inches in compacted thickness with power-driven hand tampers suitable for the material being compacted. Backfill shall be placed carefully around pipes to avoid damage to coatings. Backfill shall not be placed against foundation walls prior to 7 days after completion of the walls. As far as practicable, backfill shall be brought up evenly on each side of the wall and sloped to drain away from the wall. Each layer of fill and backfill shall be compacted to 90% of maximum density for cohesive soils and 95% of maximum density for cohesionless soils. Percent Laboratory maximum density Cohesive Cohesionless material material Fill, embankment, and backfill _____ Under structures, building slabs, # Percent Laboratory maximum density | | Cohesive
material | Cohesionless
material | |--|------------------------|--------------------------| | steps, paved areas, around footings, and in trenches | 90 | 95 | | Under sidewalks and grassed areas | 85 | 90 | | | | | | Nonfrost susceptible materials | | 95 | | Subgrade | | | | | | | | Under fill/backfill building slabs, areas, top 12 inches | steps, and paved
90 | 95 | | Under sidewalks, top 6 inches | 85 | 90 | | xcavated Areas, except footings* | 90 | 95 | ^{*} Subgrade beneath foundations shall not be compacted or otherwise disturbed (except in areas with structural fill). Approved compacted subgrades that are disturbed by the Contractor's operations or adverse weather shall be scarified and compacted as specified herein before to the required density prior to further construction thereon. Recompaction over underground utilities and heating lines shall be by hand tamping. #### 3.14 TESTING Testing shall be the responsibility of the Contractor and shall be performed at no additional cost to the Government. Testing shall be performed by an approved commercial Testing Lab or may be performed by the Contractor subject to approval. Field in-place density shall be determined in accordance with ASTM D 1556, ASTM D 2167, or ASTM D 2922. When ASTM D 2922 is used, the calibration curves shall be checked and adjusted if necessary by the procedure described in ASTM D 2922, paragraph ADJUSTING CALIBRATION CURVE. ASTM D 2922 results in a wet unit weight of soil and when using this method ASTM D 3017 shall be used to determine the moisture content of the soil. The calibration curves furnished with the moisture gauges shall also be checked along with density calibration checks as described in ASTM D 3017.
The calibration checks of both the density and moisture gauges shall be made at the beginning of a job on each different type of material encountered and at intervals as directed by the Contracting Officer. ASTM D 2937 shall be used only for soft, fine-grained, cohesive soils. Approved compacted subgrades that are disturbed by contractor's operations or adverse weather shall be scarified and compacted as specified hereinbefore to the required density prior to further construction thereon. Recompaction over underground utilities and heating lines shall be by hand tamping. Sieve analyses shall be performed in accordance with ASTM C 117, ASTM C 127, ASTM C 128, ASTM C 136, and ASTM D 422; sieves shall conform to ASTM E 11; and liquid limit and plasticity index determinations shall be performed in accordance with ASTM D 4318. Copies of test results shall be furnished to the Contracting Officer. The following minimum testing at locations selected by the Contracting Officer is required: #### 3.14.1 Subgrade, Fill and Backfill Material Gradation One sieve analysis (and one liquid limit and plasticity index determination for cohesive soils) for the subgrade and per 1000 cubic yards or fraction thereof of fill and backfill. Additional gradation, liquid limit, plasticity index determinations, and moisture-density curves shall be required if there are any changes in gradation or particle shape or when any change occurs in the material which may effect the optimum moisture content or maximum laboratory density. # 3.14.2 In-Place Densities In-place density and moisture content test results shall be included with the Contractor's daily construction quality control reports. # 3.14.2.1 In-Place Density of Subgrades One test per 900 square footor fraction thereof. # 3.14.2.2 In-Place Density of Fills and Backfills One test per 100 square yards or fraction thereof of each lift of fill and backfill. If ASTM D 2922 is used, every fifth test shall be checked by ASTM D 1556. #### 3.14.3 Moisture Content In the stockpile, excavation or borrow areas, a minimum of two tests per day per type of material or source of materials being placed is required during stable weather conditions. During unstable weather, tests shall be made as dictated by local conditions and approved moisture content shall be tested in accordance with ASTM D 2216. A minimum of one test per 500 square meters or fraction thereof of the subgrade prior to placement of fill or backfill thereon during stable weather conditions. # 3.14.4 Optimum Moisture and Laboratory Maximum Density Tests shall be made for each type material or source of material, including borrow material to determine the optimum moisture and laboratory maximum density values. One representative test shall be done for each type of subgrade material (embankment, fill and cut areas); and one test per 50 cubic yards of fill and backfill or fraction thereof, or when any change in material occurs which may affect the optimum moisture content or laboratory maximum density will be made. # 3.14.5 Additional Testing Additional gradation, liquid limit, plasticity index determinations, and moisture-density curves shall be required if there is any change in gradation or particle shape or when any change occurs in the material which may affect the optimum moisture content or laboratory maximum density. Density test frequencies shall be tripled in areas where compaction is by hand operated equipment. #### 3.15 CAPILLARY WATER BARRIER Beneath slabs in the "Shipping/Receiving" area the "Warehouse" area and the "Fabrication Shop" area, the capillary water barrier shall be compacted with 6 passes of a minimum 10 ton roller except that immediately adjacent to the walls, a plate-type vibratory compactor may be used. For the slabs in all other areas, the capillary water barrier shall be compacted with a minimum of two passes of a hand-operated plate-type vibratory compactor. #### 3.16 GRADING Areas within 5 feet outside of each building and structure line shall be constructed true-to-grade, shaped to drain, and shall be maintained free of trash and debris until final inspection has been completed and the work has been accepted. # 3.17 SPREADING TOPSOIL Placement of topsoil shall be as indicated in Section 02300 SITE GRADING AND EARTHWORK FOR ROADWAYS. #### 3.18 PROTECTION Settlement or washing that occurs in graded, topsoiled, or backfilled areas prior to acceptance of the work, shall be repaired and grades reestablished to the required elevations and slopes. -- End of Section -- # SECTION 02821N # CHAIN LINK FENCES AND GATES 09/99 # PART 1 GENERAL # 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only. # AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM B 117 | (1997) Operating Salt Spray (Fog) Apparatus | |-------------------------|---| | ASTM F 1043 | (2000) Strength and Protective Coatings on
Metal Industrial Chain-Link Fence Framework | | ASTM F 883 | (1997) Padlocks | | ASTM G 23 | (1996) Operating Light-Exposure Apparatus
(Carbon-Arc Type) With and Without Water
for Exposure of Nonmetallic Materials | | ASTM G 26 | (1996) Operating Light-Exposure Apparatus
(Xenon-Arc Type) With and Without Water
for Exposure of Nonmetallic Materials | | ASTM G 53 | (1996) Operating Light- and Water-Exposure
Apparatus (Fluorescent UV-Condensation
Type) for Exposure of Nonmetallic Materials | | U.S. GENERAL SERVICES A | ADMINISTRATION (GSA) | | FS RR-F-191 | (Rev. K) Fencing, Wire and Post Metal (and Gates, Chain-Link Fence Fabric, and Accessories) (General Specification) | | FS RR-F-191/1 | (Rev. D) Fencing, Wire and Post, Metal (Chain-Link Fence Fabric) (Detail Specification) | | FS RR-F-191/2 | (Rev. D) Fencing, Wire and Post, Metal (Chain-Link Fence Gates) (Detail Specification) | | FS RR-F-191/3 | (Rev. D) Fencing, Wire and Post, Metal
(Chain-Link Fence Posts, Top Rails and
Braces) (Detail Specification) | | | | # 1.2 DEFINITION a. Year 2000 compliant - means computer controlled facility components that accurately process date and time data (including, but not limited to, calculating, comparing, and sequencing) from, into, and between the twentieth and twenty-first centuries, and the years 1999 and 2000 and leap year calculations. #### 1.3 SUBMITTALS Submit the following in accordance with Section 01330, "Submittal Procedures." SD-02 Shop Drawings Gates; G CE Post spacing; G CE Location of gate, corner, end, and pull posts; G CE SD-03 Product Data; Chain-link fencing; G CE components Accessories SD-06 Test Reports Weight in grams ounces for zinc coating Thickness of PVC coating; G CE Chemical composition and thickness of aluminum alloy coating; G CE SD-07 Certificates Fabric; G CE Posts;G CE Braces;G CE Framing; G CE Rails;G CE Tension wires; G CE Gates; G CE Padlocks; G CE SD-08 Manufacturer's Instructions; Fence; G CE # 1.4 DELIVERY, STORAGE, AND HANDLING Deliver materials to site in an undamaged condition. Store materials off the ground to provide protection against oxidation caused by ground contact. # 1.5 QUALITY ASSURANCE # 1.5.1 Required Report Data Submit reports of listing of chain-link fencing and accessories regarding Weight in grams ounces for zinc coating, thickness of PVC coating, and chemical composition and thickness of aluminum alloy coating. #### PART 2 PRODUCTS #### 2.1 CHAIN-LINK FENCING AND ACCESSORIES FS RR-F-191 and detailed specifications as referenced and other requirements as specified. #### 2.1.1 Fabric FS RR-F-191/1; Type I, zinc-coated steel, . Mesh size, 2 inches. Provide selvage twisted and barbed at both selvages . Height of fabric, as indicated. #### 2.1.2 Gates FS RR-F-191/2; Type I, single swing, gate. Shape and size of gate frame, as indicated. Framing and bracing members, round or square of steeloraluminum alloy. Steel member finish, zinc-coatedorPVC-coated over zinc- or aluminum-coated steel Gate frames and braces of minimum sizes listed in FS RR-F-191/3 for each Class and Grade except that steel pipe frames shall be 1.90 inches od, 0.120 inches minimum wall thickness and aluminum pipe frames and intermediate braces shall be 1.869 inches od, 0.940 lb/ft of length. Gate fabric, as specified for fencing fabric. Barbed wire top on gate, as specified herein. Coating for steel latches, stops, hinges, keepers, and accessories, galvanized .Gate latches, fork type. Gate leaves more than 8 feet wide shall have intermediate members as necessary to provide rigid construction, free from sag or twist.Gate leaves less than 8 feet wide shall have truss rods or intermediate braces. Attach gate fabric to gate frame in accordance with manufacturer's standards, except that welding will not be permitted. Arrange padlocking latches to be accessible from both sides of gate, regardless of latching arrangement. # 2.1.3 Posts , Top Rails and Braces FS RR-F-191/3 line posts; Class 3, formed steel sections 4, steel H sections or 5, aluminum H sections. End, corner, and pull posts; Class 1, steel pipe, Grade A or B, 2, aluminum pipe, 6, steel square sections or 7, aluminum square sections. Braces and rails; Class 1, steel pipe, Grade A or B 2, aluminum pipe or 3, formed steel sections, in minimum sizes listed in FS RR-F-191/3 for each class and grade. Steel pipe, Class 1, Grade B shall meet the following performance criteria when subjected to salt spray testing in accordance with ASTM B 117: - a. Exterior 1,000 hours with maximum 5 percent red rust. - b. Interior 650 hours with maximum 5 percent red rust. #### 2.1.3.1 Composite Posts Polyester resin reinforced posts shall be produced from polyester or epoxy resin, reinforced with E-glass and filler material. Posts shall meet the ASTM F 1043 bending strength for heavy industrial
fencing, and shall be filled with 2,500 psi concrete. Posts shall be protected from UV degradation by a veil of polyester cloth impregnated with resin and an acrylic based 1.5 mil DFT coating system. The post will exhibit no structural failure (less than 10 percent loss of strength) as a result of exposure to moisture and UV lamps per ASTM G 23, ASTM G 26, and ASTM G 53, (3600 hours). Posts shall be provided in color to match fabric. #### 2.1.4 Fencing Accessories FS RR-F-191/4. Provide wire ties constructed of the same material as the fencing fabric. #### 2.1.5 Concrete Provide as specified in Section 03300, "Cast-In-Place Concrete." #### 2.1.6 Grout Provide grout of proportions one part portland cement to three parts clean, well-graded sand and a minimum amount of water to produce a workable mix. #### 2.1.7 Padlocks ASTM F 883, with chain. #### PART 3 EXECUTION #### 3.1 SITE PREPARATION # 3.1.1 Clearing and Grading Clear fence line of trees, brush, and other obstacles to install fencing. Establish a graded, compacted fence line prior to fencing installation. Compact fill used to establish fence line. #### 3.1.2 Excavation Excavate to dimensions indicated for concrete-embedded items, except in bedrock. If bedrock is encountered, continue excavation to depth indicated or 18 inches into bedrock, whichever is less, with a diameter in bedrock a minimum of 2 inches larger than outside diameter of post. Clear post holes of loose material. Dispose of waste material outside limits of station. #### 3.2 FENCE INSTALLATION Install fence on prepared surfaces to line and grade indicated. Secure fastening and hinge hardware in place to fence framework by peening or welding. Allow for proper operation of components. Coat peened or welded areas with a repair coating matching original coating. Install fence in accordance with fence manufacturer's written installation instructions except as modified herein. # 3.2.1 Post Spacing Provide line posts spaced equidistantly apart, not exceeding 10 feet on center. Provide gate posts spaced as necessary for size of gate openings. Do not exceed 500 feet on straight runs between braced posts. Provide corner or pull posts, with bracing in both directions, for changes in direction of 15 degrees or more, or for abrupt changes in grade. Provide drawings showing location of gate, corner, end, and pull posts. # 3.2.2 Post Setting Set posts plumb. Allow concrete and grout to cure a minimum of 72 hours before performing other work on posts. #### 3.2.2.1 Earth and Bedrock Provide concrete bases of dimensions indicated . Compact concrete to eliminate voids, and finish to a dome shape. #### 3.2.2.2 Concrete Slabs and Walls Set posts into zinc-coated sleeves, set in concrete slab or wall, to a minimum depth of 12 inches. Fill sleeve joint with lead, nonshrink grout, or other approved material. Set posts for support of removable fence sections into sleeves that provide a tight sliding joint and hold posts aligned and plumb without use of lead or setting material. #### 3.2.3 Bracing Brace gate, corner, end, and pull posts to nearest post with a horizontal brace used as a compression member, placed at least 12 inches below top of fence, and a diagonal truss rod and truss tightener used as a tension member. # 3.2.4 Top Rails Install top rails before installing chain-link fabric. Pass top rail through intermediate post caps. Provide expansion coupling spaced as indicated. # 3.2.5 Top and Bottom Tension Wires Install top tension wires before installing chain-link fabric, and pull wires taut. Place top and bottom tension wires within 8 inches of respective fabric line. #### 3.2.6 Fabric Pull fabric taut and secure fabric to top rail, close to both sides of each post and at maximum intervals of 24 inches on center. Secure fabric to posts using stretcher bars, ties or clips spaced 15 inches on center, or by integrally weaving to integral fastening loops of end, corner, pull, and gate posts for full length of each post. Install fabric on opposite side of posts from area being secured. Install fabric so that bottom of fabric is 2 inches above ground level . Install fence fabric to provide approximately 2 inch deflection at center of fabric span between two posts, when a force of approximately 30 pounds is applied perpendicular to fabric. Fabric should return to its original position when force is removed. # 3.3 ACCESSORIES INSTALLATION #### 3.3.1 Post Caps Install post caps as recommended by the manufacturer. # 3.3.2 Supporting Arms Design supporting arms to accommodate top rail. Install supporting arms as recommended by manufacturer. In addition to manufacturer's standard connections, permanently secure supporting arms to posts. Studs driven by low-velocity powder-actuated tools may be used with steel, wrought iron, ductile iron, or malleable iron. Do not use studs driven by powder-actuated tools with gray iron or other material that will fracture. #### 3.3.3 Barbed Wire Install barbed wire on supporting arms above fence posts. Extend each end member of gate frames sufficiently above top member to carry three strands of barbed wire in horizontal alignment with barbed wire strands on the fence. Pull each strand taut and securely fasten each strand to each supporting arm or extended member. Secure wires in accordance with fence manufacturer's recommendations. #### 3.3.4 Gates Install swing gates to swing through [90] [180] degrees from closed to open. #### 3.3.5 Padlocks Provide padlocks for gate openings and provide chains that are securely attached to gate or gate posts. Provide padlocks keyed alike, and provide two keys for each padlock. # 3.4 SECURITY Install new security fencing, remove existing security fencing, and perform related work to provide continuous security for facility. Schedule and fully coordinate work with Contracting Officer and cognizant Security Officer. # 3.5 CLEANUP Remove waste fencing materials and other debris from the station. -- End of Section -- # SECTION 03300 # CAST-IN-PLACE STRUCTURAL CONCRETE 09/95 # PART 1 GENERAL # 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only and represent the latest edition in force when this contract is awarded. # ACI INTERNATIONAL (ACI) | ACI 117/117R | (1990; Errata) Standard Tolerances for
Concrete Construction and Materials | |----------------------------------|---| | ACI 211.1 | (1991) Standard Practice for Selecting
Proportions for Normal, Heavyweight, and
Mass Concrete | | ACI 211.2 | (1998) Standard Practice for Selecting
Proportions for Structural Lightweight
Concrete | | ACI 214.3R | (1988; R 1997) Simplified Version of the
Recommended Practice for Evaluation of
Strength Test Results of Concrete | | ACI 305R | (1999) Hot Weather Concreting | | ACI 318/318R | (1999) Building Code Requirements for
Structural Concrete and Commentary | | AMERICAN ASSOCIATION OF (AASHTO) | STATE HIGHWAY AND TRANSPORTATION OFFICIALS | | AASHTO M 182 | (1991; R 1996) Burlap Cloth Made from Jute or Kenaf | | AMERICAN SOCIET | Y FOR TESTING AND MATERIALS (ASTM) | |---------------------|--| | ASTM C 1017 | (1992) Chemical Admixtures for Use in
Producing Flowing Concrete | | ASTM C 1059 | (1999) Latex Agents for Bonding Fresh to
Hardened Concrete | | ASTM C 1064/C 1064M | (1999) Temperature of Freshly Mixed
Portland Cement Concrete | | ASTM C 1077 | (1998) Laboratories Testing Concrete and
Concrete Aggregates for Use in
Construction and Criteria for Laboratory | | | Evaluation | |-------------|---| | ASTM C 1107 | (1999) Packaged Dry, Hydraulic-Cement
Grout(Nonshrink) | | ASTM C 143 | (1998) Slump of Hydraulic Cement Concrete | | ASTM C 150 | (1999a) Portland Cement | | ASTM C 171 | (1997a) Sheet Materials for Curing Concrete | | ASTM C 172 | (1999) Sampling Freshly Mixed Concrete | | ASTM C 192 | (2000) Making and Curing Concrete Test
Specimens in the Laboratory | | ASTM C 231 | (1997el) Air Content of Freshly Mixed
Concrete by the Pressure Method | | ASTM C 260 | (2000) Air-Entraining Admixtures for Concrete | | ASTM C 309 | (1998a) Liquid Membrane-Forming Compounds
for Curing Concrete | | ASTM C 31 | (1991) Making and Curing Concrete Test
Specimens in the Field | | ASTM C 33 | (1999ael) Concrete Aggregates | | ASTM C 330 | (2000) Lightweight Aggregates for
Structural Concrete | | ASTM C 39 | (1993a) Compressive Strength of
Cylindrical Concrete Specimens | | ASTM C 42 | (1990) Obtaining and Testing Drilled Cores
and Sawed Beam of Concrete | | ASTM C 494 | (1992) Chemical Admixtures for Concrete | | ASTM C 552 | (2000) Cellular Glass Thermal Insulation | | ASTM C 567 | (2000) Unit Weight of Structural
Lightweight Concrete | | ASTM C 578 | (1995) Rigid, Cellular Polystyrene Thermal
Insulation | | ASTM C 591 | (1994) Unfaced Preformed Rigid Cellular
Polyisocyanurate Thermal Insulation | | ASTM C 618 | (2000) Coal Fly Ash and Raw or Calcined
Natural Pozzolan for Use as a Mineral
Admixture in Concrete | | ASTM C 78 | (1994) Flexural Strength of Concrete
(Using Simple Beam With Third-Point
Loading) | | ASTM C 881 | (1999) Epoxy-Resin-Base Bonding Systems
for Concrete | |-------------------------|--| | ASTM C 937 | (1997) Grout Fluidifier for
Preplaced-Aggregate Concrete | | ASTM C 94 | (1994) Ready-Mixed Concrete | | ASTM C 989 | (1999) Ground Granulated
Blast-Furnace
Slag for Use in Concrete and Mortars | | ASTM D 1751 | (1999) Preformed Expansion Joint Filler
for Concrete Paving and Structural
Construction (Nonextruding and Resilient
Bituminous Types) | | ASTM D 1752 | (1984; R 1996el) Preformed Sponge Rubber
and Cork Expansion Joint Fillers for
Concrete Paving and Structural Construction | | ASTM D 75 | (1987; R 1997) Sampling Aggregates | | ASTM E 1155 | (1996) Determining Floor Flatness and
Levelness Using the F-Number System | | ASTM E 96 | (2000) Water Vapor Transmission of
Materials | | NATIONAL READY-MIXED CO | ONCRETE ASSOCIATION (NRMCA) | | NRMCA TMMB 100 | (1994) Truck Mixer Agitator and Front
Discharge Concrete Carrier Standards | | NRMCA QC 3 | (1984) Quality Control Manual: Section 3,
Plant Certifications Checklist:
Certification of Ready Mixed Concrete
Production Facilities | | U.S. ARMY CORPS OF ENGI | NEERS (USACE) | | COE CRD-C 400 | (1963) Requirements for Water for Use in
Mixing or Curing Concrete | | COE CRD-C 521 | (1981) Standard Test Method for Frequency and Amplitude of Vibrators for Concrete | | COE CRD-C 540 | (1971; R 1981) Standard Specification for
Nonbituminous Inserts for Contraction
Joints in Portland Cement Concrete
Airfield Pavements, Sawable Type | | COE CRD-C 572 | (1974) Corps of Engineers Specifications
for Polyvinylchloride Waterstop | | COE CRD-C 94 | (1995) Surface Retarders | | 1.2 LUMP SUM CONTRACT | | Under this type of contract concrete items will be paid for by lump sum and will not be measured. The work covered by these items consists of furnishing all concrete materials, reinforcement, miscellaneous embedded materials, and equipment, and performing all labor for the forming, manufacture, transporting, placing, finishing, curing, and protection of concrete in these structures. #### 1.3 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-04 Samples Surface Retarder; G RE Surface retarder material with manufacturer's instructions for application in conjunction with air-water cutting. SD-05 Design Data Concrete Temperature Control;G RE Mixture Proportions; G RE. The results of trial mixture design studies along with a statement giving the maximum nominal coarse aggregate size and the proportions of ingredients that will be used in the manufacture of each strength or class of concrete, at least 14 days prior to commencing concrete placing operations. Aggregate weights shall be based on the saturated surface dry condition. The statement shall be accompanied by test results from an approved independent commercial testing laboratory, showing that mixture design studies have been made with materials proposed for the project and that the proportions selected will produce concrete of the qualities indicated. The test results shall be less than 6 months old. No substitutions shall be made in the materials used in the mixture design studies without additional tests to show that the quality of the concrete is satisfactory. The mixture proportions submittal shall also include test results for each component of the mix (aggregate, cement, admixtures, etc). Lightweight Aggregate Concrete; G RE Written recommendations from lightweight aggregate supplier on batching and mixing cycles. Cold Weather Requirements; G RE Cold Weather Concreting Plan Hot Weather Requirements; G RE Hot Weather Concreting Plan SD-06 Test Reports Testing and Inspection for Contractor Quality Control; G RE. Certified copies of laboratory test reports, including mill tests and all other test data, for portland cement, blended cement, pozzolan, ground granulated blast furnace slag, aggregate, admixtures, and curing compound proposed for use on this project. SD-07 Certificates Quality Control QualificationsG RE Written documentation for Contractor Quality Control personnel. # 1.4 QUALITY CONTROL QUALIFICATIONS Contractor Quality Control personnel assigned to concrete construction shall be American Concrete Institute (ACI) Certified Workmen in one of the following grades or shall have written evidence of having completed similar qualification programs: Concrete Field Testing Technician, Grade I Concrete Laboratory Testing Technician, Grade I or II Concrete Construction Inspector, Level II The foreman or lead journeyman of the flatwork finishing crew shall have similar qualification for ACI Concrete Flatwork Technician/Finisher or equal, with written documentation. #### 1.5 GENERAL REQUIREMENTS #### 1.5.1 Tolerances Except as otherwise specified herein, tolerances for concrete batching, mixture properties, and construction as well as definition of terms and application practices shall be in accordance with ACI 117/117R. Level and grade tolerance measurements of slabs shall be made as soon as possible after finishing; when forms or shoring are used, the measurements shall be made prior to removal. # 1.5.1.1 Floors For the purpose of this Section the following terminology correlation between ACI 117/117R and this Section shall apply: | Floor Profile Quality
Classification From ACI 117/117R | This Section | |---|-------------------------------| | | | | Conventional Bullfloated
Conventional Straightedged | Same
Same | | Flat | Float Finish or Trowel Finish | | Very Flat | Same. Use only with F-system | Levelness tolerance shall not apply where design requires floors to be sloped to drains or sloped for other reasons. # 1.5.1.2 Floors by the F-Number System The flatness and levelness of floors shall be carefully controlled and the tolerances shall be measured by the F-Number system of Paragraph 4.5.6 and 4.5.6.1 of ACI 117/117R. The Contractor shall furnish an approved floor profilograph or other equipment capable of measuring the floor flatness (FF) number and the floor levelness (FL) number in accordance with ASTM E 1155. The Contractor shall perform the tolerance measurements within 72 hours after floor slab construction while being observed by the Contracting Officer. The tolerances of surfaces beyond the limits of ASTM E 1155 (the areas within 24 inches of embedments and construction joints) shall be acceptable to the Contracting Officer. Tolerances of the following areas shall meet the requirements for the listed surfaces as specified in paragraphs 4.5.6 and 4.5.6.1 of ACI 117/117R. Trowel Finish- Areas Entire floor slab # 1.5.2 Strength Requirements and w/c Ratio # 1.5.2.1 Strength Requirements Exterior and interior pavements slabs and ramps shall have a 28-day flexural strength of4000 psi. Concrete made with high-early strength cement shall have a 7-day strength equal to the specified 28-day strength for concrete made with Type I or II portland cement. Compressive strength shall be determined in accordance with ASTM C 39. Flexural strength shall be determined in accordance with ASTM C 78. - a. Evaluation of Concrete Compressive Strength. Compressive strength specimens (6 by 12 inch cylinders) shall be fabricated by the Contractor and laboratory cured in accordance with ASTM C 31 and tested in accordance with ASTM C 39. The strength of the concrete will be considered satisfactory so long as the average of all sets of three consecutive test results equals or exceeds the specified compressive strength f'c and no individual test result falls below the specified strength f'c by more than 500 psi. A "test" is defined as the average of two companion cylinders, or if only one cylinder is tested, the results of the single cylinder test. Additional analysis or testing, including taking cores and/or load tests may be required at the Contractor's expense when the strength of the concrete in the structure is considered potentially deficient. - b. Investigation of Low-Strength Compressive Test Results. When any strength test of standard-cured test cylinders falls below the specified strength requirement by more than 500 psi or if tests of field-cured cylinders indicate deficiencies in protection and curing, steps shall be taken to assure that the load-carrying capacity of the structure is not jeopardized. When the strength of concrete in place is considered potentially deficient, cores shall be obtained and tested in accordance with ASTM C 42. At least three representative cores shall be taken from each member or area of concrete in place that is considered potentially deficient. The location of cores will be determined by the Contracting Officer to least impair the strength of the structure. Concrete in the area represented by the core testing will be considered adequate if the average strength of the cores is equal to at least 85 percent of the specified strength requirement and if no single core is less than 75 percent of the specified strength requirement. Non-destructive tests (tests other than test cylinders or cores) shall not be used as a basis for acceptance or rejection. The Contractor shall perform the coring, test the cores, and repair the holes unless otherwise indicated by the Contracting Officer. - c. Load Tests. If the core tests are inconclusive or impractical to obtain or if structural analysis does not confirm the safety of the structure, load tests may be directed by the Contracting Officer in accordance with the requirements of ACI 318/318R. Concrete work evaluated by structural analysis or by results of a load test as being under strength shall be corrected in a manner satisfactory to the Contracting Officer. All investigations, testing, load tests, and correction of deficiencies shall be performed by and at the expense of the Contractor and must be approved by the Contracting Officer, except that if all concrete is found to
be in compliance with the drawings and specifications, the cost of investigations, testing, and load tests will be at the expense of the Government. - d. Evaluation of Concrete Flexural Strength. Flexural strength specimens (beams) shall be fabricated by the Contractor and laboratory cured in accordance with ASTM C 31 and tested in accordance with ASTM C 78. The strength of the concrete will be considered satisfactory so long as the average of all sets of three consecutive test results equals or exceeds the specified flexural strength and no individual test result falls below the specified flexural strength by more than 50 psi.A "test" is defined as the average of two companion beams. Additional analysis or testing, including taking cores and/or load tests may be required at the Contractor's expense when the strength of the concrete in the slab is considered potentially deficient. #### 1.5.2.2 Water-Cement Ratio Maximum water-cement ratio (w/c) for normal weight concrete shall be as follows: WATER-CEMENT RATIO, BY WEIGHT STRUCTURE OR PORTION OF STRUCTURE #### Footings at slab on grade 0.55 These w/c's may cause higher strengths than that required above for compressive or flexural strength. The maximum w/c required will be the equivalent w/c as determined by conversion from the weight ratio of water to cement plus pozzolan, and ground granulated blast furnace slag (GGBF slag) by the weight equivalency method as described in ACI 211.1. In the case where silica fume or GGBF slag is used, the weight of the silica fume and GGBF slag shall be included in the equations of ACI 211.1 for the term P which is used to denote the weight of pozzolan. # 1.5.3 Air Entrainment Except as otherwise specified for lightweight concrete, all normal weight concrete shall be air entrained to contain between 5 and 7 percent total air, except that when the nominal maximum size coarse aggregate is 3/4 inch or smaller it shall be between 5.5 and 7.5 percent. Concrete with specified strength over 5000 psi may have 1.0 percent less air than specified above. Specified air content shall be attained at point of placement into the forms. Air content for normal weight concrete shall be determined in accordance with ASTM C 231. #### 1.5.4 Slump Slump of the concrete, as delivered to the point of placement into the forms, shall be within the following limits. Slump shall be determined in accordance with ASTM C 143. | Structural Element | Slump
Minimum
———— | Maximum | |---|-------------------------------|------------------------| | b. Foundation walls, substruwalls, footings, slabs | cture
5-1/2 in. | 2-1/2 in. | | c. Any structural concrete agone for placement by pumping: At pump At discharge of line | pproved
6 in.
5-1/2 in. | 2-1/2 in.
2-1/2 in. | When use of a plasticizing admixture conforming to ASTM C 1017 or when a Type F or G high range water reducing admixture conforming to ASTM C 494 is permitted to increase the slump of concrete, concrete shall have a slump in accordance with above items a and b before the admixture is added and a maximum slump of 8 inches at the point of delivery after the admixture is added. # 1.5.5 Concrete Temperature Control The temperature of the concrete as delivered shall not exceed 90 degrees F. When the ambient temperature during placing is 40 degrees F or less, or is expected to be at any time within 6 hours after placing, the temperature of the concrete as delivered shall be between 55 and 75 degrees F. # 1.5.6 Size of Coarse Aggregate The largest feasible nominal maximum size aggregate (NMSA) specified in paragraph AGGREGATES shall be used in each placement. However, nominal maximum size of aggregate shall not exceed any of the following: three-fourths of the minimum cover for reinforcing bars, three-fourths of the minimum clear spacing between reinforcing bars, one-fifth of the narrowest dimension between sides of forms, or one-third of the thickness of slabs or toppings. # 1.5.7 Special Properties and Products Concrete may contain admixtures other than air entraining agents, such as water reducers, superplasticizers, or set retarding agents to provide special properties to the concrete, if specified or approved. Any of these materials to be used on the project shall be used in the mix design studies. # 1.5.8 Lightweight Aggregate Structural Concrete Lightweight aggregate structural concrete shall conform to the requirements specified for normal weight concrete except as specified herein. Specified compressive strength shall be at least 3000 at 28 days, as determined by test specimens that have been air dried at 50 percent relative humidity for the last 21 days. Air-dry unit weight shall be not over 115 pcf. at 28 days as determined by ASTM C 567. However, fresh unit weight shall be used for acceptance during concreting, using a correlation factor between the two types of unit weight as determined during mixture design studies. Lightweight aggregate structural concrete floor fill shall have a 28-day compressive strength of at least 2500 psi and an air-dry unit weight not exceeding 115 pcf. # 1.6 MIXTURE PROPORTIONS Concrete shall be composed of portland cement, other cementitious and pozzolanic materials as specified, aggregates, water and admixtures as specified. # 1.6.1 Proportioning Studies for Normal Weight Concrete Trial design batches, mixture proportioning studies, and testing requirements for various classes and types of concrete specified shall be the responsibility of the Contractor. Except as specified for flexural strength concrete, mixture proportions shall be based on compressive strength as determined by test specimens fabricated in accordance with ASTM C 192 and tested in accordance with ASTM C 39. Samples of all materials used in mixture proportioning studies shall be representative of those proposed for use in the project and shall be accompanied by the manufacturer's or producer's test reports indicating compliance with these specifications. Trial mixtures having proportions, consistencies, and air content suitable for the work shall be made based on methodology described in ACI 211.1, using at least three different water-cement ratios for each type of mixture, which will produce a range of strength encompassing those required for each class and type of concrete required on the project. maximum water-cement ratios required in subparagraph Water-Cement Ratio will be the equivalent water-cement ratio as determined by conversion from the weight ratio of water to cement plus pozzolan, and ground granulated blast furnace slaq (GGBF slaq) by the weight equivalency method as described in ACI 211.1. In the case where GGBF slag is used, the weight of the GGBF slag shall be included in the equations in ACI 211.1 for the term P, which is used to denote the weight of pozzolan. If pozzolan is used in the concrete mixture, the minimum pozzolan content shall be 15 percent by weight of the total cementitious material, and the maximum shall be 35 percent. Laboratory trial mixtures shall be designed for maximum permitted slump and air content. Separate sets of trial mixture studies shall be made for each combination of cementitious materials and each combination of admixtures proposed for use. No combination of either shall be used until proven by such studies, except that, if approved in writing and otherwise permitted by these specifications, an accelerator or a retarder may be used without separate trial mixture study. Separate trial mixture studies shall also be made for concrete for any conveying or placing method proposed which requires special properties and for concrete to be placed in unusually difficult placing locations. The temperature of concrete in each trial batch shall be reported. For each water-cement ratio, at least three test cylinders for each test age shall be made and cured in accordance with ASTM C 192. They shall be tested at 7 and 28 days in accordance with ASTM C 39. From these test results, a curve shall be plotted showing the relationship between water-cement ratio and strength for each set of trial mix studies. In addition, a curve shall be plotted showing the relationship between 7 day and 28 day strengths. Each mixture shall be designed to promote easy and suitable concrete placement, consolidation and finishing, and to prevent segregation and excessive bleeding. # 1.6.2 Proportioning Studies for Flexural Strength Concrete Trial design batches, mixture proportioning studies, and testing requirements shall conform to the requirements specified in paragraph Proportioning Studies for Normal Weight Concrete, except that proportions shall be based on flexural strength as determined by test specimens (beams) fabricated in accordance with ASTM C 192 and tested in accordance with ASTM C 78. Procedures given in ACI 211.1 shall be modified as necessary to accommodate flexural strength. # 1.6.3 Proportioning Studies for Lightweight Aggregate Structural Concrete Trial design batches, mixture proportioning studies, and testing requirements shall conform to the requirements specified in paragraph Proportioning Studies for Normal Weight Concrete, except as follows. Trial mixtures having proportions, consistencies and air content suitable for the work shall be made based on methodology described in ACI 211.2, using at least three different cement contents. Trial mixes shall be proportioned to produce air dry unit weight and concrete strengths specified in paragraph GENERAL REQUIREMENTS. Trial mixtures shall be proportioned for maximum permitted slump and air content. Test specimens and testing shall be as specified for normal weight concrete except that 28-day compressive strength shall be determined from test cylinders that have been air dried at 50 percent relative humidity for the last 21 days. Air dry unit weight shall be determined in accordance with ASTM C 567 and shall be
designed to be at least 2.0 pcf less than the maximum specified air dry unit weight in paragraph GENERAL REQUIREMENTS. Curves shall be plotted using these results showing the relationship between cement factor and strength and air dry unit weight. Normal weight fine aggregate may be substituted for part or all of the lightweight fine aggregate, provided the concrete meets the strength and unit weight. A correlation shall also be developed showing the ratio between air dry unit weight and fresh concrete unit weight for each mix. # 1.6.4 Average Compressive Strength Required for Mixtures The mixture proportions selected during mixture design studies shall produce a required average compressive strength (f'cr) exceeding the specified compressive strength (f'c) by the amount indicated below. This required average compressive strength, f'cr, will not be a required acceptance criteria during concrete production. However, whenever the daily average compressive strength at 28 days drops below f'cr during concrete production, or daily average 7-day strength drops below a strength correlated with the 28-day f'cr, the mixture shall be adjusted, as approved, to bring the daily average back up to f'cr. During production, the required f'cr shall be adjusted, as appropriate, based on the standard deviation being attained on the job. # 1.6.4.1 Computations from Test Records Where a concrete production facility has test records, a standard deviation shall be established in accordance with the applicable provisions of ACI 214.3R. Test records from which a standard deviation is calculated shall represent materials, quality control procedures, and conditions similar to those expected; shall represent concrete produced to meet a specified strength or strengths (f'c) within 1,000 psi of that specified for proposed work; and shall consist of at least 30 consecutive tests. A strength test shall be the average of the strengths of two cylinders made from the same sample of concrete and tested at 28 days. Required average compressive strength f'cr used as the basis for selection of concrete proportions shall be the larger of the equations that follow using the standard deviation as determined above: f'cr = f'c + 1.34S where units are in psi f'cr = f'c + 2.33S - 500 where units are in psi Where S = standard deviation Where a concrete production facility does not have test records meeting the requirements above but does have a record based on 15 to 29 consecutive tests, a standard deviation shall be established as the product of the calculated standard deviation and a modification factor from the following table: | | MODIFICATION FACTOR | |-----------------|------------------------| | NUMBER OF TESTS | FOR STANDARD DEVIATION | | | | | 15 | 1.16 | | 20 | 1.08 | | 25 | 1.03 | | 30 or more | 1.00 | # 1.6.4.2 Computations without Previous Test Records When a concrete production facility does not have sufficient field strength test records for calculation of the standard deviation, the required average strength f'cr shall be determined as follows: a. If the specified compressive strength f'c is less than 3,000 psi, $$f'cr = f'c + 1000 psi$$ b. If the specified compressive strength f'c is 3,000 to 5,000 psi, $$f'cr = f'c + 1,200 psi$$ c. If the specified compressive strength f'c is over 5,000 psi, $$f'cr = f'c + 1,400 psi$$ # 1.6.5 Average Flexural Strength Required for Mixtures The mixture proportions selected during mixture design studies for flexural strength mixtures and the mixture used during concrete production shall be designed and adjusted during concrete production as approved, except that the over design for average flexural strength shall simply be 15 percent greater than the specified flexural strength at all times. #### 1.7 STORAGE OF MATERIALS Cement and other cementitious materials shall be stored in weathertight buildings, bins, or silos which will exclude moisture and contaminants and keep each material completely separated. Aggregate stockpiles shall be arranged and used in a manner to avoid excessive segregation and to prevent contamination with other materials or with other sizes of aggregates. Aggregate shall not be stored directly on ground unless a sacrificial layer is left undisturbed. Reinforcing bars and accessories shall be stored above the ground on platforms, skids or other supports. Other materials shall be stored in such a manner as to avoid contamination and deterioration. Admixtures which have been in storage at the project site for longer than 6 months or which have been subjected to freezing shall not be used unless retested and proven to meet the specified requirements. Materials shall be capable of being accurately identified after bundles or containers are opened. # 1.8 GOVERNMENT ASSURANCE INSPECTION AND TESTING Day-to day inspection and testing shall be the responsibility of the Contractor Quality Control (CQC) staff. However, representatives of the Contracting Officer can and will inspect construction as considered appropriate and will monitor operations of the Contractor's CQC staff. Government inspection or testing will not relieve the Contractor of any of his CQC responsibilities. #### 1.8.1 Materials The Government will sample and test aggregates, cementitious materials, other materials, and concrete to determine compliance with the specifications as considered appropriate. The Contractor shall provide facilities and labor as may be necessary for procurement of representative test samples. Samples of aggregates will be obtained at the point of batching in accordance with ASTM D 75. Other materials will be sampled from storage at the jobsite or from other locations as considered appropriate. Samples may be placed in storage for later testing when appropriate. #### 1.8.2 Fresh Concrete Fresh concrete will be sampled as delivered in accordance with ASTM C 172 and tested in accordance with these specifications, as considered necessary. #### 1.8.3 Hardened Concrete Tests on hardened concrete will be performed by the Government when such tests are considered necessary. # 1.8.4 Inspection Concrete operations may be tested and inspected by the Government as the project progresses. Failure to detect defective work or material will not prevent rejection later when a defect is discovered nor will it obligate the Government for final acceptance. # PART 2 PRODUCTS # 2.1 CEMENTITIOUS MATERIALS Cementitious Materials shall be portland cement, or portland cement in combination with pozzolan or ground granulated blast furnace slag and shall conform to appropriate specifications listed below. Use of cementitious materials in concrete which will have surfaces exposed in the completed structure shall be restricted so there is no change in color, source, or type of cementitious material. #### 2.1.1 Portland Cement ASTM C 150, Type I low alkali with a maximum 15 percent amount of tricalcium aluminate, or Type II low alkali including false set requirements. # 2.1.2 High-Early-Strength Portland Cement ASTM C 150, Type III with tricalcium aluminate limited to 5 percent, low alkali. Type III cement shall be used only in isolated instances and only when approved in writing. # 2.1.3 Pozzolan (Fly Ash) ASTM C 618, Class F with the optional requirements for multiple factor, drying shrinkage, and uniformity from Table 2A of ASTM C 618. Requirement for maximum alkalies from Table 1A of ASTM C 618 shall apply. If pozzolan is used, it shall never be less than 15 percent nor more than 35 percent by weight of the total cementitious material. Fly ash shall conform to EPA requirements in accordance with Section 01670 RECYCLED / RECOVERED MATERIALS # 2.1.4 Ground Granulated Blast-Furnace (GGBF) Slag ASTM C 989, Grade 120. #### 2.2 AGGREGATES Aggregates shall conform to the following. # 2.2.1 Fine Aggregate Fine aggregate shall conform to the quality and gradation requirements of ASTM C 33. # 2.2.2 Coarse Aggregate Coarse aggregate shall conform to ASTM C 33, Class 5S, size designation $3/4\,\mathrm{maximum}$. # 2.2.3 Lightweight Aggregate Lightweight fine and coarse aggregate shall conform to the quality and gradation requirements of ASTM C 330, size 3/4" for coarse aggregate. Lightweight aggregate shall be prewetted in accordance with the Manufacturer's instructions unless otherwise specified. For pumped concrete, prewetting shall be sufficient to ensure that slump loss through the pump line does not exceed \4 inches. # 2.3 CHEMICAL ADMIXTURES Chemical admixtures, when required or permitted, shall conform to the appropriate specification listed. Admixtures shall be furnished in liquid form and of suitable concentration for easy, accurate control of dispensing. # 2.3.1 Air-Entraining Admixture ASTM C 260 and shall consistently entrain the air content in the specified ranges under field conditions. # 2.3.2 Accelerating Admixture ASTM C 494, Type C or E, except that calcium chloride or admixtures containing calcium chloride shall not be used. # 2.3.3 Water-Reducing or Retarding Admixture ASTM C 494, Type A, B, or D, except that the 6-month and 1-year compressive and flexural strength tests are waived. #### 2.3.4 High-Range Water Reducer ASTM C 494, Type F or G, except that the 6-month and 1-year strength requirements are waived. The admixture shall be used only when approved in writing, such approval being contingent upon particular mixture control as described in the Contractor's Quality Control Plan and upon performance of separate mixture design studies. #### 2.3.5 Surface Retarder COE CRD-C 94. #### 2.3.6 Expanding Admixture Aluminum powder type expanding admixture conforming to ASTM C 937. # 2.3.7 Other Chemical Admixtures Chemical admixtures for use in producing flowing concrete shall comply with ASTM C 1017, Type I or II. These admixtures shall be used only when approved in writing, such approval being contingent upon particular mixture control as described in the Contractor's Quality Control Plan and upon performance of separate
mixture design studies. #### 2.4 CURING MATERIALS # 2.4.1 Impervious-Sheet Impervious-sheet materials shall conform to ASTM C 171, type optional, except, that polyethylene sheet shall not be used. # 2.4.2 Membrane-Forming Compound Membrane-Forming curing compound shall conform to ASTM C 309, Type 1-D or 2, except that only a styrene acrylate or chlorinated rubber compound meeting Class B requirements shall be used for surfaces that are to be painted or are to receive bituminous roofing, or waterproofing, or floors that are to receive adhesive applications of resilient flooring. The curing compound selected shall be compatible with any subsequent paint, roofing, waterproofing, or flooring specified. Nonpigmented compound shall contain a fugitive dye, and shall have the reflective requirements in ASTM C 309 waived. #### 2.4.3 Burlap and Cotton Mat Burlap and cotton mat used for curing shall conform to AASHTO M 182. #### 2.5 WATER Water for mixing and curing shall be fresh, clean, potable, and free of injurious amounts of oil, acid, salt, or alkali, except that non-potable water may be used if it meets the requirements of COE CRD-C 400. #### 2.6 NONSHRINK GROUT Nonshrink grout shall conform to ASTM C 1107, and shall be a commercial formulation suitable for the proposed application. #### 2.7 NONSLIP SURFACING MATERIAL Nonslip surfacing material shall consist of 55 percent, minimum, aluminum oxide or silicon-dioxide abrasive ceramically bonded together to form a homogeneous material sufficiently porous to provide a good bond with portland cement paste; or factory-graded emery aggregate consisting of not less than 45 percent aluminum oxide and 25 percent ferric oxide. The aggregate shall be well graded from particles retained on the No. 30 sieve to particles passing the No. 8 sieve. #### 2.8 LATEX BONDING AGENT Latex agents for bonding fresh to hardened concrete shall conform to ASTM C 1059. #### 2.9 EPOXY RESIN Epoxy resins for use in repairs shall conform to ASTM C 881, Type V, Grade 2. Class as appropriate to the existing ambient and surface temperatures. #### 2.10 EMBEDDED ITEMS Embedded items shall be of the size and type indicated or as needed for the application. Dovetail slots shall be galvanized steel. Inserts for shelf angles and bolt hangers shall be of malleable iron or cast or wrought steel. # 2.11 FLOOR HARDENER Floor hardener shall be a colorless aqueous solution containing zinc silicofluoride, magnesium silicofluoride, or sodium silicofluoride. These silicofluorides can be used individually or in combination. Proprietary hardeners may be used if approved in writing by the Contracting Officer. #### 2.12 PERIMETER INSULATION Perimeter insulation shall be polystyrene conforming to ASTM C 578, Type II; polyurethane conforming to ASTM C 591, Type II; or cellular glass conforming to ASTM C 552, Type I or IV. Insualtion shall conform to EPA requirements in accordance with Section 01670 RECYCLED / RECOVERED MATERIALS. #### 2.13 VAPOR BARRIER Vapor barrier shall be polyethylene sheeting with a minimum thickness of 6 mils or other equivalent material having a vapor permeance rating not exceeding 0.5 perms as determined in accordance with ASTM E 96. # 2.14 JOINT MATERIALS # 2.14.1 Joint Fillers, Sealers, and Waterstops Expansion joint fillers shall be preformed materials conforming to ASTM D 1751 ASTM D 1752. Materials for waterstops shall be in accordance with the drawings. Materials for and sealing of joints shall conform to the requirements of Section 07900a JOINT SEALING. Sealing of joints for pavements areas shall be shown on the drawings. Sealing of joints for pavement areas shall be shown on the drawings. # 2.14.2 Contraction Joints in Slabs Sawable type contraction joint inserts shall conform to COE CRD-C 540. Nonsawable joint inserts shall have sufficient stiffness to permit placement in plastic concrete without undue deviation from a straight line and shall conform to the physical requirements of COE CRD-C 540, with the exception of Section 3.4 "Resistance to Sawing". Plastic inserts shall be polyvinyl chloride conforming to the materials requirements of COE CRD-C 572. #### PART 3 EXECUTION #### 3.1 PREPARATION FOR PLACING Before commencing concrete placement, the following shall be performed. Surfaces to receive concrete shall be clean and free from frost, ice, mud, and water. Forms shall be in place, cleaned, coated, and adequately supported. Reinforcing steel shall be in place, cleaned, tied, and adequately supported. Transporting and conveying equipment shall be in-place, ready for use, clean, and free of hardened concrete and foreign material. Equipment for consolidating concrete shall be at the placing site and in proper working order. Equipment and material for curing and for protecting concrete from weather or mechanical damage shall be at the placing site, in proper working condition and in sufficient amount for the entire placement. When hot, windy conditions during concreting appear probable, equipment and material shall be at the placing site to provide windbreaks, shading, fogging, or other action to prevent plastic shrinkage cracking or other damaging drying of the concrete. #### 3.1.1 Foundations # 3.1.1.1 Concrete on Earth Foundations Earth (subgrade, base, or subbase courses) surfaces upon which concrete is to be placed shall be clean, damp, and free from debris, frost, ice, and standing or running water. Prior to placement of concrete, the earth shall be well drained and shall be satisfactorily graded and uniformly compacted (except that soils beneath foundations shall not be compacted). # 3.1.1.2 Excavated Surfaces in Lieu of Forms Concrete for footings may be placed directly against the soil provided the earth or rock has been carefully trimmed, is uniform and stable, and meets the compaction requirements of Section 02315EXCAVATION, FILLING, AND BACKFILLING FOR BUILDINGS. The concrete shall be placed without becoming contaminated by loose material, and the outline of the concrete shall be within the specified tolerances. # 3.1.2 Previously Placed Concrete Concrete surfaces to which additional concrete is to be bonded shall be prepared for receiving the next horizontal lift by cleaning the construction joint surface with either air-water cutting, sandblasting, high-pressure water jet, or other approved method. Concrete at the side of vertical construction joints shall be prepared as approved by the Contracting Officer. Air-water cutting shall not be used on formed surfaces or surfaces congested with reinforcing steel. Regardless of the method used, the resulting surfaces shall be free from all laitance and inferior concrete so that clean surfaces of well bonded coarse aggregate are exposed and make up at least 10-percent of the surface area, distributed uniformly throughout the surface. The edges of the coarse aggregate shall not be undercut. The surface of horizontal construction joints shall be kept continuously wet for the first 12 hours during the 24-hour period prior to placing fresh concrete. The surface shall be washed completely clean as the last operation prior to placing the next lift. # 3.1.2.1 Air-Water Cutting Air-water cutting of a fresh concrete surface shall be performed at the proper time and only on horizontal construction joints. The air pressure used in the jet shall be 100 psi plus or minus, 10 psi, and the water pressure shall be just sufficient to bring the water into effective influence of the air pressure. When approved by the Contracting Officer, a surface retarder complying with the requirements of COE CRD-C 94 may be applied to the surface of the lift in order to prolong the period of time during which air-water cutting is effective. After cutting, the surface shall be washed and rinsed as long as there is any trace of cloudiness of the wash water. Where necessary to remove accumulated laitance, coatings, stains, debris, and other foreign material, high-pressure waterjet or sandblasting shall be used as the last operation before placing the next lift. # 3.1.2.2 High-Pressure Water Jet A stream of water under a pressure of not less than 3,000 psi shall be used for cutting and cleaning. Its use shall be delayed until the concrete is sufficiently hard so that only the surface skin or mortar is removed and there is no undercutting of coarse-aggregate particles. If the waterjet is incapable of a satisfactory cleaning, the surface shall be cleaned by sandblasting. # 3.1.2.3 Wet Sandblasting Wet sandblasting shall be used after the concrete has reached sufficient strength to prevent undercutting of the coarse aggregate particles. After wet sandblasting, the surface of the concrete shall then be washed thoroughly to remove all loose materials. # 3.1.2.4 Waste Disposal The method used in disposing of waste water employed in cutting, washing, and rinsing of concrete surfaces shall be such that the waste water does not stain, discolor, or affect exposed surfaces of the structures, or damage the environment of the project area. The method of disposal shall be subject to approval. # 3.1.3 Vapor Barrier Vapor barrier shall be provided beneath the interior on-grade concrete floor slabs. The greatest widths and lengths practicable shall be used to eliminate joints wherever possible. Joints shall be lapped a minimum of 12 inches. Torn, punctured, or damaged vapor barrier material shall be removed and new vapor barrier shall be provided prior to placing concrete. For minor repairs, patches may be made using laps of at least 12 inches. Lapped joints shall be sealed and edges patched with pressure-sensitive adhesive or tape not less than 2 inches wide and compatible with the membrane. Vapor barrier shall be placed directly on underlying subgrade, base course, or capillary water barrier, unless it consists of crushed material or large granular material which could puncture the vapor barrier. In this case, the surface shall be choked with a light layer of sand, as approved,
before placing the vapor barrier. Concrete placement shall be controlled so as to prevent damage to the vapor barrier. #### 3.1.4 Perimeter Insulation Perimeter insulation shall be installed at locations indicated. Adhesive shall be used where insulation is applied to the interior surface of foundation walls and may be used for exterior application. #### 3.1.5 Embedded Items Before placement of concrete, care shall be taken to determine that all embedded items are firmly and securely fastened in place as indicated on the drawings, or required. Conduit and other embedded items shall be clean and free of oil and other foreign matter such as loose coatings or rust, paint, and scale. The embedding of wood in concrete will be permitted only when specifically authorized or directed. Voids in sleeves, inserts, and anchor slots shall be filled temporarily with readily removable materials to prevent the entry of concrete into voids. Welding shall not be performed on embedded metals within 1 feet of the surface of the concrete. Tack welding shall not be performed on or to embedded items. # 3.2 CONCRETE PRODUCTION # 3.2.1 Batching, Mixing, and Transporting Concrete Ready-mixed concrete shall be batched, mixed, and transported in accordance with ASTM C 94, except as otherwise specified. Truck mixers and agitators shall comply with NRMCA TMMB 100. Water shall not be added at the placing site unless specifically approved; and in no case shall it exceed the specified w/c ratio. Any such water shall be injected at the base of the mixer, not at the discharge end. Ready-mix concrete plant equipment and facilities shall be certified in accordance with NRMCA QC 3. Approved batch tickets shall be furnished for each load of ready-mixed concrete. # 3.3 TRANSPORTING CONCRETE TO PROJECT SITE Concrete shall be transported to the placing site in truck mixers or agitators conforming to NRMCA TMMB 100. # 3.4 LIGHTWEIGHT AGGREGATE CONCRETE In addition to the requirements specified for normal weight concrete, lightweight aggregate concrete shall conform to the following. The batching and mixing cycle shall be as directed based on written recommendations from the aggregate supplier which the Contractor shall furnish. Unless otherwise directed, the mixer shall be charged with approximately 2/3 of the total mixing water and all of the aggregate. This shall be mixed for at least 1-1/2 minutes in a stationary mixer or 15 revolutions at mixing speed in a truck mixer. The remaining ingredients shall then be added and mixing continued as specified for normal weight concrete. Lightweight aggregate concrete shall not be vibrated to the extent that large particles of aggregate float to the surface. During finishing, lightweight aggregate concrete shall not be worked to the extent that mortar is driven down and lightweight coarse aggregate appears at the surface. Lightweight aggregate concrete to be pumped shall have a cement content of at least 564 lb. per cu. yd. # 3.5 CONVEYING CONCRETE ON SITE Concrete shall be conveyed from mixer or transporting unit to forms as rapidly as possible and within the time interval specified by methods which will prevent segregation or loss of ingredients using following equipment. Conveying equipment shall be cleaned before each placement. #### 3.5.1 Buckets The interior hopper slope shall be not less than 58 degrees from the horizontal, the minimum dimension of the clear gate opening shall be at least 5 times the nominal maximum-size aggregate, and the area of the gate opening shall not be less than 2 square feet. The maximum dimension of the gate opening shall not be greater than twice the minimum dimension. The bucket gates shall be essentially grout tight when closed and may be manually, pneumatically, or hydraulically operated except that buckets larger than 2 cubic yardsshall not be manually operated. The design of the bucket shall provide means for positive regulation of the amount and rate of deposit of concrete in each dumping position. # 3.5.2 Transfer Hoppers Concrete may be charged into nonagitating hoppers for transfer to other conveying devices. Transfer hoppers shall be capable of receiving concrete directly from delivery vehicles and shall have conical-shaped discharge features. The transfer hopper shall be equipped with a hydraulically operated gate and with a means of external vibration to effect complete discharge. Concrete shall not be held in nonagitating transfer hoppers more than 30 minutes. # 3.5.3 Trucks Truck mixers operating at agitating speed or truck agitators used for transporting plant-mixed concrete shall conform to the requirements of ASTM C 94. #### 3.5.4 Chutes When concrete can be placed directly from a truck mixer, agitator the chutes normally attached to this equipment by the manufacturer may be used. A discharge deflector shall be used when required by the Contracting Officer. Separate chutes and other similar equipment will not be permitted for conveying concrete. # 3.5.5 Belt Conveyors Belt conveyors shall be designed and operated to assure a uniform flow of concrete from mixer to final place of deposit without segregation of ingredients or loss of mortar and shall be provided with positive means, such as discharge baffle or hopper , for preventing segregation of the concrete at the transfer points and the point of placing. Belt conveyors shall be constructed such that the idler spacing shall not exceed 36 inches. The belt speed shall be a minimum of 300 feet per minute and a maximum of 750 feet per minute. If concrete is to be placed through installed horizontal or sloping reinforcing bars, the conveyor shall discharge concrete into a pipe or elephant truck that is long enough to extend through the reinforcing bars. # 3.5.6 Concrete Pumps Concrete may be conveyed by positive displacement pump when approved. The pumping equipment shall be piston or squeeze pressure type; pneumatic placing equipment shall not be used. The pipeline shall be rigid steel pipe or heavy-duty flexible hose. The inside diameter of the pipe shall be at least 3 times the nominal maximum-size coarse aggregate in the concrete mixture to be pumped but not less than 4 inches. Aluminum pipe shall not be used. #### 3.6 PLACING CONCRETE Mixed concrete shall be discharged within 1-1/2 hours or before the mixer drum has revolved 300 revolutions, whichever comes first after the introduction of the mixing water to the cement and aggregates. When the concrete temperature exceeds 85 degrees F, the time shall be reduced to 45 minutes. Concrete shall be placed within 15 minutes after it has been discharged from the transporting unit. Concrete shall be handled from mixer or transporting unit to forms in a continuous manner until the approved unit of operation is completed. Adequate scaffolding, ramps and walkways shall be provided so that personnel and equipment are not supported by in-place reinforcement. Placing will not be permitted when the sun, heat, wind, or limitations of facilities furnished by the Contractor prevent proper consolidation, finishing and curing. Sufficient placing capacity shall be provided so that concrete can be kept free of cold joints. # 3.6.1 Depositing Concrete Concrete shall be deposited as close as possible to its final position in the forms, and there shall be no vertical drop greater than 5 feet except where suitable equipment is provided to prevent segregation and where specifically authorized. Depositing of the concrete shall be so regulated that it will be effectively consolidated in horizontal layers not more than 12 inches thick, except that all slabs shall be placed in a single layer. Concrete to receive other construction shall be screeded to the proper level. Concrete shall be deposited continuously in one layer or in layers so that fresh concrete is deposited on in-place concrete that is still plastic. Fresh concrete shall not be deposited on concrete that has hardened sufficiently to cause formation of seams or planes of weakness within the section. Concrete that has surface dried, partially hardened, or contains foreign material shall not be used. When temporary spreaders are used in the forms, the spreaders shall be removed as their service becomes unnecessary. Concrete shall not be placed in slabs over columns and walls until concrete in columns and walls has been in-place at least two hours or until the concrete begins to lose its plasticity. Concrete for beams, girders, brackets, column capitals, haunches, and drop panels shall be placed at the same time as concrete for adjoining slabs. #### 3.6.2 Consolidation Immediately after placing, each layer of concrete shall be consolidated by internal vibrators, except for slabs 4 inches thick or less. The vibrators shall at all times be adequate in effectiveness and number to properly consolidate the concrete; a spare vibrator shall be kept at the jobsite during all concrete placing operations. The vibrators shall have a frequency of not less than 10,000 vibrations per minute, an amplitude of at least 0.025 inch, and the head diameter shall be appropriate for the structural member and the concrete mixture being placed. Vibrators shall be inserted vertically at uniform spacing over the area of placement. The distance between insertions shall be approximately 1-1/2 times the radius of action of the vibrator so that the area being vibrated will overlap the adjacent just-vibrated area by a reasonable amount. The vibrator shall penetrate rapidly to the bottom of the layer and at least 6 inches into the preceding layer if there is such. Vibrator shall be held stationary until the concrete is consolidated and then vertically withdrawn slowly while operating. Form vibrators shall not be used unless specifically approved and unless forms are constructed to withstand their use. Vibrators shall not be used to move concrete within the forms. Slabs 4 inches and less in thickness shall be consolidated by properly designed vibrating screeds
or other approved technique. Excessive vibration of lightweight concrete resulting in segration or flotation of coarse aggregate shall be prevented. Frequency and amplitude of vibrators shall be determined in accordance with COE CRD-C 521. Grate tampers ("jitterbugs") shall not be used. # 3.6.3 Cold Weather Requirements Special protection measures, approved by the Contracting Officer, shall be used if freezing temperatures are anticipated before the expiration of the specified curing period. The ambient temperature of the air where concrete is to be placed and the temperature of surfaces to receive concrete shall be not less than 40 degrees F. The temperature of the concrete when placed shall be not less than 50 degrees F nor more than 75 degrees F. Heating of the mixing water or aggregates will be required to regulate the concrete placing temperature. Materials entering the mixer shall be free from ice, snow, or frozen lumps. Salt, chemicals or other materials shall not be incorporated in the concrete to prevent freezing. Upon written approval, an accelerating admixture conforming to ASTM C 494, Type C or E may be used, provided it contains no calcium chloride. Calcium chloride shall not be used. # 3.6.4 Hot Weather Requirements When the ambient temperature during concrete placing is expected to exceed 85 degrees F, the concrete shall be placed and finished with procedures previously submitted and as specified herein. The concrete temperature at time of delivery to the forms shall not exceed the temperature shown in the table below when measured in accordance with ASTM C 1064/C 1064M. Cooling of the mixing water or aggregates or placing concrete in the cooler part of the day may be required to obtain an adequate placing temperature. A retarder may be used, as approved, to facilitate placing and finishing. Steel forms and reinforcements shall be cooled as approved prior to concrete placement when steel temperatures are greater than 120 degrees F. Conveying and placing equipment shall be cooled if necessary to maintain proper concrete-placing temperature. # Maximum Allowable Concrete Placing Temperature | Relative Humidity, Percent, During Time of Concrete Placement | Maximum Allowable Concrete
Temperature
Degrees | |---|--| | Greater than 60 40-60 Less than 40 | 90 F
85 F
80 F | # 3.6.5 Prevention of Plastic Shrinkage Cracking During hot weather with low humidity, and particularly with appreciable wind, as well as interior placements when space heaters produce low humidity, the Contractor shall be alert to the tendency for plastic shrinkage cracks to develop and shall institute measures to prevent this. Particular care shall be taken if plastic shrinkage cracking is potentially imminent and especially if it has developed during a previous placement. Periods of high potential for plastic shrinkage cracking can be anticipated by use of Fig. 2.1.5 of ACI 305R. In addition the concrete placement shall be further protected by erecting shades and windbreaks and by applying fog sprays of water, sprinkling, ponding or wet covering. Plastic shrinkage cracks that occur shall be filled by injection of epoxy resin as directed, after the concrete hardens. Plastic shrinkage cracks shall never be troweled over or filled with slurry. # 3.6.6 Placing Concrete in Congested Areas Special care shall be used to ensure complete filling of the forms, elimination of all voids, and complete consolidation of the concrete when placing concrete in areas congested with reinforcing bars, embedded items, waterstops and other tight spacing. An appropriate concrete mixture shall be used, and the nominal maximum size of aggregate (NMSA) shall meet the specified criteria when evaluated for the congested area. Vibrators with heads of a size appropriate for the clearances available shall be used, and the consolidation operation shall be closely supervised to ensure complete and thorough consolidation at all points. Where necessary, splices of reinforcing bars shall be alternated to reduce congestion. Where two mats of closely spaced reinforcing are required, the bars in each mat shall be placed in matching alignment to reduce congestion. Reinforcing bars may be temporarily crowded to one side during concrete placement provided they are returned to exact required location before concrete placement and consolidation are completed. #### 3.6.7 Placing Flowable Concrete If a plasticizing admixture conforming to ASTM C 1017 is used or if a Type F or G high range water reducing admixture is permitted to increase the slump, the concrete shall meet all requirements of paragraph GENERAL REQUIREMENTS in PART 1. Extreme care shall be used in conveying and placing the concrete to avoid segregation. Consolidation and finishing shall meet all requirements of paragraphs Placing Concrete, Finishing Formed Surfaces, and Finishing Unformed Surfaces. No relaxation of requirements to accommodate flowable concrete will be permitted. #### 3.7 JOINTS Joints shall be located and constructed as indicated or approved. Joints not indicated on the drawings shall be located and constructed to minimize the impact on the strength of the structure. In general, such joints shall be located near the middle of the spans of supported slabs, beams, and girders unless a beam intersects a girder at this point, in which case the joint in the girder shall be offset a distance equal to twice the width of the beam. Joints in walls and columns shall be at the underside of floors, slabs, beams, or girders and at the tops of footings or floor slabs, unless otherwise approved. Joints shall be perpendicular to the main reinforcement. All reinforcement shall be continued across joints; except that reinforcement or other fixed metal items shall not be continuous through expansion joints, or through construction or contraction joints in slabs on grade. Reinforcement shall be 2 inches clear from each joint. Except where otherwise indicated, construction joints between interior slabs on grade and vertical surfaces shall consist of 30 pound asphalt-saturated felt, extending for the full depth of the slab. perimeters of the slabs shall be free of fins, rough edges, spalling, or other unsightly appearance. Reservoir for sealant for construction and contraction joints in slabs shall be formed to the dimensions shown on the drawings by removing snap-out joint-forming inserts, by sawing sawable inserts, or by sawing to widen the top portion of sawed joints. Joints to be sealed shall be cleaned and sealed as indicated and in accordance with Section 07900a JOINT SEALING. #### 3.7.1 Contraction Joints in Slabs on Grade Contraction joints shall be located and detailed as shown on the drawings. Contraction Joints shall be produced by forming a weakened plane in the concrete slab by use of rigid inserts impressed in the concrete during placing operations or sawing a continuous slot with a concrete saw. Regardless of method used to produce the weakened plane, it shall be 1/4 the depth of the slab thickness. For saw-cut joints, cutting shall be timed properly with the set of the concrete. Cutting shall be started as soon as the concrete has hardened sufficiently to prevent ravelling of the edges of the saw cut. Cutting shall be completed before shrinkage stresses become sufficient to produce cracking. Reservoir for joint sealant shall be formed as previously specified. # 3.7.2 Expansion Joints Sealing of these joints shall conform to the requirements of Section 07900a JOINT SEALING. # 3.7.3 Waterstops Waterstops shall be installed in conformance with the locations and details shown on the drawings using materials and procedures specified. # 3.7.4 Dowels and Tie Bars Dowels and tie bars shall be installed at the locations shown on the drawings and to the details shown, and herein. Conventional smooth "paving" dowels shall be installed in slabs using approved methods to hold the dowel in place during concreting within a maximum alignment tolerance of 1/8 inch in 12 inches. "Structural" type deformed bar dowels, or tie bars, shall be installed to meet the specified tolerances. Care shall be taken during placing adjacent to and around dowels and tie bars to ensure there is no displacement of the dowel or tie bar and that the concrete completely embeds the dowel or tie bar and is thoroughly consolidated. #### 3.8 FINISHING FORMED SURFACES #### 3.9 Troweled Finish All areas____ shall be given a trowel finish. After floating is complete and after the surface moisture has disappeared, unformed surfaces shall be steel-troweled to a smooth, even, dense finish, free from blemishes including trowel marks. In lieu of hand finishing, an approved power finishing machine may be used in accordance with the directions of the machine manufacturer. Additional trowelings shall be performed, either by hand or machine until the surface has been troweled at least 2 times, with waiting period between each. Care shall be taken to prevent blistering and if such occurs, troweling shall immediately be stopped and operations and surfaces corrected. A final hard steel troweling shall be done by hand, with the trowel tipped, and using hard pressure, when the surface is at a point that the trowel will produce a ringing sound. The finished surface shall be thoroughly consolidated and shall be essentially free of trowel marks and be uniform in texture and appearance. The concrete mixture used for troweled finished areas shall be adjusted, if necessary, in order to provide sufficient fines (cementitious material and fine sand) to finish properly. #### 3.10 FLOOR HARDENER Areas as indicated on the drawings shall be treated with floor hardener. Floor hardener shall be applied after the concrete has been cured and then air dried for 28 days. Three coats shall be applied, each the day after the preceding coat was applied. For
the first application, one pound of the silocofluoride shall be dissolved in one gallon of water. For subsequent applications, the solution shall be two pounds of silicofluoride to each gallon of water. Floor should be mopped with clear water shortly after the preceding application has dried to remove encrusted salts. Proprietary hardeners shall be applied in accordance with the manufacturer's instructions. During application, area should be well ventilated. Precautions shall be taken when applying silicofluorides due to the toxicity of the salts. Any compound that contacts glass or aluminum should be immediately removed with clear water. # 3.11 PAVEMENTS AND RELATED ITEMS #### 3.11.1 Pavements Pavements shall be constructed where shown on the drawings. Interior pavements are the floor slabs in the Shipping/Receiving, Warehouse, and Fabrication Shop Areas. After forms are set and underlying material prepared as specified, the concrete shall be placed uniformly throughout the area and thoroughly vibrated. As soon as placed and vibrated, the concrete shall be struck off and screeded to the crown and cross section and to such elevation above grade that when consolidated and finished, the surface of the pavement will be at the required elevation. The entire surface shall be tamped with the strike off, or consolidated with a vibrating screed, and this operation continued until the required compaction and reduction of internal and surface voids are accomplished. Care shall be taken to prevent bringing excess paste to the surface. Immediately following the final consolidation of the surface, the pavement shall be floated longitudinally from bridges resting on the side forms and spanning but not touching the concrete. If necessary, additional concrete shall be placed and screeded, and the float operated until a satisfactory surface has been produced. The floating operation shall be advanced not more than half the length of the float and then continued over the new and previously floated surfaces. After finishing is completed but while the concrete is still plastic, minor irregularities and score marks in the pavement surface shall be eliminated by means of long-handled cutting straightedges. Straightedges shall be 12 feet in length and shall be operated from the sides of the pavement and from bridges. A straightedge operated from the side of the pavement shall be equipped with a handle 3 feet longer than one-half the width of the pavement. The surface shall then be tested for trueness with a 12 foot straightedge held in successive positions parallel and at right angles to the center line of the pavement, and the whole area covered as necessary to detect variations. The straightedge shall be advanced along the pavement in successive stages of not more than one-half the length of the straightedge. Depressions shall be immediately filled with freshly mixed concrete, struck off, consolidated, and refinished. Projections above the required elevation shall also be struck off and refinished. The straightedge testing and finishing shall continue until the entire surface of the concrete is true. The sequence of operations for interior pavements shall be finishing, floating, straightedging, edging of joints and then a steel trowel finish as specified for concrete floor slabs. Before the surface sheen has disappeared and well before the concrete becomes nonplastic, the surface of the exterior pavement shall be given a broomed finish. Curing shall be as specified. #### 3.11.1.1 Surface Tolerance for Pavements - a. Surface Tolerance for Concrete Pavements: Exterior and interior concrete pavements shall be smooth and true to grade and cross section. When tested with a 10-foot straightedge on lines 5 feet apart parallel with the center line of the pavement, the surface shall not vary more than 1/8-inch from the testing edge of the straightedge. - Surface Tests and Corrections: As soon as the concrete has hardened enough to permit walking thereon, but not later than 24 hours after the concrete has been placed, the surface of the pavement shall be tested with an approved straightedge or other approved device that will reveal all surface irregularities varying from the testing edge exceeding tolerances specified above for roadways and interior pavements. The testing shall be performed by the Contractor at no expense to the Government. High spots indicated by the testing edge in excess of applicable tolerances shall be marked plainly and removed or reduced by rubbing with a carborundum brick and water. Rubbing shall be discontinued as soon as contact with the coarse aggregate is made. If high spots cannot be removed in the above manner because of disturbing the coarse aggregate, the high portion of the pavement shall be corrected by an approved surface-grinding machine after the concrete is 14 days old, or the pavement shall be removed and replaced. No area of pavement that was removed and replaced and no adjacent slab or portion of a slab that remains in the pavement abutting the replacement slab shall have a length or width less than 10 feet. Testing for acceptance or rejection of the finished pavement surface will be performed by the Contractor in the presence of the Contracting Officer. #### 3.11.1.2 Broom Texture Finish Surface texture shall be applied using an approved hand or mechanical stiff bristle broom of a type that will produce uniform corrugations. For hand brooming, the brooms shall have handles longer than half the width of slab to be finished. The hand brooms shall be drawn transversely across the surface from the center line to each edge with slight overlapping strokes. For mechanical operations, the broom shall be operated with the length of the broom parallel to the pavement center line. The broom shall be capable of traversing the full width of the pavement in a single pass at a uniform speed and with a uniform pressure. Successive passes of the broom shall be overlapped the minimum necessary to obtain a uniformly textures surface. Brooms shall be washed thoroughly and dried at frequent intervals during use. Worm or damaged brooms shall be removed from the jobsite. Brooming should be completed before the concrete has dried to the point where the surface will be unduly torn or roughened, but after drying has progressed enough so that the mortar will not flow and attenuate the sharpness of the corrugations. Specific requirements for the texturing shall be as shown, but in general the corrugations should be uniform in appearance and approximately 1/16-inch in depth but not more than 1/8-inch in depth. #### 3.11.2 Pits and Trenches Pits and trenches shall be constructed as indicated on the drawings. Bottoms and walls shall be placed monolithically or waterstops and keys, shall be provided as approved. # 3.12 CURING AND PROTECTION #### 3.12.1 General Concrete shall be cured by an approved method for the period of time given below: All other concrete 7 days Immediately after placement, concrete shall be protected from premature drying, extremes in temperatures, rapid temperature change, mechanical injury and damage from rain and flowing water for the duration of the curing period. Air and forms in contact with concrete shall be maintained at a temperature above 50 degrees F for the first 3 days and at a temperature above 32 degrees F for the remainder of the specified curing period. Exhaust fumes from combustion heating units shall be vented to the outside of the enclosure, and heaters and ducts shall be placed and directed so as not to cause areas of overheating and drying of concrete surfaces or to create fire hazards. Materials and equipment needed for adequate curing and protection shall be available and at the site prior to placing concrete. No fire or excessive heat, including welding, shall be permitted near or in direct contact with the concrete at any time. Except as otherwise permitted by paragraph Membrane Forming Curing Compounds, moist curing shall be provided for any areas to receive floor hardener, any paint or other applied coating, or to which other concrete is to be bonded. Except for plastic coated burlap, impervious sheeting alone shall not be used for curing. Moist curing shall be used for all pavements. # 3.12.2 Moist Curing Concrete to be moist-cured shall be maintained continuously wet for the entire curing period, commencing immediately after finishing. If water or curing materials used stain or discolor concrete surfaces which are to be permanently exposed, the concrete surfaces shall be cleaned as approved. When wooden forms are left in place during curing, they shall be kept wet at all times. If steel forms are used in hot weather, nonsupporting vertical forms shall be broken loose from the concrete soon after the concrete hardens and curing water continually applied in this void. If the forms are removed before the end of the curing period, curing shall be carried out as on unformed surfaces, using suitable materials. Surfaces shall be cured by ponding, by continuous sprinkling, by continuously saturated burlap or cotton mats, or by continuously saturated plastic coated burlap. Burlap and mats shall be clean and free from any contamination and shall be completely saturated before being placed on the concrete. The Contractor shall have an approved work system to ensure that moist curing is continuous 24 hours per day. # 3.12.3 Membrane Forming Curing Compounds Membrane curing shall not be used on surfaces that are to receive any subsequent treatment depending on adhesion or bonding to the concrete, including surfaces to which a smooth finish is to be applied or other concrete to be bonded. However, a styrene acrylate or chlorinated rubber compound meeting ASTM C 309, Class B requirements, may be used for surfaces which are to be painted or are to receive bituminous roofing or waterproofing, or floors that are to receive adhesive applications of resilient flooring. The curing compound selected
shall be compatible with any subsequent paint, roofing, waterproofing or flooring specified. Membrane curing compound shall not be used on surfaces that are maintained at curing temperatures with free steam. Curing compound shall be applied to formed surfaces immediately after the forms are removed and prior to any patching or other surface treatment except the cleaning of loose sand, mortar, and debris from the surface. All surfaces shall be thoroughly moistened with water. Curing compound shall be applied to slab surfaces as soon as the bleeding water has disappeared, with the tops of joints being temporarily sealed to prevent entry of the compound and to prevent moisture loss during the curing period. The curing compound shall be applied in a two-coat continuous operation by approved motorized power-spraying equipment operating at a minimum pressure of 75 psi, at a uniform coverage of not more than 400 square feet per gallon for each coat, and the second coat shall be applied perpendicular to the first coat. Concrete surfaces which have been subjected to rainfall within 3 hours after curing compound has been applied shall be resprayed by the method and at the coverage specified. Surfaces on which clear compound is used shall be shaded from direct rays of the sun for the first 3 days. Surfaces coated with curing compound shall be kept free of foot and vehicular traffic, and from other sources of abrasion and contamination during the curing period. # 3.12.4 Impervious Sheeting Except for plastic coated burlap, impervious sheeting alone shall not be used for curing. Impervious-sheet curing shall only be used on horizontal or nearly horizontal surfaces. Surfaces shall be thoroughly wetted and be completely covered with the sheeting. Sheeting shall be at least 18 inches wider than the concrete surface to be covered. Covering shall be laid with light-colored side up. Covering shall be lapped not less than 12 inches and securely weighted down or shall be lapped not less than 4 inches and taped to form a continuous cover with completely closed joints. The sheet shall be weighted to prevent displacement so that it remains in contact with the concrete during the specified length of curing. Coverings shall be folded down over exposed edges of slabs and secured by approved means. Sheets shall be immediately repaired or replaced if tears or holes appear during the curing period. # 3.12.5 Ponding or Immersion Concrete shall be continually immersed throughout the curing period. Water shall not be more than 20 degrees F less than the temperature of the concrete. # 3.12.6 Cold Weather Curing and Protection When the daily ambient low temperature is less than 32 degrees F the temperature of the concrete shall be maintained above 40 degrees F for the first seven days after placing. During the period of protection removal, the air temperature adjacent to the concrete surfaces shall be controlled so that concrete near the surface will not be subjected to a temperature differential of more than 25 degrees F as determined by suitable temperature measuring devices furnished by the Contractor, as required, and installed adjacent to the concrete surface and 2 inches inside the surface of the concrete. The installation of the thermometers shall be made by the Contractor as directed. # 3.13 SETTING BASE PLATES AND BEARING PLATES After being properly positioned, column base plates, bearing plates for beams and similar structural members, and machinery and equipment base plates shall be set to the proper line and elevation with damp-pack bedding mortar, except where nonshrink grout is indicated. The thickness of the mortar or grout shall be approximately 1/24 the width of the plate, but not less than 3/4 inch. Concrete and metal surfaces in contact with grout shall be clean and free of oil and grease, and concrete surfaces in contact with grout shall be damp and free of laitance when grout is placed. Nonshrink grout shall be used. # 3.13.1 Damp-Pack Bedding Mortar Damp-pack bedding mortar shall consist of 1 part cement and 2-1/2 parts fine aggregate having water content such that a mass of mortar tightly squeezed in the hand will retain its shape but will crumble when disturbed. The space between the top of the concrete and bottom of the bearing plate or base shall be packed with the bedding mortar by tamping or ramming with a bar or rod until it is completely filled. #### 3.13.2 Nonshrink Grout Nonshrink grout shall be a ready-mixed material requiring only the addition of water. Water content shall be the minimum that will provide a flowable mixture and completely fill the space to be grouted without segregation, bleeding, or reduction of strength. # 3.13.2.1 Mixing and Placing of Nonshrink Grout Mixing and placing shall be in conformance with the material manufacturer's instructions and as specified therein. Ingredients shall be thoroughly dry-mixed before adding water. After adding water, the batch shall be mixed for 3 minutes. Batches shall be of size to allow continuous placement of freshly mixed grout. Grout not used within 30 minutes after mixing shall be discarded. The space between the top of the concrete or machinery-bearing surface and the plate shall be filled solid with the grout. Forms shall be of wood or other equally suitable material for completely retaining the grout on all sides and on top and shall be removed after the grout has set. The placed grout shall be carefully worked by rodding or other means to eliminate voids; however, overworking and breakdown of the initial set shall be avoided. Grout shall not be retempered or subjected to vibration from any source. Where clearances are unusually small, placement shall be under pressure with a grout pump. Temperature of the grout, and of surfaces receiving the grout, shall be maintained at 65 to 85 degrees F until after setting. ## 3.13.2.2 Treatment of Exposed Surfaces For metal-oxidizing nonshrink grout, exposed surfaces shall be cut back 1 inch and immediately covered with a parge coat of mortar consisting of 1 part portland cement and 2-1/2 parts fine aggregate by weight, with sufficient water to make a plastic mixture. The parge coat shall have a smooth finish. For other mortars or grouts, exposed surfaces shall have a smooth-dense finish and be left untreated. Curing shall comply with paragraph CURING AND PROTECTION. ## 3.14 TESTING AND INSPECTION FOR CONTRACTOR QUALITY CONTROL The Contractor shall perform the inspection and tests described below and, based upon the results of these inspections and tests, shall take the action required and shall submit specified reports. When, in the opinion of the Contracting Officer, the concreting operation is out of control, concrete placement shall cease and the operation shall be corrected. The laboratory performing the tests shall be on site and shall conform with ASTM C 1077. Materials may be subjected to check testing by the Government from samples obtained at the manufacturer, at transfer points, or at the project site. The Government will inspect the laboratory, equipment, and test procedures prior to start of concreting operations and periodically thereafter for conformance with ASTM C 1077. # 3.14.1 Quality of Aggregates Thirty days prior to the start of concrete placement, the Contractor shall perform all tests for aggregate quality required by ASTM C 33. Tests shall not have been performed more than 6 months prior to submission. The mortar bar method of testing for alkali reaction shall be performed only if the chemical test method indicates the aggregates to be potentially deleterious. In addition, after the start of concrete placement, the Contractor shall perform tests for aggregate quality at least every three months, and when the source of aggregate or aggregate quality changes. Gradation tests shall be made at the batch plant on a daily basis. Samples tested after the start of concrete placement shall be taken immediately prior to entering the concrete mixer. #### 3.14.2 Concrete Mixture a. Air Content Testing. One test for air content shall be performed per truckload of concrete.. Tests shall be made in accordance with ASTM C 231 for normal weight concrete. Whenever a test result is outside the specification limits, the concrete shall not be delivered to the forms. Adjustments shall be made at the batch plant to the dosage of air-entrainment admixture before concrete delivery is resumed. - c. Slump Testing. One slump test shall be performed per truckload of concrete. Tests shall be performed in accordance with ASTM C 143. Whenever a test result is outside the specification limits, the concrete shall not be delivered to the forms. An adjustment should be made in the batch weights of water and fine aggregate before concrete delivery is resumed. When making adjustments, the water-cement ratio should not exceed that specified for the required strength in the submitted concrete mixture proportion study. - e. Temperature. The temperature of the concrete shall be measured when compressive strength specimens are fabricated. Measurement shall be in accordance with ASTM C 1064/C 1064M. The temperature shall be reported along with the compressive strength data. - f. Strength Specimens. At least one set of test specimens shall be made, for compressive or flexural strength as appropriate, on each different concrete mixture placed during the day for each 500 cubic yards or portion thereof of that concrete mixture placed each day. Additional sets of test specimens shall be made, as directed by the Contracting Officer, when the mixture proportions are changed or when low strengths have been detected. A set of test specimens for concrete with a 28-day specified strength per paragraph Strength Requirements in PART 1 shall consist of four specimens, two to be tested at 7 days and two at 28 days. Test specimens shall be molded and cured in accordance with ASTM C 31 and tested in accordance with ASTM C 39 for test cylinders and
ASTM C 78 for test beams. Results of all strength tests shall be reported immediately to the Contracting Officer. # 3.14.3 Inspection Before Placing Foundations, construction joints, forms, and embedded items shall be inspected by the Contractor in sufficient time prior to each concrete placement in order to certify to the Contracting Officer that they are ready to receive concrete. The results of each inspection shall be reported in writing. # 3.14.4 Placing The placing foreman shall supervise placing operations, shall determine that the correct quality of concrete or grout is placed in each location as specified and as directed by the Contracting Officer, and shall be responsible for measuring and recording concrete temperatures and ambient temperature hourly during placing operations, weather conditions, time of placement, volume placed, and method of placement. The placing foreman shall not permit placing to begin until it has been verified that an adequate number of vibrators in working order and with competent operators are available. Placing shall not be continued if any pile of concrete is inadequately consolidated. If any concrete fails to meet the temperature requirements, immediate steps shall be taken to improve temperature controls. # 3.14.5 Vibrators The frequency and amplitude of each vibrator shall be determined in accordance with COE CRD-C 521 prior to initial use and at least once a month when concrete is being placed. Additional tests shall be made as directed when a vibrator does not appear to be adequately consolidating the concrete. The frequency shall be determined while the vibrator is operating in concrete with the tachometer being held against the upper end of the vibrator head while almost submerged and just before the vibrator is withdrawn from the concrete. The amplitude shall be determined with the head vibrating in air. Two measurements shall be taken, one near the tip and another near the upper end of the vibrator head, and these results averaged. The make, model, type, and size of the vibrator and frequency and amplitude results shall be reported in writing. Any vibrator not meeting the requirements of paragraph Consolidation, shall be immediately removed from service and repaired or replaced. # 3.14.6 Curing Inspection The contractor shall perform daily inspections of curing operations and immediately address any deficiencies observed. #### 3.14.7 Cold-Weather Protection At least once each shift and once per day on non-work days, an inspection shall be made of all areas subject to cold-weather protection. Any deficiencies shall be noted, corrected, and reported. # 3.14.8 Reports All results of tests or inspections conducted shall be reported informally as they are completed and in writing daily. During periods of cold-weather protection, reports of pertinent temperatures shall be made daily. These requirements do not relieve the Contractor of the obligation to report certain failures immediately as required in preceding paragraphs. Such reports of failures and the action taken shall be confirmed in writing in the routine reports. The Contracting Officer has the right to examine all contractor quality control records. -- End of Section -- ## SECTION 04200A # MASONRY 10/01 ## PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ACI INTERNATIONAL (ACI) ACI SP-66 (1994) ACI Detailing Manual ## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM A 153/A 153M | (2001) Zinc Coating (Hot-Dip) on Iron and
Steel Hardware | |-------------------|---| | ASTM A 615/A 615M | (2000) Deformed and Plain Billet-Steel
Bars for Concrete Reinforcement | | ASTM A 82 | (1997ae1) Steel Wire, Plain, for Concrete
Reinforcement | | ASTM C 1072 | (2000) Measurement of Masonry Flexural
Bond Strength | | ASTM C 270 | (2000) Mortar for Unit Masonry | | ASTM C 494/C 494M | (1999ae1) Chemical Admixtures for Concrete | | ASTM C 641 | (1982; R 1998e1) Staining Materials in
Lightweight Concrete Aggregates | | ASTM C 780 | (2000) Preconstruction and Construction
Evaluation of Mortars for Plain and
Reinforced Unit Masonry | | ASTM C 90 | (2000) Loadbearing Concrete Masonry Units | | ASTM C 91 | (1999) Masonry Cement | #### 1.2 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: ## SD-02 Shop Drawings CONCRETE MASONRY UNITS (CMU); G A/E Drawings including plans, elevations, and details of wall reinforcement; details of reinforcing bars at corners and wall intersections; offsets; tops, bottoms, and ends of walls; control and expansion joints; and wall openings. Bar splice locations shall be shown. Drawings shall be provided showing the location and layout of glass block units. Bent bars shall be identified on a bending diagram and shall be referenced and located on the drawings. Wall dimensions, bar clearances, and wall openings greater than one masonry unit in area shall be shown. No approval will be given to the shop drawings until the Contractor certifies that all openings, including those for mechanical and electrical service, are shown. If, during construction, additional masonry openings are required, the approved shop drawings shall be resubmitted with the additional openings shown along with the proposed changes. Location of these additional openings shall be clearly highlighted. The minimum scale for wall elevations shall be 1/4 inch per foot. Reinforcement bending details shall conform to the requirements of ACI SP-66. Test reports from an approved independent laboratory. Test reports on a previously tested material shall be certified as the same as that proposed for use in this project. Copies of masonry inspector reports. #### SD-07 Certificates Anchors, Ties, and Bar Positioners; G A/E Joint Reinforcement; G A/E Reinforcing Steel Bars and Rods; G A/E Certificates of compliance stating that the materials meet the specified requirements. # 1.3 DELIVERY, STORAGE AND HANDLING1.3.1 Reinforcement, Anchors, and Ties Steel reinforcing bars, coated anchors, ties, and joint reinforcement shall be stored above the ground. Steel reinforcing bars and uncoated ties shall be free of loose mill scale and rust. # 1.3.2 Cementitious Materials, Sand and Aggregates Cementitious and other packaged materials shall be delivered in unopened containers, plainly marked and labeled with manufacturers' names and brands. Cementitious material shall be stored in dry, weathertight enclosures or be completely covered. Cement shall be handled in a manner that will prevent the inclusion of foreign materials and damage by water or dampness. Sand and aggregates shall be stored in a manner to prevent contamination or segregation. ## PART 2 PRODUCTS #### 2.1 GENERAL REQUIREMENTS The source of materials which will affect the appearance of the finished work shall not be changed after the work has started except with Contracting Officer's approval. ## 2.2 CONCRETE MASONRY UNITS (CMU) Hollow and solid concrete masonry units shall conform to ASTM C 90. Cement shall have a low alkali content and be of one brand. # 2.2.1 Aggregates Lightweight aggregates and blends of lightweight and heavier aggregates in proportions used in producing the units, shall comply with the following requirements when tested for stain-producing iron compounds in accordance with ASTM C 641: by visual classification method, the iron stain deposited on the filter paper shall not exceed the "light stain" classification. ## 2.2.2 Kinds and Shapes Units shall be modular in size and shall include closer, jamb, header, lintel, and bond beam units and special shapes and sizes to complete the work as indicated. In exposed interior masonry surfaces, units having a bullnose shall be used for vertical external corners except at door, window, and louver jambs. Radius of the bullnose shall be 1 inch. Units used in exposed masonry surfaces in any one building shall have a uniform fine to medium texture and a uniform color. # 2.3 PRECAST CONCRETE ITEMS2.3.1 Splash Blocks Splash blocks shall be as detailed. Reinforcement shall be the manufacturer's standard. # 2.4 MORTAR Mortar shall be Type N in accordance with the proportion specification of ASTM C 270 except Type S cement-lime mortar proportions shall be 1 part cement, 1/2 part lime and 4-1/2 parts aggregate; Type N cement-lime mortar proportions shall be 1 part cement, 1 part lime and 6 parts aggregate; when masonry cement ASTM C 91 is used the maximum air content shall be limited to 12 percent and performance equal to cement-lime mortar shall be verified. Verification of masonry cement performance shall be based on ASTM C 780 and ASTM C 1072. Mortar for prefaced concrete masonry unit wainscots shall contain aggregates with 100 percent passing the No. 8 sieve and 95 percent passing the No. 16 sieve. Pointing mortar in showers and kitchens shall contain ammonium stearate, or aluminum tri-stearate, or calcium stearate in an amount equal to 3 percent by weight of cement used. Cement shall have a low alkali content and be of one brand. Aggregates shall be from one source. #### 2.4.1 Admixtures In cold weather, a non-chloride based accelerating admixture may be used subject to approval. Accelerating admixture shall be non-corrosive, shall contain less than 0.2 percent chlorides, and shall conform to ASTM C 494/C 494M, Type C. ## 2.4.2 Coloring Mortar coloring shall be added to the mortar used for exposed masonry surfaces to produce a uniform color matching
existing adjacent mortar. Mortar coloring shall not exceed 3 percent of the weight of cement for carbon black and ten percent of the weight of cement for all other pigments. Mortar coloring shall be chemically inert, of finely ground limeproof pigment, and furnished in accurately pre-measured and packaged units that can be added to a measured amount of cement. #### 2.5 MORTAR2.5.1 Admixtures In cold weather, a non-chloride based accelerating admixture may be used subject to approval. Accelerating admixture shall be non-corrosive, shall contain less than 0.2 percent chlorides, and shall conform to ASTM C 494/C 494M, Type C. ## 2.5.2 Grout Barriers Grout barriers for vertical cores shall consist of fine mesh wire, fiberglass, or expanded metal. # 2.6 ANCHORS, TIES, AND BAR POSITIONERS Anchors and ties shall be fabricated without drips or crimps and shall be zinc-coated in accordance with ASTM A 153/A 153M, Class B-2. Steel wire used for anchors and ties shall be fabricated from steel wire conforming to ASTM A 82. Anchors and ties shall be sized to provide a minimum of 5/8 inch mortar cover from either face. #### 2.6.1 Bar Positioners Bar positioners, used to prevent displacement of reinforcing bars during the course of construction, shall be factory fabricated from 9 gauge steel wire or equivalent, and coated with a hot-dip galvanized finish. Not more than one wire shall cross the cell. ## 2.7 JOINT REINFORCEMENT Joint reinforcement shall be factory fabricated from steel wire conforming to ASTM A 82, welded construction. Tack welding will not be acceptable in reinforcement used for wall ties. Wire shall have zinc coating conforming to ASTM A 153/A 153M, Class B-2. All wires shall be a minimum of 9 gauge. Reinforcement shall be ladder type design, having one longitudinal wire in the mortar bed of each face shell for hollow units and one wire for solid units. Joint reinforcement shall be placed a minimum of 5/8 inch cover from either face. The distance between crosswires shall not exceed 16 inches. Joint reinforcement for straight runs shall be furnished in flat sections not less than 10 feet long. Joint reinforcement shall be provided with factory formed corners and intersections. If approved for use, joint reinforcement may be furnished with adjustable wall tie features. #### 2.8 REINFORCING STEEL BARS AND RODS Reinforcing steel bars and rods shall conform to ASTM A 615/A 615M, Grade 60. ## PART 3 EXECUTION ## 3.1 ENVIRONMENTAL REQUIREMENTS ## 3.2 LAYING MASONRY UNITS Masonry units shall be laid in running bond pattern. Facing courses shall be level with back-up courses, unless the use of adjustable ties has been approved in which case the tolerances shall be plus or minus 1/2 inch. Each unit shall be adjusted to its final position while mortar is still soft and plastic. Units that have been disturbed after the mortar has stiffened shall be removed, cleaned, and relaid with fresh mortar. Air spaces, cavities, chases, expansion joints, and spaces to be grouted shall be kept free from mortar and other debris. Units used in exposed masonry surfaces shall be selected from those having the least amount of chipped edges or other imperfections detracting from the appearance of the finished work. Vertical joints shall be kept plumb. Units being laid and surfaces to receive units shall be free of water film and frost. Solid units shall be laid in a nonfurrowed full bed of mortar. Mortar for veneer wythes shall be beveled and sloped toward the center of the wythe from the cavity side. Units shall be shoved into place so that the vertical joints are tight. Vertical joints of brick and the vertical face shells of concrete masonry units, except where indicated at control, expansion, and isolation joints, shall be completely filled with mortar. Mortar will be permitted to protrude up to 1/2 inch into the space or cells to be grouted. Means shall be provided to prevent mortar from dropping into the space below. In double wythe construction, the inner wythe may be brought up not more than 16 inches ahead of the outer wythe. Collar joints shall be filled with mortar or grout during the laying of the facing wythe, and filling shall not lag the laying of the facing wythe by more than 8 inches. # 3.2.1 Surface Preparation Surfaces upon which masonry is placed shall be cleaned of laitance, dust, dirt, oil, organic matter, or other foreign materials and shall be slightly roughened to provide a surface texture with a depth of at least 1/8 inch. Sandblasting shall be used, if necessary, to remove laitance from pores and to expose the aggregate. # 3.2.2 Concrete Masonry Units Units in piers, pilasters, columns, starting courses on footings, solid foundation walls, lintels, and beams, and where cells are to be filled with grout shall be full bedded in mortar under both face shells and webs. Other units shall be full bedded under both face shells. Head joints shall be filled solidly with mortar for a distance in from the face of the unit not less than the thickness of the face shell. Foundation walls below grade shall be grouted solid. Jamb units shall be of the shapes and sizes to conform with wall units. Solid units may be incorporated in the masonry work where necessary to fill out at corners, gable slopes, and elsewhere as approved. Double walls shall be stiffened at wall-mounted plumbing fixtures by use of strap anchors, two above each fixture and two below each fixture, located to avoid pipe runs, and extending from center to center of the double wall. Walls and partitions shall be adequately reinforced for support of wall-hung plumbing fixtures when chair carriers are not specified. ## 3.2.3 Tolerances Masonry shall be laid plumb, true to line, with courses level. Bond pattern shall be kept plumb throughout. Corners shall be square unless noted otherwise. Except for walls constructed of prefaced concrete masonry units, masonry shall be laid within the following tolerances (plus or minus unless otherwise noted): #### TABLE II ## TOLERANCES Variation from the plumb in the lines and surfaces of columns, walls and arises | In adjacent masonry units In 10 feet In 20 feet In 40 feet or more | 1/4
3/8 | inch
inch
inch
inch | |---|------------|------------------------------| | Variations from the plumb for external corners, expansion joints, and other conspicuous lines | | | | In 20 feet
In 40 feet or more | | inch
inch | | Variations from the level for exposed lintels, sills, parapets, horizontal grooves, and other conspicuous lines | | | | In 20 feet
In 40 feet or more | | inch
inch | | Variation from level for bed joints and top surfaces of bearing walls | | | | In 10 feet
In 40 feet or more | | inch
inch | | Variations from horizontal lines | | | | In 10 feet In 20 feet In 40 feet or more | 3/8 | inch
inch
inch | | Variations in cross sectional dimensions of columns and in thickness of walls | | | | Minus
Plus | | inch
inch | # 3.2.4 Cutting and Fitting Full units of the proper size shall be used wherever possible, in lieu of cut units. Cutting and fitting, including that required to accommodate the work of others, shall be done by masonry mechanics using power masonry saws. Concrete masonry units may be wet or dry cut. Wet cut units, before being placed in the work, shall be dried to the same surface-dry appearance as uncut units being laid in the wall. Cut edges shall be clean, true and sharp. Openings in the masonry shall be made carefully so that wall plates, cover plates or escutcheons required by the installation will completely conceal the openings and will have bottoms parallel with the masonry bed joints. Reinforced masonry lintels shall be provided above openings over 12 inches wide for pipes, ducts, cable trays, and other wall penetrations, unless steel sleeves are used. # 3.2.5 Jointing Joints shall be tooled when the mortar is thumbprint hard. Horizontal joints shall be tooled last. Joints shall be brushed to remove all loose and excess mortar. Mortar joints shall be finished as follows: #### 3.2.5.1 Flush Joints Joints in concealed masonry surfaces and joints at electrical outlet boxes in wet areas shall be flush cut. Flush cut joints shall be made by cutting off the mortar flush with the face of the wall. Joints in unparged masonry walls below grade shall be pointed tight. Flush joints for architectural units, such as fluted units, shall completely fill both the head and bed joints. #### 3.2.6 Joint Widths Joint widths shall be as follows: ## 3.2.6.1 Concrete Masonry Units Concrete masonry units shall have 3/8 inch joints, except for prefaced concrete masonry units. #### 3.2.7 Embedded Items Spaces around built-in items shall be filled with mortar. Openings around flush-mount electrical outlet boxes in wet locations shall be pointed with mortar. Anchors, ties, wall plugs, accessories, flashing, pipe sleeves and other items required to be built-in shall be embedded as the masonry work progresses. Anchors, ties and joint reinforcement shall be fully embedded in the mortar. Cells receiving anchor bolts and cells of the first course below bearing plates shall be filled with grout. ## 3.2.8 Unfinished Work Unfinished work shall be stepped back for joining with new work. Toothing may be resorted to only when specifically approved. Loose mortar shall be removed and the exposed joints shall be thoroughly cleaned before laying new work. ## 3.2.9 Masonry Wall Intersections Each course shall be masonry bonded at corners and elsewhere as shown. Masonry walls shall be anchored or tied together at corners and intersections with bond beam reinforcement and prefabricated corner or tee pieces of joint reinforcement as shown. #### 3.3 MORTAR Mortar shall be mixed in a mechanically operated mortar mixer for at least 3 minutes, but not more than 5 minutes. Measurement of ingredients for
mortar shall be by volume. Ingredients not in containers, such as sand, shall be accurately measured by the use of measuring boxes. Water shall be mixed with the dry ingredients in sufficient amount to provide a workable mixture which will adhere to the vertical surfaces of masonry units. Mortar that has stiffened because of loss of water through evaporation shall be retempered by adding water to restore the proper consistency and workability. Mortar that has reached its initial set or that has not been used within 2-1/2 hours after mixing shall be discarded. #### 3.4 REINFORCING STEEL Reinforcement shall be cleaned of loose, flaky rust, scale, grease, mortar, grout, or other coating which might destroy or reduce its bond prior to placing grout. Bars with kinks or bends not shown on the drawings shall not be used. Reinforcement shall be placed prior to grouting. Unless otherwise indicated, vertical wall reinforcement shall extend to within 2 inches of tops of walls. ## 3.4.1 Positioning Bars Vertical bars shall be accurately placed within the cells at the positions indicated on the drawings. A minimum clearance of 1/2 inch shall be maintained between the bars and masonry units. Minimum clearance between parallel bars shall be one diameter of the reinforcement. Vertical reinforcing may be held in place using bar positioners located near the ends of each bar and at intermediate intervals of not more than 192 diameters of the reinforcement. Column and pilaster ties shall be wired in position around the vertical steel. Ties shall be in contact with the vertical reinforcement and shall not be placed in horizontal bed joints. #### 3.5 JOINT REINFORCEMENT Joint reinforcement shall be installed at 16 inches on center or as indicated. Reinforcement shall be lapped not less than 6 inches. Prefabricated sections shall be installed at corners and wall intersections. The longitudinal wires of joint reinforcement shall be placed to provide not less than 5/8 inch cover to either face of the unit. # 3.6 PLACING GROUT Cells containing reinforcing bars shall be filled with grout. Hollow masonry units in walls or partitions supporting plumbing, heating, or other mechanical fixtures, voids at door and window jambs, and other indicated spaces shall be filled solid with grout. Cells under lintel bearings on each side of openings shall be filled solid with grout for full height of openings. Walls below grade, lintels, and bond beams shall be filled solid with grout. Units other than open end units may require grouting each course to preclude voids in the units. Grout not in place within 1-1/2 hours after water is first added to the batch shall be discarded. Sufficient time shall be allowed between grout lifts to preclude displacement or cracking of face shells of masonry units. If blowouts, flowouts, misalignment, or cracking of face shells should occur during construction, the wall shall be torn down and rebuilt. # 3.6.1 Horizontal Grout Barriers Grout barriers shall be embedded in mortar below cells of hollow units receiving grout. # 3.6.2 Grout Holes and Cleanouts ## 3.6.2.1 Cleanouts for Hollow Unit Masonry Construction Cleanout holes shall be provided at the bottom of every pour in cores containing vertical reinforcement when the height of the grout pour exceeds 5 feet. Where all cells are to be grouted, cleanout courses shall be constructed using bond beam units in an inverted position to permit cleaning of all cells. Cleanout holes shall be provided at a maximum spacing of 32 inches where all cells are to be filled with grout. A new series of cleanouts shall be established if grouting operations are stopped for more than 4 hours. Cleanouts shall not be less than 3 by 4 inch openings cut from one face shell. Manufacturer's standard cutout units may be used at the Contractor's option. Cleanout holes shall not be closed until masonry work, reinforcement, and final cleaning of the grout spaces have been completed and inspected. For walls which will be exposed to view, cleanout holes shall be closed in an approved manner to match surrounding masonry. ## 3.6.3 Grouting Equipment ## 3.6.3.1 Grout Pumps Pumping through aluminum tubes will not be permitted. Pumps shall be operated to produce a continuous stream of grout without air pockets, segregation, or contamination. Upon completion of each day's pumping, waste materials and debris shall be removed from the equipment, and disposed of outside the masonry. # 3.6.3.2 Vibrators Internal vibrators shall maintain a speed of not less than 5,000 impulses per minute when submerged in the grout. At least one spare vibrator shall be maintained at the site at all times. Vibrators shall be applied at uniformly spaced points not further apart than the visible effectiveness of the machine. Duration of vibration shall be limited to time necessary to produce satisfactory consolidation without causing segregation. # 3.6.4 Grout Placement Masonry shall be laid to the top of a pour before placing grout. Grout shall not be placed in two-wythe solid unit masonry cavity until mortar joints have set for at least 3 days during hot weather and 5 days during cold damp weather. Grout shall not be placed in hollow unit masonry until mortar joints have set for at least 24 hours. Grout shall be placed using a hand bucket, concrete hopper, or grout pump to completely fill the grout spaces without segregation of the aggregates. Vibrators shall not be inserted into lower pours that are in a semi-solidified state. The height of grout pours and type of grout used shall be limited by the dimensions of grout spaces as indicated in Table III. Low-lift grout methods may be used on pours up to and including 5 feet in height. ## 3.12.5.1 Low-Lift Method Grout shall be placed at a rate that will not cause displacement of the masonry due to hydrostatic pressure of the grout. Mortar protruding more than 1/2 inch into the grout space shall be removed before beginning the grouting operation. Grout pours 12 inches or less in height shall be consolidated by mechanical vibration or by puddling. Grout pours over 12 inches in height shall be consolidated by mechanical vibration and reconsolidated by mechanical vibration after initial water loss and settlement has occurred. Vibrators shall not be inserted into lower pours that are in a semi-solidified state. Low-lift grout shall be used subject to the limitations of Table III. TABLE III POUR HEIGHT AND TYPE OF GROUT FOR VARIOUS GROUT SPACE DIMENSIONS Minimum Dimensions of the Total Clear Areas Within Grout Spaces and Cells (in.) (1,2) Maximum Grout Pour Grout Height Grouting Multiwythe Hollow-unit Procedure Masonry (3) Masonry (feet) (4) Type Fine Low Lift 3/4 $1-1/2 \times 2$ Fine Low Lift 2 2×3 Fine High Lift 2 2×3 Fine High Lift 2-1/2 $2-1/2 \times 3$ Fine High Lift 3 3×3 Coarse Low Lift 1-1/2 $1-1/2 \times 3$ Coarse Low Lift 2 $2-1/2 \times 3$ Coarse High Lift 2 3×3 Coarse High Lift 2 3×3 Coarse High Lift 2 3×3 Coarse High Lift 3 3×3 5 8 12 24 1 5 8 12 24 ## Notes: - (1) The actual grout space or cell dimension must be larger than the sum of the following items: - a) The required minimum dimensions of total clear areas given in the table above; - b) The width of any mortar projections within the space; - c) The horizontal projections of the diameters of the horizontal reinforcing bars within a cross section of the grout space or cell. - (2) The minimum dimensions of the total clear areas shall be made up of one or more open areas, with at least one area being 3/4 inch or greater in width. - (3) For grouting spaces between masonry wythes. - (4) Where only cells of hollow masonry units containing reinforcement are grouted, the maximum height of the pour shall not exceed the distance between horizontal bond beams. #### 3.7 BOND BEAMS Bond beams shall be filled with grout and reinforced as indicated on the drawings. Grout barriers shall be installed under bond beam units to retain the grout as required. Reinforcement shall be continuous, including around corners, except through control joints or expansion joints, unless otherwise indicated on the drawings. Where splices are required for continuity, reinforcement shall be lapped 48 bar diameters. A minimum clearance of 1/2 inch shall be maintained between reinforcement and interior faces of units. #### 3.8 ANCHORAGE TO CONCRETE # 3.8.1 Anchorage to Concrete Anchorage of masonry to the face of concrete columns, beams, or walls shall be with dovetail anchors spaced not over 16 inches on centers vertically and 24 inches on center horizontally. #### 3.9 SPLASH BLOCKS Splash blocks shall be located as shown. # 3.10 POINTING AND CLEANING3.10.1 Concrete Masonry Unit Exposed concrete masonry unit and shall be dry-brushed at the end of each day's work and after any required pointing, using stiff-fiber bristled brushes. #### 3.11 BEARING PLATES Bearing plates for beams, joists, joist girders and similar structural members shall be set to the proper line and elevation with damp-pack bedding mortar, except where non-shrink grout is indicated. Bedding mortar and non-shrink grout shall be as specified in Section 03300 CAST-IN-PLACE STRUCTURAL CONCRETE. #### 3.12 PROTECTION Facing materials shall be protected against staining. Top of walls shall be covered with nonstaining waterproof covering or membrane when work is not in progress. Covering of the top of the unfinished walls shall continue until the wall is waterproofed with a complete roof or parapet system. Covering shall extend a minimum of 2 feet down on each side of the wall and shall be held securely in place. Before starting or resuming, top surface of masonry in place shall be cleaned of loose mortar and foreign material. -- End of Section -- # SECTION 05120A # STRUCTURAL STEEL 09/97 # PART 1 GENERAL # 1.1 REFERENCES ASTM F 436 The publications listed below form a part of this specification to the extent referenced. The
publications are referred to in the text by basic designation only. # AMERICAN INSTITUTE OF STEEL CONSTRUCTION (AISC) | AISC ASD Manual | (1989) Manual of Steel Construction
Allowable Stress Design | | |---|--|--| | AISC ASD/LRFD Vol II | (1992) Manual of Steel Construction Vol
II: Connections | | | AISC Design Guide No. 10 | (1989) Erection Bracing of Low-Rise
Structural Steel Frames | | | AISC FCD | (1995a) Quality Certification Program | | | AISC Pub No. S303 | (2000) Code of Standard Practice for Steel
Buildings and Bridges | | | AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | | | | ASTM A 307 | (2000) Carbon Steel Bolts and Studs, 60
000 PSI Tensile Strength | | | ASTM A 325 | (2000) Structural Bolts, Steel, Heat
Treated, 120/105 ksi Minimum Tensile
Strength | | | ASTM A 36/A 36M | (2000a) Carbon Structural Steel | | | ASTM A 500 | (1999) Cold-Formed Welded and Seamless
Carbon Steel Structural Tubing in Rounds
and Shapes | | | ASTM A 563 | (2000) Carbon and Alloy Steel Nuts | | | ASTM A 572/A 572M | (2000a) High-Strength Low-Alloy
Columbium-Vanadium Structural Steel | | | ASTM A 6/A 6M | (2001) General Requirements for Rolled
Structural Steel Bars, Plates, Shapes, and
Sheet Piling | | Sheet Piling (2000) Hardened Steel Washers ASTM F 844 (2000) Washers, Steel, Plain (Flat), Unhardened for General Use AMERICAN WELDING SOCIETY (AWS) AWS A2.4 (1998) Standard Symbols for Welding, Brazing and Nondestructive Examination AWS D1.1 (2000) Structural Welding Code - Steel ASME INTERNATIONAL (ASME) ASME B46.1 (1995) Surface Texture (Surface Roughness, Waviness, and Lay) THE SOCIETY FOR PROTECTIVE COATINGS (SSPC) SSPC Paint 25 (1991) Red Iron Oxide, Zinc Oxide, Raw Linseed Oil and Alkyd Primer (Without Lead and Chromate Pigments) ## 1.2 GENERAL REQUIREMENTS Structural steel fabrication and erection shall be performed by an organization experienced in structural steel work of equivalent magnitude. The Contractor shall be responsible for correctness of detailing, fabrication, and for the correct fitting of structural members. Connections, for any part of the structure not shown on the contract drawings, shall be considered simple shear connections and shall be designed and detailed in accordance with pertinent provisions of AISC ASD Manual. Substitution of sections or modification of connection details will not be accepted unless approved by the Contracting Officer. AISC ASD Manual and AISC ASD/LRFD Vol II shall govern the work. Welding shall be in accordance with AWS D1.1; except that welding for critical applications shall be in accordance with AISC ASD Manual. # 1.3 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-02 Shop Drawings Structural Steel System; G,A/E Structural Connections; G,RE Shop and erection details including members (with their connections) not shown on the contract drawings. Welds shall be indicated by standard welding symbols in accordance with AWS A2.4. SD-03 Product Data Erection; G RE Prior to erection, erection plan of the structural steel framing describing all necessary temporary supports, including the sequence of installation and removal. Welding; G, RE WPS not prequalified. WPS prequalified. ## SD-07 Certificates Mill Test Reports; Certified copies of mill test reports for structural steel, structural bolts, nuts, washers and other related structural steel items, including attesting that the structural steel furnished contains no less than 25 percent recycled scrap steel and meets the requirements specified, prior to the installation. Welder Qualifications; Certified copies of welder qualifications test records showing qualification in accordance with AWS D1.1. Welding Inspector; G RE Welding Inspector qualifications. Fabrication; G RE A copy of the AISC certificate indicating that the fabrication plant meets the specified structural steelwork category. # 1.4 STORAGE Material shall be stored out of contact with the ground in such manner and location as will minimize deterioration. ## 1.5 WELDING INSPECTOR Welding Inspector qualifications shall be in accordance with AWS D1.1 # PART 2 PRODUCTS ## 2.1 STRUCTURAL STEEL # 2.1.1 Carbon Grade Steel Carbon grade steel shall conform toASTM A 36/A 36M. ## 2.1.2 High-Strength Low-Alloy Steel High-strength low-alloy steel shall conform to ASTM A 572/A 572M, Grade 50. ## 2.2 STRUCTURAL TUBING Structural tubing shall conform to ASTM A 500, Grade B ## 2.3 HIGH STRENGTH BOLTS AND NUTS High strength bolts shall conform to ASTM A 325, Type 1 with carbon steel nuts conforming to ASTM A 563, Grade C2.4 CARBON STEEL BOLTS AND NUTS Carbon steel bolts shall conform to ASTM A 307, Grade A with carbon steel nuts conforming to ASTM A 563, Grade A. ## 2.5 NUTS DIMENSIONAL STYLE Carbon steel nuts shall be Hex style when used with ASTM A 307 bolts or Heavy Hex style when used with $\,$ ASTM A 325bolts. #### 2.6 WASHERS Plain washers shall conform to ASTM F 844. Other types, when required, shall conform to ASTM F 436. #### 2.7 PAINT Paint shall conform to SSPC Paint 25. #### PART 3 EXECUTION #### 3.1 FABRICATION Fabrication shall be in accordance with the applicable provisions of AISC ASD Manual. Fabrication and assembly shall be done in the shop to the greatest extent possible. The fabricating plant shall be certified under the AISC FCD for Category SBD structural steelwork. Compression joints depending on contact bearing shall have a surface roughness not in excess of 500 micro inches as determined by ASME B46.1, and ends shall be square within the tolerances for milled ends specified in ASTM A 6/A 6M. Structural steelwork, except surfaces of steel to be encased in concrete, surfaces to be field welded, surfaces to be fireproofed, and contact surfaces of friction-type high-strength bolted connections shall be prepared for painting in accordance with endorsement "P" of AISC FCD and primed with the specified paint. ## 3.2 ERECTION b. For low-rise structural steel buildings (60 feet tall or less and a maximum of 2 stories), the erection plan shall conform to AISC Pub No. S303 and the structure shall be erected in accordance with AISC Design Guide No. 10. ## 3.2.1 Structural Connections Anchor bolts and other connections between the structural steel and foundations shall be provided and shall be properly located and built into connecting work. Field welded structural connections shall be completed before load is applied. ## 3.2.2 Base Plates Column base plates for columns shall be provided. Base plates and bearing plates shall be provided with full bearing after the supported members have been plumbed and properly positioned, but prior to placing superimposed loads. Separate setting plates under column base plates will not be permitted. The area under the plate shall be damp-packed solidly with bedding mortar, except where nonshrink grout is indicated on the drawings. Bedding mortar and grout shall be as specified in Section 03300 CAST-IN-PLACE STRUCTURAL CONCRETE. # 3.2.3 Field Priming After erection, the field bolt heads and nuts, field welds, and any abrasions in the shop coat shall be cleaned and primed with paint of the same quality as that used for the shop coat. #### 3.3 WELDING The contractor shall develop and submit the Welding Procedure Specifications (WPS) for all welding, including wleding done using prequalified procedures. Prequaliried procedures may be submitted for information only; however, procedures that are not prequalified shall be submitted for approval. -- End of Section -- #### SECTION 05300A # STEEL DECKING 05/01 # PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. AMERICAN IRON AND STEEL INSTITUTE (AISI) AISI Cold-Formed Mnl (1996) Cold-Formed Steel Design Manual AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) ASTM A 611 (1997) Structural Steel (SS), Sheet, Carbon, Cold-Rolled ASTM A 653/A 653M (2000) Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process ASTM A 780 (2000) Repair of Damaged and Uncoated Areas of Hot-Dipped Galvanized Coatings ASTM A 792/A 792M (1999) Steel Sheet, 55% Aluminum-Zinc Alloy-Coated by the Hot-Dip Process AMERICAN WELDING SOCIETY (AWS) AWS D1.3 (1998) Structural Welding Code - Sheet Steel STEEL DECK INSTITUTE (SDI) SDI Pub No 29 (1995) Design Manual for Composite Decks, Form Decks, Roof Decks, and Cellular Metal Floor Deck with Electrical Distribution SDI Diaphram Mnl (1991) Diaphragm Design Manual THE SOCIETY FOR PROTECTIVE COATINGS (SSPC) SSPC Paint 20 (1991) Zinc-Rich Primers (Type I - "Inorganic" and Type II - "Organic") #### 1.2 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: #### SD-02 Shop Drawings Deck Units; G,A/E Accessories; G,RE Attachments; G,RE Holes and Openings;G RE Drawings shall include type, configuration, structural properties, location, and necessary details of deck units, accessories, and supporting members; size and location of holes to be cut and reinforcement to be provided; location and sequence of welded connections; and the manufacturer's erection instructions. ## SD-03 Product Data Deck
Units; G, RE Design computations for the structural properties of the deck units or SDI certification that the units are designed in accordance with SDI specifications. Attachments; G RE Prior to welding operations, copies of qualified procedures and lists of names and identification symbols of qualified welders and welding operators. ## SD-04 Samples Deck Units; G RE Accessories; G RE A 2 sq. ft. sample of the decking material to be used, along with a sample of each of the accessories used. A sample of acoustical material to be used shall be included. # SD-07 Certificates Deck Units; G RE Attachments; G RE Manufacturer's certificates attesting that the decking material meets the specified requirements. Manufacturer's certificate attesting that the operators are authorized to use the low-velocity piston tool. ## 1.3 DELIVERY, STORAGE, AND HANDLING Deck units shall be delivered to the site in a dry and undamaged condition, stored off the ground with one end elevated, and stored under a weathertight covering permitting good air circulation. Finish of deck units shall be maintained at all times by using touch-up paint whenever necessary to prevent the formation of rust. # PART 2 PRODUCTS ## 2.1 DECK UNITS Deck units shall conform to SDI Pub No 29. Panels of maximum possible lengths shall be used to minimize end laps. Deck units shall be fabricated in lengths to span 3 or more supports with flush, telescoped, or nested 2 inchlaps at ends, and interlocking, or nested side laps, unless otherwise indicated. Deck with cross-sectional configuration differing from the units indicated may be used, provided that the properties of the proposed units, determined in accordance with AISI Cold-Formed Mnl, are equal to or greater than the properties of the units indicated and that the material will fit the space provided without requiring revisions to adjacent materials or systems. ## 2.1.1 Roof Deck Steel deck used in conjunction with insulation and built-up roofing shall conform to ASTM A 792/A 792M, ASTM A 611 or ASTM A 792/A 792M. Roof deck units shall be fabricated of the steel design thickness required by the design drawings and shall be galvanized . #### 2.1.2 Composite Deck Deck to receive concrete as a filler or for composite deck assembly shall conform to ASTM A 653/A 653M or ASTM A 611. Deck used as the tension reinforcing in composite deck shall be fabricated of the steel design thickness required by the design drawings, and shall be zinc-coated in conformance with ASTM A 653/A 653M, G60 coating class. Deck units used in composite deck shall have adequate embossment to develop mechanical shear bond to provide composite action between the deck and the concrete.2.2 TOUCH-UP PAINT Touch-up paint for shop-painted units shall be of the same type used for the shop painting. Welds shall be touched-up with paint conforming to SSPC Paint 20 in accordance with ASTM A 780. Finish of deck units and accessories shall be maintained by using touch-up paint whenever necessary to prevent the formation of rust. # 2.3 ADJUSTING PLATES Adjusting plates or segments of deck units shall be provided in locations too narrow to accommodate full-size units. As far as practical, the plates shall be the same thickness and configuration as the deck units. ## 2.4 CLOSURE PLATES #### 2.4.1 Sheet Metal Where deck is cut for passage of pipes, ducts, columns, etc., and deck is to remain exposed, provide a neatly cut sheet metal collar to cover edges of deck. Do not cut deck until after installation of supplemental supports. #### 2.5 ACCESSORIES The manufacturer's standard accessories shall be furnished as necessary to complete the deck installation. Metal accessories shall be of the same material as the deck and have minimum design thickness as follows: saddles, 0.0474 inch; welding washers, 0.0598 inch; cant strip, 0.0295 inch; other metal accessories, 0.0358 inch; unless otherwise indicated. Accessories shall include but not be limited to saddles, welding washers, cant strips, butt cover plates, underlapping sleeves, and ridge and valley plates. #### PART 3 EXECUTION # 3.1 ERECTION Erection of deck and accessories shall be in accordance withSDI Pub No 29 and the approved detail drawings. Damaged deck and accessories including material which is permanently stained or contaminated, with burned holes or deformed shall not be installed. The deck units shall be placed on secure supports, properly adjusted, and aligned at right angles to supports before being permanently secured in place. The deck shall not be filled with concrete, used for storage or as a working platform until the units have been secured in position. Loads shall be distributed by appropriate means to prevent damage during construction and to the completed assembly. The maximum uniform distributed storage load shall not exceed the design live load. There shall be no loads suspended directly from the steel deck. #### 3.2 ATTACHMENTS All fasteners shall be installed in accordance with the manufacturer's recommended procedure, except as otherwise specified. The deck units shall be welded with nominal 5/8 inch diameter puddle welds to supports as indicated on the design drawings and in accordance with requirements of SDI Pub No 29. All welding of steel deck shall be in accordance with AWS D1.3 using methods and electrodes as recommended by the manufacturer of the steel deck being used. Welds shall be made only by operators previously qualified by tests prescribed in AWS D1.3 to perform the type of work required. Welding washersshall be used for 22 gauge decking and aboveat the connections of the deck to supports. Welding washers shall not be used at sidelaps. Holes and similar defects will not be acceptable. Deck ends shall be lapped 2 inches. All partial or segments of deck units shall be attached to structural supports in accordance with Section 2.5 of SDI Diaphram Mn1. #### 3.3 HOLES AND OPENINGS All holes and openings required shall be coordinated with the drawings, specifications, and other trades. Holes and openings shall be drilled or cut, reinforced and framed as indicated on the drawings or described in the specifications and as required for rigidity and load capacity. Holes and openings less than 6 inches across require no reinforcement. Holes and openings 6 to 12 inches across shall be reinforced by 0.0474 inch thick steel sheet at least 12 inches wider and longer than the opening and be fastened to the steel deck at each corner of the sheet and at a maximum of 6 inches on center. Holes and openings larger than 12 inches shall be reinforced by steel angles installed perpendicular to the steel joists and supported by the adjacent steel joists. Steel angles shall be installed perpendicular to the deck ribs and shall be fastened to the angles perpendicular to the steel joists. Openings must not interfere with seismic members such as chords and drag struts. # 3.4 PREPARATION OF FIRE-PROOFED SURFACES Deck surfaces, both composite and noncomposite, which are to receive sprayed-on fireproofing, shall be galvanized and shall be free of all grease, mill oil, paraffin, dirt, salt, and other contaminants which impair adhesion of the fireproofing. Any required cleaning shall be done prior to steel deck installation using a cleaning method that is compatible with the sprayed-on fireproofing. -- End of Section -- #### SECTION 05500A # MISCELLANEOUS METAL 04/01 # PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM A 123/A 123M | (2001) Zinc (Hot-Dip Galvanized) Coatings
on Iron and Steel Products | |-------------------|--| | ASTM A 53/A 53M | (1999b) Pipe, Steel, Black and Hot-Dipped,
Zinc-Coated, Welded and Seamless | | ASTM A 653/A 653M | (2000) Steel Sheet, Zinc-Coated
(Galvanized) or Zinc-Iron Alloy-Coated
(Galvannealed) by the Hot-Dip Process | | ASTM A 924/A 924M | (1999) General Requirements for Steel
Sheet, Metallic-Coated by the Hot-Dip
Process | # AMERICAN WELDING SOCIETY (AWS) AWS D1.1 (2000) Structural Welding Code - Steel # 1.2 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: ## SD-02 Shop Drawings Miscellaneous Metal Items; G A/E . Detail drawings indicating material thickness, type, grade, and class; dimensions; and construction details. Drawings shall include catalog cuts, erection details, manufacturer's descriptive data and installation instructions, and templates. ## 1.3 GENERAL REQUIREMENTS The Contractor shall verify all measurements and shall take all field measurements necessary before fabrication. Welding to or on structural steel shall be in accordance with AWS D1.1. Items specified to be galvanized, when practicable and not indicated otherwise, shall be hot-dip galvanized after fabrication. Galvanizing shall be in accordance with ASTM A 123/A 123M, ASTM A 653/A 653M, or ASTM A 924/A 924M, as applicable. Exposed fastenings shall be compatible materials, shall generally match in color and finish, and shall harmonize with the material to which fastenings are applied. Materials and parts necessary to complete each item, even though such work is not definitely shown or specified, shall be included. Poor matching of holes for fasteners shall be cause for rejection. Fastenings shall be concealed where practicable. Thickness of metal and details of assembly and supports shall provide strength and stiffness. Joints exposed to the
weather shall be formed to exclude water. ## 1.4 DISSIMILAR MATERIALS Where dissimilar metals are in contact, or where aluminum is in contact with concrete, mortar, masonry, wet or pressure-treated wood, or absorptive materials subject to wetting, the surfaces shall be protected with a coat of bituminous paint or asphalt varnish. #### 1.5 WORKMANSHIP Miscellaneous metalwork shall be well formed to shape and size, with sharp lines and angles and true curves. Drilling and punching shall produce clean true lines and surfaces. Welding shall be continuous along the entire area of contact except where tack welding is permitted. Exposed connections of work in place shall not be tack welded. Exposed welds shall be ground smooth. Exposed surfaces of work in place shall have a smooth finish, and unless otherwise approved, exposed riveting shall be flush. Where tight fits are required, joints shall be milled. Corner joints shall be coped or mitered, well formed, and in true alignment. Work shall be accurately set to established lines and elevations and securely fastened in place. Installation shall be in accordance with manufacturer's installation instructions and approved drawings, cuts, and details. #### 1.6 ANCHORAGE Anchorage shall be provided where necessary for fastening miscellaneous metal items securely in place. Anchorage not otherwise specified or indicated shall include slotted inserts made to engage with the anchors, expansion shields, and power-driven fasteners when approved for concrete; toggle bolts and through bolts for masonry; machine and carriage bolts for steel; and lag bolts and screws for wood. ## 1.7 SHOP PAINTING Surfaces of ferrous metal except galvanized surfaces, shall be cleaned and shop coated with the manufacturer's standard protective coating unless otherwise specified. Surfaces of items to be embedded in concrete shall not be painted. Items to be finish painted shall be prepared according to manufacturer's recommendations or as specified. # PART 2 PRODUCTS # 2.1 HANDRAILS Handrails shall be designed to resist a concentrated load of 200 pounds in any direction at any point of the top of the rail or 20 pounds per foot applied horizontally to top of the rail, whichever is more severe. # 2.1.1 Steel Handrails, Including Carbon Steel Inserts Steel handrails, including inserts in concrete, shall be steel pipe conforming to ASTM A 53/A 53M. Steel railings shall be 1-1/2 inch nominal size. Railings shall be shop painted. Pipe collars shall be steel. - a. Joint posts, rail, and corners shall be fabricated by one of the following methods: - (2) Mitered and welded joints by fitting post to top rail and intermediate rail to post, mitering corners, groove welding joints, and grinding smooth. Railing splices shall be butted and reinforced by a tight fitting interior sleeve not less than 6 inches long. - (3) Railings may be bent at corners in lieu of jointing, provided bends are made in suitable jigs and the pipe is not crushed. #### 2.2 MISCELLANEOUS Miscellaneous plates and shapes for items that do not form a part of the structural steel framework, such as lintels, sill angles, miscellaneous mountings, and frames, shall be provided to complete the work. #### PART 3 EXECUTION ## 3.1 GENERAL INSTALLATION REQUIREMENTS All items shall be installed at the locations shown and according to the manufacturer's recommendations. Items listed below require additional procedures as specified. #### 3.2 ATTACHMENT OF HANDRAILS Toeboards and brackets shall be installed where indicated. Splices, where required, shall be made at expansion joints. Removable sections shall be installed as indicated. ## 3.2.1 Installation of Steel Handrails Installation shall bein pipe sleeves embedded in concrete and filled with molten lead or sulphur with anchorage covered with standard pipe collar pinned to post. Rail ends shall be secured by steel pipe flanges anchored by expansion shields and bolts. ## 3.3 DOOR FRAMES Door frames shall be secured to the floor slab by means of angle clips and expansion bolts. Continuous door stops shall be welded to the frame or tap screwed with countersunk screws at no more than 18 inchcenters, assuring in either case full contact with the frame. Any necessary reinforcements shall be made and the frames shall be drilled and tapped as required for hardware. -- End of Section -- #### SECTION 06100A # ROUGH CARPENTRY 10/01 #### PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ## AMERICAN FOREST & PAPER ASSOCIATION (AF&PA) AF&PA T01 (1991; Supple 1993; Addenda Apr 1997; Supple T02) National Design Specification for Wood Construction AF&PA T11 (1988) Manual for Wood Frame Construction #### AMERICAN INSTITUTE OF TIMBER CONSTRUCTION (AITC) AITC 111 (1979) Recommended Practice for Protection of Structural Glued Laminated Timber During Transit, Storage and Erection # AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) ASTM A 307 (2000) Carbon Steel Bolts and Studs, 60 000 PSI Tensile Strength ASTM D 2898 (1994; R 1999) Accelerated Weathering of Fire-Retardant-Treated Wood for Fire Testing ASTM E 154 (1988; R 1999) Water Vapor Retarders Used in Contact with Earth Under Concrete Slabs, on Walls, or as Ground Cover ASTM E 96 (2000) Water Vapor Transmission of Materials ASTM F 547 (1977; R 1995) Definitions of Terms Relating to Nails for Use with Wood and Wood-Based Materials # AMERICAN WOOD-PRESERVERS' ASSOCIATION (AWPA) AWPA C2 (2000) Lumber, Timber, Bridge Ties and Mine Ties - Preservative Treatment by Pressure Processes AWPA C20 (1999) Structural Lumber Fire-Retardant Pressure Treatment AWPA C27 (1999) Plywood - Fire-Retardant Pressure Treatment AWPA C9 (1997) Plywood - Preservative Treatment by Pressure Processes AWPA M4 (1999) Standard for the Care of Preservative-Treated Wood Products AWPA P5 (2000) Standards for Waterborne Preservatives CALIFORNIA REDWOOD ASSOCIATION (CRA) CRA RIS-01-SS (1997) Standard Specifications for Grades of California Redwood Lumber APA - THE ENGINEERED WOOD ASSOCIATION (APA) APA EWS R540C (1996) Builder Tips Proper Storage and Handling of Glulam Beams APA PRP-108 (1980; Rev Jan 1996) Performance Standards and Policies for Structural-Use Panels FACTORY MUTUAL ENGINEERING AND RESEARCH (FM) FM LPD 1-49 (1995) Loss Prevention Data Sheet - Perimeter Flashing NATIONAL HARDWOOD LUMBER ASSOCIATION (NHLA) NHLA Rules (1994) Rules for the Measurement & Inspection of Hardwood & Cypress NORTHEASTERN LUMBER MANUFACTURERS ASSOCIATION (NELMA) NELMA Grading Rules (1997) Standard Grading Rules for Northeastern Lumber SOUTHERN CYPRESS MANUFACTURERS ASSOCIATION (SCMA) SCMA Specs (1986; Supple No. 1, Aug 1993) Standard Specifications for Grades of Southern Cypress SOUTHERN PINE INSPECTION BUREAU (SPIB) SPIB Rules (1994; Supple 8 thru 11) Standard Grading Rules for Southern Pine Lumber U.S. DEPARTMENT OF COMMERCE (DOC) DOC PS 1 (1996) Voluntary Product Standard - Construction and Industrial Plywood DOC PS 2 (1992) Performance Standards for Wood-Based Structural-Use Panels WEST COAST LUMBER INSPECTION BUREAU (WCLIB) WCLIB Std 17 (1996; Supples VII(A-E), VIII(A-C)) Grading Rules For West Coast Lumber WESTERN WOOD PRODUCTS ASSOCIATION (WWPA) WWPA Grading Rules (1999) Western Lumber Grading Rules 95 #### 1.2 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-02 Shop Drawings INSTALLATION OF FRAMINGG A/E Nailers and Nailing Strips; G A/E Drawings of field erection details, including materials and methods of fastening nailers in conformance with Factory Mutual wind uplift rated systems specified in other Sections of these specifications. SD-07 Certificates; Grading and Marking; G A/E Manufacturer's certificates (approved by an American Lumber Standards approved agency) attesting that lumber and material not normally grade marked meet the specified requirements. Certificate of Inspection for grade marked material by an American Lumber Standards Committee (ALSC) recognized inspection agency prior to shipment. ## 1.3 DELIVERY AND STORAGE Materials shall be delivered to the site in undamaged condition, stored off ground in fully covered, well ventilated areas, and protected from extreme changes in temperature and humidity. Laminated timber shall be handled and stored in accordance with AITC 111 or APA EWS R540C. ## PART 2 PRODUCTS - 2.1 LUMBER AND SHEATHING - 2.1.1 Grading and Marking - 2.1.1.1 Lumber Products Solid sawn and finger-jointed lumber shall bear an authorized gradestamp or grademark recognized by ALSC, or an ALSC recognized certification stamp, mark, or hammerbrand. Surfaces that are to be exposed to view shall not bear grademarks, stamps, or any type of identifying mark. Hammer marking will be permitted on timbers when all surfaces will be exposed to view. # 2.1.1.2 Plywood and Other Sheathing Products Materials shall bear the grademark or other identifying marks indicating grades of material and rules or standards under which produced, including requirements for qualifications and authority of the inspection organization. Except for plywood and wood structural panels, bundle marking will be permitted in lieu of marking each individual piece. Surfaces that are to be exposed to view shall not bear grademarks or other types of identifying marks. #### 2.1.2 Sizes Lumber and material sizes shall conform to requirements of the rules or standards under which produced. Unless otherwise specified, lumber shall be surfaced on four sides. Unless otherwise specified, sizes indicated are nominal sizes, and actual sizes shall be within manufacturing
tolerances allowed by the standard under which the product is produced. #### 2.1.3 Treatment Exposed areas of treated wood that are cut or drilled after treatment shall receive a field treatment in accordance with AWPA M4. Items of all-heart material of cedar, cypress, or redwood will not require preservative treatment, except when in direct contact with soil. Except as specified for all-heart material of the previously mentioned species, the following items shall be treated: - a. Wood members in contact with or within 18 inches of soil. - c. Wood members exposed to the weather including those used in builtup roofing systems or as nailing strips or nailers over fiberboard or gypsum-board wall sheathing as a base for wood siding. - d. Wood members set into concrete regardless of location, including flush-with-deck wood nailers for roofs. - e. Wood members in contact with concrete that is in contact with soil or water or that is exposed to weather. ## 2.1.3.1 Lumber and Timbers Lumber and timbers shall be treated in accordance with AWPA C2 with waterborne preservatives listed in AWPA P5 to a retention level as follows: a. 0.25 pcf intended for above ground use. ## 2.1.3.2 Plywood Plywood shall be treated in accordance with AWPA C9 with waterborne preservatives listed in AWPA P5 to a retention level as follows: $\frac{1}{2}$ a. 0.25 pcf intended for above ground use. ## 2.1.4 Moisture Content At the time lumber and other materials are delivered and when installed in the work their moisture content shall be as follows: - a. Treated and Untreated Lumber Except Roof Planking: 4 inches or less, nominal thickness, 19 percent maximum. 5 inches or more, nominal thickness, 23 percent maximum in a 3 inch perimeter of the timber cross-section. - c. Materials Other Than Lumber: In accordance with standard under which product is produced. ## 2.1.5 Fire-Retardant Treatment Fire-retardant treated wood shall be pressure treated in accordance with AWPA C20 for lumber and AWPA C27 for plywood. Material use shall be defined in AWPA C20 and AWPA C27 for Interior Type B and Exterior Type. Treatment and performance inspection shall be by an independent and qualified testing agency that establishes performance ratings. Each piece or bundle of treated material shall bear identification of the testing agency to indicate performance in accordance with such rating. Treated materials to be exposed to rain wetting shall be subjected to an accelerated weathering technique in accordance with ASTM D 2898 prior to being tested for compliance with AWPA C20 or AWPA C27. Items to be treated include: Wood blocking and plates. #### 2.1.6 Structural Wood2.1.6.1 Plywood Plywood shall conform to DOC PS 1, APA PRP-108 or DOC PS 2, Grade C-D or sheathing grade with exterior glue. Sheathing for roof and walls without corner bracing of framing shall have a span rating of 16/0 or greater for supports 16 inches on center and a span rating of 24/0 or greater for supports 24 inches on center. # 2.1.6.2 Wood Species and grade shall be in accordance with TABLE I at the end of this section. # 2.1.7 Miscellaneous Wood Members # 2.1.7.1 Nonstress Graded Members Members shall include bridging, corner bracing, furring, grounds, and nailing strips. Members shall be in accordance with TABLE I for the species used. Sizes shall be as follows unless otherwise shown: | Member | Size (inch) | |----------------|--| | Bridging | 1 x 3 or 1 x 4 for use between members 2 x 12 and smaller; 2 x 4 for use between members larger than 2 x 12. | | Corner bracing | 1 x 4. | | Furring | 1 x 2 . | | Grounds | Plaster thickness by 1-1/2. | | Nailing strips | 1×3 or 1×4 when used as shingle base or interior finish, otherwise | Member Size (inch) 2 inch stock. ## 2.1.7.2 Blocking Blocking shall be standard or number 2 grade. ## 2.2 ACCESSORIES AND NAILS Markings shall identify both the strength grade and the manufacturer. Accessories and nails shall conform to the following: #### 2.2.1 Anchor Bolts ASTM A 307, size as indicated, complete with nuts and washers. ## 2.2.2 Bolts: Lag, Toggle, and Miscellaneous Bolts and Screws Type, size, and finish best suited for intended use. Finish options include zinc compounds, cadmium, and aluminum paint impregnated finishes. #### 2.2.3 Clip Angles Steel, 3/16 inch thick, size best suited for intended use; or zinc-coated steel or iron commercial clips designed for connecting wood members. ## 2.2.4 Expansion Shields Type and size best suited for intended use. # 2.2.5 Metal Bridging Optional to wood bridging; zinc-coated steel, size and design to provide rigidity equivalent to specified wood bridging. ## 2.2.6 Nails and Staples ASTM F 547, size and type best suited for purpose; staples shall be as recommended by the manufacturer of the materials to be joined. For sheathing and subflooring, length of nails shall be sufficient to extend 1 inch into supports. In general, 8-penny or larger nails shall be used for nailing through 1 inch thick lumber and for toe nailing 2 inch thick lumber; 16-penny or larger nails shall be used for nailing through 2 inch thick lumber. Nails used with treated lumber and sheathing shall be galvanized. Nailing shall be in accordance with the recommended nailing schedule contained in AF&PA T11. Where detailed nailing requirements are not specified, nail size and spacing shall be sufficient to develop an adequate strength for the connection. The connection's strength shall be verified against the nail capacity tables in AF&PA T01. Reasonable judgement backed by experience shall ensure that the designed connection will not cause the wood to split. If a load situation exceeds a reasonable limit for nails, a specialized connector shall be used. #### 2.3 VAPOR RETARDER Vapor retarder shall be polyethylene sheeting conforming to ASTM E 154 or other equivalent material. Vapor retarder shall have a maximum vapor permeance rating of $0.5~{\rm perms}$ as determined in accordance with ASTM E 96, unless otherwise specified. # PART 3 EXECUTION ### 3.1 INSTALLATION OF FRAMING #### 3.1.1 General General framing shall be in accordance with AF&PA T11.Members shall be closely fitted, accurately set to required lines and levels, and rigidly secured in place. Members shall be framed for passage of ducts. Members shall be cut, notched, or bored in accordance with applicable requirements of AF&PA T01 for the passage of pipes, wires, or conduits. Rafters, purlins, and joists shall be set with crown edge up. Framing shall be kept at least 2 inches away from chimneys and 4 inches away from fireplace backwalls. When joists, beams, and girders are placed on masonry or concrete, a wood base plate shall be positioned and leveled with grout. The joist, beam, or girder shall then be placed on the plate. When joists, beams, and girders are set into masonry or concrete, a pocket shall be formed into the wall. The joist, beam, or girder shall then be placed into the pocket and leveled with a steel shim. #### 3.2 INSTALLATION OF SHEATHING ## 3.2.1 Gypsum Board Sheathing shall be applied with edges in light contact at joints and nailed in accordance with the manufacturer's approved instructions. Sheets 2 feet wide shall be applied horizontally with tongued edge up, with vertical joints over supports, and with vertical joints staggered. Sheets 4 feet wide shall be applied vertically, extended over top and bottom plates, and with all vertical and horizontal joints over supports. # 3.2.2 Plywood and Wood Structural Panels Sheathing shall be applied with edges 1/8 inch apart at side and end joints, and nailed at supported edges at 6 inches on center and at intermediate supports 12 inches on center unless otherwise shown. Nailing of edges shall be 3/8 inchfrom the edges. Wall sheathing shall extend over top and bottom plates, and if applied horizontally the vertical joints shall be made over supports and staggered. Wall sheathing over which wood shingles are to be applied shall be applied horizontally. Roof sheathing shall be applied with long dimension at right angles to supports, end joints made over supports, and end joints staggered. ## 3.3 INSTALLATION OF MISCELLANEOUS WOOD MEMBERS ## 3.3.1 Blocking Blocking shall be provided as necessary for application of siding, sheathing, subflooring, wallboard, and other materials or building items, and to provide firestopping. Blocking for firestopping shall ensure a maximum dimension of 8 feet for any concealed space. Blocking shall be cut to fit between framing members and rigidly nailed thereto. # 3.3.2 Nailers and Nailing Strips Nailers and nailing strips shall be provided as necessary for the attachment of finish materials. Nailers used in conjunction with roof deck installation shall be installed flush with the roof deck system. Stacked nailers shall be assembled with spikes or nails spaced not more than 18 inches on center and staggered. Beginning and ending nails shall not be more than 6 inches for nailer end. Ends of stacked nailers shall be offset approximately 12 inches in long runs and alternated at corners. Anchors shall extend through the entire thickness of the nailer. Strips shall be run in lengths as long as practicable, butt jointed, cut into wood framing members when necessary, and rigidly secured in place. Nailers and nailer installation for Factory Mutual wind uplift rated roof systems specified in other Sections of these specifications shall conform to the recommendations contained in FM LPD 1-49. # 3.3.3 Furring Strips Furring strips shall be provided at the locations shown. Furring strips shall be installed at 16 inches on center unless otherwise shown, run in lengths as long as practicable, butt jointed and rigidly secured in place. ## 3.4 INSTALLATION OF VAPOR RETARDER Vapor retarder shall be applied to provide a continuous barrier at window and door frames, and at all
penetrations such as electrical outlets and switches, plumbing connections, and utility service penetrations. Joints in the vapor retarder shall be lapped and sealed according to the manufacturer's recommendations. # 3.5 TABLES TABLE I. SPECIES AND GRADE Subflooring, Roof Sheathing, Wall Sheathing, Furring | Grading
Rules | Species | Const
Standard | No. 2
Comm | No. 2
Board Comm | No. 3
Comm | |------------------|---|-------------------|---------------|---------------------------------|---------------| | NHLA Rules | Cypress | | | X | | | NELMA Grading Ru | les Northern White Ceda Eastern White Pine Northern Pine Balsam Fir Eastern Hemlock- Tamarack | r
X
X | | | x
x
x | | CRA RIS-01-SS | Redwood | | Х | | | | SCMA Specs | Cypress | | | X | | | SPIB Rules | Southern Pine | | Х | | | | WCLIB Std 17 | Douglas Fir-Larch
Hem-Fir
Sitka Spruce
Mountain Hemlock
Western Cedar | X
X
X
X | | | | | WWPA Grading Rul | Douglas Fir-Larch Hem-Fir Idaho White Pine Lodgepole Pine Ponderosa Pine Sugar Pine Englemann Spruce Douglas Fir South Mountain Hemlock Subalpine Fir Western Cedar | X
X
X | | X
X
X
X
X
X
X | | ⁻⁻ End of Section -- #### SECTION 06410A # LAMINATE CLAD ARCHITECTURAL CASEODORK 07/01 # PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) ANSI A161.2 (1998) Decorative Laminate Countertops, Performance Standards for Fabricated High Pressure ANSI A208.2 (1994) Medium Density Fiberboard (MDF) AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) ASTM F 547 (1977; R 1995) Definitions of Terms Relating to Nails for Use with Wood and Wood-Based Materials ARCHITECTURAL WOODWORK INSTITUTE (AWI) AWI Qual Stds (1999) Architectural Woodwork Quality Standards BUILDERS HARDWARE MANUFACTURERS ASSOCIATION (BHMA) BHMA A156.9 (1994) Cabinet Hardware NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA) NEMA LD 3 (1995) High-Pressure Decorative Laminates NEMA LD 3.1 (1995) Performance, Application, Fabrication, and Installation of High-Pressure Decorative Laminates WINDOW AND DOOR MANUFACTURERS ASSOCIATION (WDMA) NWWDA I.S. 1-A (1997) Architectural Wood Flush Doors #### 1.2 GENERAL DESCRIPTION Work in this section includes laminate clad custom casework cabinets vanities as shown on the drawings and as described in this specification. This Section includes high-pressure laminate surfacing and cabinet hardware. Recyclable materials shall conform to EPA requirements in accordance with Section 01670 RECYCLED / RECOVERED MATERIALS. All exposed and semi-exposed surfaces, whose finish is not otherwise noted on the drawings or finish schedule, shall be sanded smooth and shall receive a clear finish of polyurethane. Wood finish may be shop finished or field applied in accordance with Section 09900 PAINTING, GENERAL. ## 1.3 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. All items designated with a "G", including product literature, calculations, component data, certificates, diagrams, drawings, and samples shall be submitted concurrently in one complete system submittal. Omission of any required submittal item from the package shall be sufficient cause for disapproval of the entire submittal. Unless otherwise indicated in the submittal review commentary, disapproval of any item within the package shall require a re-submittal of the entire system package, in which all deficiencies shall be corrected. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES. ## SD-02 Shop Drawings Shop Drawings; G A/E Installation; G A/E Shop drawings showing all fabricated casework items in plan view, elevations and cross-sections to accurately indicate materials used, details of construction, dimensions, methods of fastening and erection, and installation methods proposed. Shop drawing casework items shall be clearly cross-referenced to casework items located on the project drawings. Shop drawings shall include a color schedule of all casework items to include all countertop, exposed, and semi-exposed cabinet finishes to include finish material manufacturer, pattern, and color. # SD-03 Product Data Wood Materials; G A/E Finish Schedule; G A/E Descriptive data which provides narrative written verification of all types of construction materials and finishes, methods of construction, etc. not clearly illustrated on the submitted shop drawings. Data shall provide written verification of conformance with AWI Qual Stds for the quality indicated to include materials, tolerances, and types of construction. Both the manufacturer of materials and the fabricator shall submit available literature which describes re-cycled product content, operations and processes in place that support efficient use of natural resources, energy efficiency, emissions of ozone depleting chemicals, management of water and operational waste, indoor environmental quality, and other production techniques supporting sustainable design and products. #### SD-04 Samples Plastic Laminates; G A/E Two samples of each plastic laminate pattern and color. Samples shall be a minimum of 5 by 7 inches in size. Cabinet Hardware; G A/E One sample of each cabinet hardware item specified to include , pulls. #### SD-07 Certificates Quality Assurance; G A/E Laminate Clad Casework; G A/E A quality control statement which illustrates compliance with and understanding of AWI Qual Stds requirements, in general, and the specific AWI Qual Stds requirements provided in this specification. The quality control statement shall also certify a minimum of ten years contractor's experience in laminate clad casework fabrication and construction. The quality control statement shall provide a list of a minimum of five successfully completed projects of a similar scope, size, and complexity. #### 1.4 QUALITY ASSURANCE Unless otherwise noted on the drawings, all materials, construction methods, and fabrication shall conform to and comply with the custom grade quality standards as outlined in AWI Qual Stds, Section 400G and Section 400B for laminate clad cabinets. These standards shall apply in lieu of omissions or specific requirements in this specification. Contractors and their personnel engaged in the work shall be able to demonstrate successful experience with work of comparable extent, complexity and quality to that shown and specified. Contractor must demonstrate knowledge and understanding of AWI Qual Stds requirements for the quality grade indicated. #### 1.5 DELIVERY AND STORAGE Casework may be delivered knockdown or fully assembled. All units shall be delivered to the site in undamaged condition, stored off the ground in fully enclosed areas, and protected from damage. The storage area shall be well ventilated and not subject to extreme changes in temperature or humidity. ### 1.6 SEQUENCING AND SCHEDULING Work shall be coordinated with other trades. Units shall not be installed in any room or space until painting, and ceiling installation are complete within the room where the units are located. Floor cabinets shall be installed before finished flooring materials are installed. ## 1.7 PROJECT/SITE CONDITIONS Field measurements shall be verified as indicated in the shop drawings before fabrication. # PART 2 PRODUCTS ## 2.1 WOOD MATERIALS ## 2.1.1 Lumber All framing lumber shall be kiln-dried Grade III to dimensions as shown on the drawings. Frame front, where indicated on the drawings, shall be nominal 3/4 inch hardwood. ## 2.1.2 Panel Products #### 2.1.2.1 Medium Density Fiberboard Medium density fiberboard (MDF) shall be an acceptable panel substrate where noted on the drawings. Medium density fiberboard shall meet the minimum standards listed in ANSI A208.2. #### 2.2 SOLID POLYMER MATERIAL Solid surfacing casework components shall conform to the requirements of Section 06650 SOLID POLYMER FABRICATIONS. ## 2.3 HIGH PRESSURE DECORATIVE LAMINATE (HPDL) All plastic laminates shall meet the requirements of NEMA LD 3 and ANSI A161.2 for high-pressure decorative laminates. Design, colors, surface finish and texture, and locations shall be as indicated on the drawings Section 09915 COLOR SCHEDULE. Plastic laminate types and nominal minimum thicknesses for casework components shall be as indicated in the following paragraphs. ## 2.3.1 Horizontal General Purpose Standard (HGS) Grade Horizontal general purpose standard grade plastic laminate shall be 0.048 inches (plus or minus 0.005 inches) in thickness. This laminate grade is intended for horizontal surfaces where postforming is not required. ## 2.3.2 Vertical General Purpose Standard (VGS) Grade Vertical general purpose standard grade plastic laminate shall be 0.028 inches (plus or minus 0.004 inches) in thickness. This laminate grade is intended for exposed exterior vertical surfaces of casework components where postforming is not required. # 2.3.3 Cabinet Liner Standard (CLS) Grade Cabinet liner standard grade plastic laminate shall be 0.020 inches in thickness. This laminate grade is intended for light duty semi-exposed interior surfaces of casework components. # 2.3.4 Backing Sheet (BK) Grade Undecorated backing sheet grade laminate is formulated specifically to be used on the backside of plastic laminated panel substrates to enhance dimensional stability of the substrate. Backing sheet thickness shall be 0.020 inches. Backing sheets shall be provided for all laminated casework components where plastic
laminate finish is applied to only one surface of the component substrate. ### 2.4 CABINET HARDWARE All hardware shall conform to BHMA A156.9, unless otherwise noted, and shall consist of the following components: a. Door Hinges: Frameless Concealed Hinges type, BHMA No. B01603. - b. Cabinet Pulls: Back Mounted Pulls type, BHMA No. BO2011. - c. Drawer Slide: Side mounted Drawer slide type, BHMA No. BO5052 with full extension and a minimum 75 pound load capacity. Slides shall include an integral stop to avoid accidental drawer removal. - d. Adjustable Shelf Support System: - 2) Multiple holes with plastic pin supports. #### 2.5 FASTENERS Nails, screws, and other suitable fasteners shall be the size and type best suited for the purpose and shall conform to ASTM F 547 where applicable. # 2.6 ADHESIVES, CAULKS, AND SEALANTS #### 2.6.1 Adhesives Adhesives shall be of a formula and type recommended by AWI. Adhesives shall be selected for their ability to provide a durable, permanent bond and shall take into consideration such factors as materials to be bonded, expansion and contraction, bond strength, fire rating, and moisture resistance. Adhesives shall meet local regulations regarding VOC emissions and off-gassing. ## 2.6.1.1 Wood Joinery Adhesives used to bond wood members shall be a Type II for interior use polyvinyl acetate resin emulsion. Adhesives shall withstand a bond test as described in NWWDA I.S. 1-A. #### 2.6.1.2 Laminate Adhesive Adhesive used to join high-pressure decorative laminate to wood shall be a water-based contact adhesive. PVC edgebanding shall be adhered using a polymer-based hot melt glue. #### 2.6.2 Caulk Caulk used to fill voids and joints between laminated components and between laminated components and adjacent surfaces shall be clear, 100 percent silicone. # 2.6.3 Sealant Sealant shall be of a type and composition recommended by the substrate manufacturer to provide a moisture barrier at sink cutouts and all other locations where unfinished substrate edges may be subjected to moisture. #### 2.7 ACCCESSORIES #### 2.8 FABRICATION Fabrication and assembly of components shall be accomplished at the shop site to the maximum extent possible. Construction and fabrication of cabinets and their components shall meet or exceed the requirements for AWI custom grade unless otherwise indicated in this specification. Cabinet style, in accordance with AWI Qual Stds, Section 400-G descriptions, shall be flush overlay. # 2.8.1 Base and Wall Cabinet Case Body Frame members shall be glued-together, kiln-dried hardwood lumber. Top corners, bottom corners, and cabinet bottoms shall be braced with either hardwood blocks or water-resistant glue and nailed in place metal or plastic corner braces. Cabinet components shall be constructed from the following materials and thicknesses: - a. Body Members (Ends, Divisions, Bottoms, and Tops): 3/4 inch medium density fiberboard 9MDF) panel product. - b. Face Frames and Rails: 3/4 inch panel product. - c. Shelving: 3/4 inch medium density fiberboard 9MDF panel product. - d. Cabinet Backs: 1/4 inch medium density fiberboard 9MDF panel product. - e. Drawer Sides, Backs, and Subfronts: 1/2 inch hardwood lumber. - f. Drawer Bottoms: 1/4 inch medium density fiberboard 9MDF) panel product. - g. Door and Drawer Fronts: 3/4-inch medium density fiberboard 9MDF panel product. - 2.8.1.1 Joinery Method for Case Body Members - a. Tops, Exposed Ends, and Bottoms. - 4) Spline or biscuit, glued under pressure. - b. Exposed End Corner and Face Frame Attachment. - 3) Butt joint, glued and nailed. - c. Cabinet Backs (Wall Hung Cabinets): Wall hung cabinet backs must not be relied upon to support the full weight of the cabinet and its anticipated load for hanging/mounting purposes. Method of back joinery and hanging/mounting mechanisms should transfer the load to case body members. Fabrication method shall be: - 3) Side bound, captured in groove or rabbetts; glued and fastened. - d. Cabinet Backs (Floor Standing Cabinets). - 3) Side bound, placed in rabbetts; glued and fastened in rabbetts. - e. Wall Anchor Strips shall be required for all cabinets with backs less than 1/2 inch thick. Strips shall consist of minimum 1/2 inch thick lumber, minimum 2-1/2 inches width; securely attached to wall side of cabinet back top and bottom for wall hung cabinets, top only for floor standing cabinets. #### 2.8.2 Cabinet Floor Base Floor cabinets shall be mounted on a base constructed of 3/4 inch fiberboard. Base assembly components shall be a moisture-resistant panel product. Finished height for each cabinet base shall benot less than the full height of the installed, specified wall base. Bottom edge of the cabinet door or drawer face shall extend below the top of the base as indicated on the drawings. ## 2.8.3 Cabinet Door and Drawer Fronts Door and drawer fronts shall be fabricated from 3/4 inch medium density fiberboard (MDF. All door and drawer front edges shall be surfaced with high pressure plastic laminate, color and pattern as indicated in Section 09915 COLOR SCHEDULE. ## 2.8.4 Drawer Assembly Drawer components shall consist of a removable drawer front, sides, backs, and bottom. Drawer components shall be constructed of the following materials and thicknesses: b. Drawer Sides and Backs For Laminate Finish: 1/2 inch thick 7-ply hardwood veneer core substrate. ## 2.8.4.1 Drawer Assembly Joinery Method - a. Multiple dovetail (all corners) or French dovetail front/dadoed back, glued under pressure. - b. Doweled, glued under pressure. - c. Lock shoulder, glued and pin nailed. - d. Bottoms shall be set into sides, front, and back, 1/4 inch deep groove with a minimum 3/8 inch standing shoulder. ## 2.8.5 Shelving Shelving shall be fabricated from 3/4 inch medium density fiberboard (MDF. All shelving top and bottom surfaces shall be finished with HPDL plastic laminate. # 2.8.5.1 Shelf Support System The shelf support system shall be: b. Pin Hole Method. Holes shall be drilled on the interior surface of the cabinet side walls. Holes shall be evenly spaced in two vertical columns. The holes in each column shall be spaced at 1 inch6 inches from the cabinet interior bottom and extending to within 6 inches of the top interior surface of the cabinet. Holes shall be drilled to provide a level, stable surface when the shelf is resting on the shelf pins. Hole diameter shall be coordinated with pin insert size to provide a firm, tight fit. ## 2.8.6 Laminate Clad Countertops Laminate countertop substrate shall be constructed of 3/4 inch medium density fiberboard (MDF). The substrate shall be moisture-resistant where countertops receive sinks, lavatories, or are subjected to liquids. All substrates shall have sink cutout edges sealed with appropriate sealant against moisture. No joints shall occur at any cutouts. A balanced backer sheet is required. # 2.8.6.1 Edge Style Front and exposed side countertop edges shall be in shapes and to dimensions as shown on the drawings. The countertop edge material shall be: d. Plastic laminate Self Edge. Flat, 90 degree "self " edge. Edge must be applied before top. Laminate edge shall overlap countertop laminate and shall be eased to eliminate sharp corners. ## 2.8.6.2 Laminate Clad Splashes Countertop splash substrate shall be 3/4 inch MDF fiberboard. Laminate clad backsplash shall be loose, to be installed at the time of countertop installation. Side splashes shall be straight profile and provided loose, to be installed at the time of countertop installation. Back and side splash laminate pattern and color shall match the adjacent countertop laminate. # 2.8.7 Laminate Application Laminate application to substrates shall follow the recommended procedures and instructions of the laminate manufacturer and NEMA LD 3.1, using tools and devices specifically designed for laminate fabrication and application. Provide a balanced backer sheet (Grade BK) wherever only one surface of the component substrate requires a plastic laminate finish. Apply required grade of laminate in full uninterrupted sheets consistent with manufactured sizes using one piece for full length only, using adhesives specified herein or as recommended by the manufacturer. Fit corners and joints hairline. All laminate edges shall be machined flush, filed, sanded, or buffed to remove machine marks and eased (sharp corners removed). Clean up at easing shall be such that no overlap of the member eased is visible. Fabrication shall conform to NEMA LD 3.1 and ANSI A161.2. Laminate types and grades for component surfaces shall be as follows unless otherwise indicated on the drawings: - a. Base/Wall Cabinet Case Body. - 1) Exterior (exposed) surfaces to include exposed and semi-exposed face frame surfaces: HPDL Grade VGS. - 2) Interior (semi-exposed) surfaces to include interior back wall, bottom, and side walls: HPDL Grade CLS. - b. Adjustable Shelving. - 1) Top and bottom surfaces: HPDL Grade HGS. - 2) All edges: HPDL Grade VGS. - c. Fixed Shelving. - 1) Top and bottom surfaces: HPDL Grade HGS. - 2) Exposed edges: HPDL Grade VGS. - d. Door, Drawer Fronts, Access Panels. - 1) Exterior (exposed) and interior (semi-exposed) faces: HPDL Grade VGS - 2) Edges: HPDL Grade VGS. - e. Drawer Assembly. All interior and exterior surfaces: HPDL Grade CLS. - f. Countertops and Splashes. - 1) All exposed and semi-exposed surfaces: HPDL Grade HGS #### 2.8.7.1 Tolerances Flushness, flatness, and joint tolerances of laminated surfaces shall meet the AWI Qual Stds custom grade requirements. #### 2.8.8 Finishing #### 2.8.8.1 Filling No fasteners shall be exposed on laminated surfaces. All nails, screws, and other fasteners in non-laminated cabinet components shall be countersunk and the holes filled with wood filler consistent in color with the wood species. # 2.8.8.2 Sanding All surfaces requiring coatings shall be prepared by sanding with a grit and in a manner that scratches will not show in the final system. # 2.8.8.3 Coatings Types,
method of application and location of casework finishes shall be in accordance with the finish schedule, drawings and Section 09900 PAINTING, GENERAL. All cabinet reveals shall be painted. # PART 3 EXECUTION ## 3.1 INSTALLATION Installation shall comply with applicable requirements for AWI Qual Stds custom quality standards. Countertops and fabricated assemblies shall be installed level, plumb, and true to line, in locations shown on the drawings. Cabinets and other laminate clad casework assemblies shall be attached and anchored securely to the floor and walls with mechanical fasteners that are appropriate for the wall and floor construction. ## 3.1.1 Anchoring Systems # 3.1.1.1 Floor Base cabinets shall utilize a floor anchoring system . Anchoring and mechanical fasteners shall not be visible from the finished side of the casework assembly. Cabinet assemblies shall be attached to anchored bases without visible fasteners . Where assembly abutts a wall surface, anchoring shall include a minimum 1/2 inch thick lumber or panel product hanging strip, minimum 2-1/2 inch width; securely attached to the top of the wall side of the cabinet back. #### 3.1.1.2 Wall Cabinetvanity to be wall mounted shall utilize minimum 1/2 inch thick lumber or panel product hanging strips, minimum 2-1/2 inch width; securely attached to the wall side of the cabinet back, both top and bottom. ## 3.1.2 Countertops Countertops shall be installed in locations as indicated on the drawings. Countertops shall be fastened to supporting casework structure with mechanical fasteners, hidden from view. All joints formed by the countertop or countertop splash and adjacent wall surfaces shall be filled with a clear silicone caulk. #### 3.1.3 Hardware Casework hardware shall be installed in types and locations as indicated on the drawings. Where fully concealed European-style hinges are specified to be used with particleboard or fiberboard doors, the use of plastic or synthetic insertion dowels shall be used to receive 3/16 inch "Euroscrews". The use of wood screws without insertion dowels is prohibited. ## 3.1.4 Doors, Drawers and Removable Panels The fitting of doors, drawers and removable panels shall be accomplished within target fitting tolerances for gaps and flushness in accordance with AWI Qual Stds custom grade requirements. #### 3.1.5 Plumbing Fixtures Sinks, sink hardware, and other plumbing fixtures shall be installed in locations as indicated on the drawings and in accordance with Section 15400A PLUMBING, GENERAL PURPOSE. -- End of Section -- #### SECTION 06650 # SOLID POLYMER (SOLID SURFACING) FABRICATIONS 10/00 # PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) | ANSI A136.1 | (1992) Organic Adhesives for Installation of Ceramic Tile | |--------------------------|--| | ANSI Z124.3 | (1995) Plastic Lavatories | | ANSI Z124.6 | (1997) Plastic Sinks | | AMERICAN SOCIETY FOR TES | STING AND MATERIALS (ASTM) | | ASTM D 2583 | (1995) Indentation Hardness of Rigid
Plastics by Means of a Barcol Impressor | | ASTM D 570 | (1998) Water Absorption of Plastics | | ASTM D 638 | (1999) Tensile Properties of Plastics | | ASTM D 696 | (1998) Coefficient of Linear Thermal
Expansion of Plastics Between Minus 30
degrees C and 30 degrees C With a Vitreous
Silica Dilatometer | | ASTM E 84 | (2000a) Surface Burning Characteristics of Building Materials | | ASTM G 21 | (1996) Determining Resistance of Synthetic
Polymeric Materials to Fungi | | ASTM G 22 | (1976; R 1996) Determining Resistance of Plastics to Bacteria | # NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA) NEMA LD 3 (1995) High-Pressure Decorative Laminates # 1.2 GENERAL DESCRIPTION Work in this section includes Restroom Countertops and other items utilizing solid polymer (solid surfacing) fabrication as shown on the drawings and as described in this specification. # 1.3 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-02 Shop Drawings Fabrications; G A/E Shop Drawings indicating locations, dimensions, component sizes, fabrication and joint details, attachment provisions, installation details, and coordination requirements with adjacent work. SD-03 Product Data Solid polymer material; G A/E Product data indicating product description, fabrication information, and compliance with specified performance requirements for solid polymer, joint adhesive, sealants, and heat reflective tape. Both the manufacturer of materials and the fabricator shall submit a detailed description of operations and processes in place that support efficient use of natural resources, energy efficiency, emissions of ozone depleting chemicals, management of water and operational waste, indoor environmental quality, and other production techniques supporting sustainable design and products. SD-04 Samples Material; G A/E A minimum 4 by 4 inch sample of each color and pattern for approval. Samples shall indicate full range of color and pattern variation. Approved samples shall be retained as a standard for this work. Vanity Tops; G A/E A minimum 1 foot wide by 6 inch deep, full size sample for each type of counter top shown on the project drawings. The sample shall include the edge profile and backsplash as detailed on the project drawings. Solid polymer material shall be of a pattern and color as indicated on the drawings. Sample shall include at least one seam. Approved sample shall be retained as standard for this work. SD-06 Test Reports Solid polymer material; G A/E Test report results from an independent testing laboratory attesting that the submitted solid polymer material meets or exceeds each of the specified performance requirements. SD-07 Certificates Fabrications;G A/E Qualifications;G A/E Solid polymer manufacturer's certification attesting to fabricator qualification approval. SD-10 Operation and Maintenance Data Solid polymer material;G A/E Clean-up;G A/E A minimum of six copies of maintenance data indicating manufacturer's care, repair and cleaning instructions. Maintenance video shall be provided, if available. Maintenance kit for matte finishes shall be submitted. # 1.4 DELIVERY, STORAGE AND HANDLING Materials shall not be delivered to project site until areas are ready for installation. Materials shall be stored indoors and adequate precautions taken to prevent damage to finished surfaces. Protective coverings shall be provided to prevent physical damage or staining following installation, for duration of project. #### 1.5 WARRANTY Manufacturer's warranty of ten years against defects in materials, excluding damages caused by physical or chemical abuse or excessive heat, shall be provided. Warranty shall provide for material and labor for replacement or repair of defective material for a period of ten years after component installation. #### 1.6 OUALIFICATIONS To insure warranty coverage, solid polymer fabricators shall be certified to fabricate by the solid polymer material manufacturer being utilized. All fabrications shall be marked with the fabricator's certification label affixed in an inconspicuous location. Fabricators shall have a minimum of 5 years of experience working with solid polymer materials. # PART 2 PRODUCTS #### 2.1 MATERIAL Solid polymer material shall be a homogeneous filled solid polymer; not coated, laminated or of a composite construction; meeting ANSI Z124.3 and ANSI Z124.6 requirements. Material shall have minimum physical and performance properties specified. Superficial damage to a depth of 0.01 inch shall be repairable by sanding or polishing. Material thickness shall be as indicated on the drawings. In no case shall material be less than 1/4 inch in thickness. # 2.1.1 Cast, 100 Percent Acrylic Polymer Solid Surfacing Material Cast, 100 percent acrylic solid polymer material shall be composed of acrylic polymer, mineral fillers, and pigments and shall meet the following minimum performance requirements: | PROPERTY | REQUIREMENT (min. or max.) | TEST PROCEDURE | |--|----------------------------------|----------------| | Tensile Strength | 5800 psi (min.) | ASTM D 638 | | Hardness | 55-Barcol
Impressor (min.) | ASTM D 2583 | | Thermal Expansion | .000023 in/in/F (max.) | ASTM D 696 | | Boiling water
Surface Resistance | No Change | NEMA LD 3-3.05 | | High Temperature
Resistance | No Change | NEMA LD 3-3.06 | | <pre>Impact Resistance (Ball drop)</pre> | | NEMA LD 3-303 | | 1/4" sheet | 36", 1/2 lb
ball, no failure | | | 1/2" sheet | 140", 1/2 lb
ball, no failure | | | 3/4" sheet | 200", 1/2 lb
ball, no failure | | | Mold & Mildew
Growth | No growth | ASTM G 21 | | Bacteria Growth | No Growth | ASTM G 22 | | Liquid Absorption (Woight in 24 hrs.) | 0 19 mar | ACTM D 570 | | (Weight in 24 hrs.) | U.18 Max. | ASTM D 570 | | Flammability | | ASTM E 84 | | Flame Spread
Smoke Developed | 25 max.
30 max | | # 2.1.2 Acrylic-modified Polymer Solid Surfacing Material Cast, solid polymer material shall be composed of a formulation containing acrylic and polyester polymers, mineral fillers, and pigments. Acrylic polymer content shall be not less than 5 percent and not more than 10 percent in order to meet the following minimum performance requirements: | PROPERTY | REQUIREMENT (min. or max.) | TEST PROCEDURE | |------------------|----------------------------
----------------| | Tensile Strength | 4100 psi (min.) | ASTM D 638 | | Hardness | 50-Barcol Impressor (min.) | ASTM D 2583 | | PROPERTY | REQUIREMENT (min. or max.) | TEST PROCEDURE | |--|----------------------------------|----------------| | Thermal Expansion | .000023 in/in/F (max.) | ASTM D 696 | | Boiling water
Surface Resistance | No Change | NEMA LD 3-3.05 | | High Temperature
Resistance | No Change | NEMA LD 3-3.06 | | <pre>Impact Resistance (Ball drop)</pre> | | NEMA LD 3-303 | | 1/4" sheet | 36", 1/2 lb ball, no failure | | | 1/2" sheet | 140", 1/2 lb
ball, no failure | | | 3/4" sheet | 200", 1/2 lb
ball, no failure | | | Mold & Mildew
Growth | No growth | ASTM G 21 | | Bacteria Growth | No Growth | ASTM G 22 | | Liquid
Absorption | | | | (Weight in 24 hrs.) | 0.6% max. | ASTM D 570 | | Flammability | | ASTM E 84 | | Flame Spread
Smoke Developed | 25 max.
100 max | | Smoke Developed 100 max 2.1.3 Material Patterns and Colors Patterns and colors for all solid polymer components and fabrications shall be those indicated on the project drawings. Pattern and color shall occur, and shall be consistent in appearance, throughout the entire depth (thickness) of the solid polymer material. # 2.1.4 Surface Finish Exposed finished surfaces and edges shall receive a uniform appearance. Exposed surface finish shall be matte; gloss rating of 5-20. #### 2.2 ACCESSORY PRODUCTS Accessory products, as specified below, shall be manufactured by the solid polymer manufacturer or shall be products approved by the solid polymer manufacturer for use with the solid polymer materials being specified. # 2.2.1 Seam Adhesive Seam adhesive shall be a two-part adhesive kit to create permanent, inconspicuous, non-porous, hard seams and joints by chemical bond between solid polymer materials and components to create a monolithic appearance of the fabrication. Adhesive shall be approved by the solid polymer manufacturer. Adhesive shall be color-matched to the surfaces being bonded where solid-colored, solid polymer materials are being bonded together. The seam adhesive shall be clear or color matched where particulate patterned, solid polymer materials are being bonded together. #### 2.2.2 Panel Adhesive Panel adhesive shall be neoprene based panel adhesive meeting ANSI A136.1, Underwriter's Laboratories (UL) listed. This adhesive shall be used to bond solid polymer components to adjacent and underlying substrates. ### 2.2.3 Silicone Sealant Sealant shall be a mildew-resistant, FDA and UL listed silicone sealant or caulk in a clear formulation. The silicone sealant shall be approved for use by the solid polymer manufacturer. Sealant shall be used to seal all expansion joints between solid polymer components and all joints between solid polymer components and other adjacent surfaces such as walls, floors, ceiling, and plumbing fixtures. ## 2.2.4 Conductive Tape Conductive tape shall be manufacturer's standard foil tape, 4 mils thick, applied around the edges of cut outs containing hot or cold appliances. #### 2.3 FABRICATIONS Components shall be factory or shop fabricated to the greatest extent practical to sizes and shapes indicated, in accordance with approved Shop Drawings and manufacturer's requirements. Factory cutouts shall be provided for sinks, lavatories, and plumbing fixtures where indicated on the drawings. Contours and radii shall be routed to template, with edges smooth. Defective and inaccurate work will be rejected. #### 2.3.1 Joints and Seams Joints and seams shall be formed between solid polymer components using manufacturer's approved seam adhesive. Joints shall be inconspicuous in appearance and without voids to create a monolithic appearance. # 2.3.2 Edge Finishing Rout and finish component edges to a smooth, uniform appearance and finish. Edge shapes and treatments, including any inserts, shall be as detailed on the drawings. Rout all cutouts, then sand all edges smooth. Repair or reject defective or inaccurate work. # 2.3.3 Vanity Top Splashes Backsplashes and end splashes shall be fabricated from 1/2 inch thick solid surfacing material and shall be 4 inches high provided to dimensions and shapes as indicated on the drawings. Backsplashes and end splashes shall be provided at locations indicated on the drawings. Backsplashes shall be shop fabricated and be permanently attached. # 2.3.3.1 Permanently Attached Backsplash Permanently attached backsplashes shall be attached straight with seam adhesive to form a 90 degree transition. ## 2.3.3.2 End Splashes End splashes shall be provided loose for installation at the jobsite after horizontal surfaces to which they are to be attached have been installed. # 2.3.4 Vanity Tops All solid surfacing, solid polymer counter top and vanity top components shall be fabricated from 1/2 inch thick material. Edge details, dimensions, locations, and quantities shall be as indicated on the Drawings. Counter tops shall be complete with 4 inch high permanently attached, 90 degree transitionat where indicated on the drawings. Attach 2 inch wide reinforcing strip of polymer material under each horizontal counter top seam. # 2.3.4.1 Counter Top With Sink ## A. Stainless Steel or Vitreous China Sink. Countertops with sinks shall include cutouts to template as furnished by the sink manufacturer. Manufacturer's standard sink mounting hardware for vitreous china installation shall be provided. Seam between sink and counter top shall be sealed with silicone sealant. Sink, faucet, and plumbing requirements shall be in accordance with Section 15400A PLUMBING, GENERAL PURPOSE. ## 2.3.4.2 Vanity Tops With Bowls #### A. Vitreous China Bowl Countertops with vitreous china bowls shall include cutouts to template as furnished by the sink manufacturer. Manufacturer's standard sink mounting hardware for vitreous china installation shall be provided. Seam between sink and counter top shall be sealed with silicone sealant. Sink, faucet, and plumbing requirements shall be in accordance with Section 15400A PLUMBING, GENERAL PURPOSE. ## PART 3 EXECUTION # 3.1 COORDINATION In most instances, installation of solid polymer fabricated components and assemblies will require strong, correctly located structural support provided by other trades. To provide a stable, sound, secure installation, close coordination is required between the solid polymer fabricator/installer and other trades to insure that necessary structural wall support, cabinet counter top structural support, proper clearances, and other supporting components are provided for the installation of wall panels, countertops, shelving, and all other solid polymer fabrications to the degree and extent recommended by the solid polymer manufacturer. Contractor shall appropriate staging areas for solid polymer fabrications. #### 3.2 INSTALLATION ## 3.2.1 Components All components and fabricated units shall be installed plumb, level, and rigid. Field joints between solid polymer components to provide a monolithic appearance shall be made using solid polymer manufacturer's approved seam adhesives, with joints inconspicuous in the finished work. Metal or vitreous china sinks and lavatory bowls shall be attached to counter tops using solid polymer manufacturer's recommended clear silicone sealant and mounting hardware. Plumbing connections to sinks and lavatories shall be made in accordance with Section 15400A PLUMBING, GENERAL PURPOSE . #### 3.2.2 Silicone Sealant A clear, silicone sealant or caulk shall be used to seal all expansion joints between solid polymer components and all joints between solid polymer components and other adjacent surfaces such as walls, floors, ceiling, and plumbing fixtures. Sealant bead shall be smooth and uniform in appearance and shall be the minimum size necessary to bridge any gaps between the solid surfacing material and the adjacent surface. Bead shall be continuous and run the entire length of the joint being sealed. ## 3.2.3 Plumbing Plumbing connections to sinks and lavatories shall be made in accordance with Section 15400A. #### 3.3 CLEAN-UP Components shall be cleaned after installation and covered to protect against damage during completion of the remaining project items. Components damaged after installation by other trades will be repaired or replaced at the General Contractor's cost. Component supplier will provide a repair/replace cost estimate to the General Contractor who shall approve estimate before repairs are made. -- End of Section -- #### SECTION 07190 # WATER REPELLENTS 09/99 # PART 1 GENERAL # 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only. # AMERICAN ARCHITECTURAL MANUFACTURERS ASSOCIATION (AAMA) | AAMA 501 | (1994; 501.1; 501.2) Methods of Test for | - | |----------|--|---| | | Exterior Walls | | # AMERICAN ASSOCIATION OF STATE HIGHWAY AND TRANSPORTATION OFFICIALS (AASHTO) | AASHTO T259 | (1993) Resistance of Concrete to Chloride
Ion Penetration | |-------------|--| | AASHTO T260 | (1995) Sampling and Testing for Chloride
Ion in Concrete and Concrete Raw Materials | # AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM C 140 | (1999b) Sampling and Testing Concrete
Masonry Units | |-------------|---| | ASTM C 642 | (1997) Density, Absorption, and Voids in
Hardened Concrete | | ASTM C 672 | (1992) Scaling Resistance of Concrete
Surfaces Exposed to Deicing Chemicals | | ASTM D 1653 | (1993) Water Vapor Transmission of Organic
Coating Films | | ASTM D 2369 | (1998) Volatile Content of Coatings | | ASTM D 3278 | (1996el) Test Methods for
Flash Point of
Liquids by Small Scale Closed-Cup Apparatus | | ASTM E 514 | (1990; R 1996el) Water Penetration and
Leakage Through Masonry | | ASTM E 96 | (2000) Water Vapor Transmission of
Materials | | ASTM G 53 | (1996) Operating Light- and Water-Exposure
Apparatus (Fluorescent UV-Condensation
Type) for Exposure of Nonmetallic Materials | # U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA) 29 CFR 1910.1000 Air Contaminants #### 1.2 SUBMITTALS Submit the following in accordance with Section 01330, "Submittal Procedures." SD-03 Product Data; G A/E Water repellents; G A/E SD-06 Test Reports; Water absorption; G A/E Accelerated weathering; G A/E Resistance to chloride ion penetration; G A/E Moisture vapor transmission; G A/E Scaling resistance; G A/E Water Penetration and Leakage; G A/E SD-07 Certificates Manufacturer's qualifications; G A/E Applicator's qualifications; G A/E Evidence of acceptable variation; G A/E Warranty; G A/E SD-08 Manufacturer's Instructions Application; G A/E instructions Provide manufacturer's instructions including preparation, application, recommended equipment to be used, safety measures, and protection of completed application. Manufacturer's material safety data sheets; G A/E ## 1.3 QUALITY ASSURANCE ## 1.3.1 Qualifications - a. Manufacturer's qualifications: Minimum five years record of successful in-service experience of water repellent treatments manufactured for concrete masonry, application. - b. Applicator's qualifications: Minimum five years successful experience in projects of similar scope using specified or similar treatment materials and manufacturer's approval for application. # 1.3.2 Performance Requirements - a. Water absorption: ASTM C 140. Comparison of treated and untreated specimens. - b. Moisture vapor transmission: ASTM E 96. Comparison of treated and untreated specimens. - c. Water penetration and leakage through masonry: ASTM E 514. # 1.3.3 Evidence of Acceptable Variation If a product proposed for use does not conform to requirements of the referenced specification, submit for approval to the Contracting Officer, evidence that the proposed product is either equal to or better than the product specified. Include the following: - a. Identification of the proposed substitution; - b. Reason why the substitution is necessary; - c. A comparative analysis of the specified product and the proposed substitution, including tabulations of the composition of pigment and vehicle; - d. The difference between the specified product and the proposed substitution; and - e. Other information necessary for an accurate comparison of the proposed substitution and the specified product. #### 1.4 SAMPLE TEST PANEL The approved Sample Test Panel will serve as the standard of quality for all other water repellent coating work. Do not proceed with application until the sample panel has been approved by the Contracting Officer. #### 1.4.1 Sample Test Panel Prior to commencing work, including bulk purchase and delivery of material, apply water repellent treatment to a minimum 4 feet high by 4 feet long concrete masonry, test-panel specified in Section . Provide a full height expansion joint at mid-panel length. Prepare and seal joint with materials approved for project use. # 1.4.1.1 Testing AAMA 501 Provide field water testing of water repellent treated surfaces in the presence of the Contracting Officer and the water repellent treatment manufacturer's representative. - a. Apply water repellent to left side of mock-up and allow to cure prior to application of treatment to right side. - b. Twenty days after completion of application of treatment, test mock-up with 5/8 inch garden hose, with spray nozzle, located 10 feet from wall and aimed upward so water strikes wall at 45 degree downward angle. After water has run continuously for three hours observe back side of mock-up for water penetration and leakage. If leakage is detected make changes as needed and retest. c. Coordinate testing procedures and modify project treatment application as required to pass mock-up tests for water penetration and leakage resistance. # 1.4.2 Pre-Installation Meeting - a. Attend pre-installation meeting required prior to commencement of concrete masonry, installation. - b. Review procedures and coordination required between water repellent treatment work and work of other trades which could affect work to be performed under this section of the work. - c. Convene additional pre-installation meeting prior to water repellent treatment application for coordination with work not previously coordinated including joint sealants. ## 1.5 REGULATORY REQUIREMENTS #### 1.5.1 Environmental Protection rovide coating materials that conform to the restrictions of the Local Air Pollution Control jurisdiction. Notify the Contracting Officer of any water repellent coating specified herein which fails to conform to the local Air Quality Management District Rules at the location of the Project. In localities where the specified coating is prohibited, the Contracting Officer may direct the substitution of an acceptable coating. # 1.6 DELIVERY, STORAGE, AND HANDLING Deliver materials in original sealed containers, clearly marked with the manufacturer's name, brand name, type of material, batch number, percent solids by weight and volume, and date of manufacturer. Store materials off the ground, in a dry area where the temperature will be not less 50 degrees F nor more than 85 degrees F. # 1.7 SAFETY METHODS Apply coating materials using safety methods and equipment in accordance with the following: # 1.7.1 Toxic Materials To protect personnel from overexposure to toxic materials, conform to the most stringent guidance of: - a. The coating manufacturer when using solvents or other chemicals. Use impermeable gloves, chemical goggles or face shield, and other recommended protective clothing and equipment to avoid exposure of skin, eyes, and respiratory system. Conduct work in a manner to minimize exposure of building occupants and the general public. - b. 29 CFR 1910.1000. - c. Threshold Limit Values (R) of the American Conference of Governmental Industrial Hygienists. - d. Manufacturer's material safety data sheets. #### 1.8 ENVIRONMENTAL CONDITIONS ## 1.8.1 Weather and Substrate Conditions Do not proceed with application of water repellents under any of the following conditions, except with written recommendations of manufacturer. - a. Ambient temperature is less than 40 degrees F. - b. Substrate faces have cured less than one month. - c. Rain or temperature below 40 degrees F are predicted for a period of 24 hours before or after treatment. - d. Earlier than three days after surfaces are wet. - e. Substrate is frozen or surface temperature is less than 40 degrees F and falling. #### 1.8.2 Moisture Condition Determine moisture content of substrate meets manufacturer's requirements prior to application of water repellent material. #### 1.9 SEQUENCING AND SCHEDULING ## 1.9.1 Masonry Surfaces Do not start water repellent coating until all joint tooling, pointing and masonry cleaning operations have been completed. Allow masonry to cure for at least 60 days under normal weather conditions before applying water repellent. # 1.9.2 Sealants Do not apply water repellents until the sealants for joints adjacent to surfaces receiving water repellent treatment have been installed and cured. - a. Water repellent work may precede sealant application only if sealant adhesion and compatibility have been tested and verified using substrate, water repellent, and sealant materials identical to those used in the work. - b. Provide manufacturers' test results of compatibility. ## 1.10 INSPECTIONS Notify the manufacturer's representative a minimum of 72 hours prior to scheduled application of water repellents for field inspection. Inspect surfaces and obtain approval in writing from the manufacturer's representative prior to any application of any water repellent coating. # 1.11 SURFACES TO BE COATED Coat all exterior masonry, surfaces. This includes edges and returns adjacent to windows and door frames and free standing walls. #### 1.12 WARRANTY Provide a warranty, issued jointly by the manufacturer and the applicator of the water repellent treatment against moisture penetration through the treated structurally sound surface for a period of five years. Warranty to provide the material, labor, and equipment necessary to remedy the problem. At the satisfactory completion of the work, complete the warranty sign, notarize, and submit to the Contracting Officer. #### PART 2 PRODUCTS #### 2.1 MATERIALS Water repellent solution shall be a clear, non-yellowing, deep-penetrating, VOC compliant solution. Material shall not stain or discolor and shall produce a mechanical and chemical interlocking bond with the substrate to the depth of the penetration. ## 2.2 WATER REPELLENTS # 2.2.1 Silane, 20 Percent Solids Penetrating water repellent. A monomeric compound containing approximately 20 percent alkyltrialkoxysilanes with alcohol, mineral spirits, water, and other proprietary solvent carrier. - a. Composition: Modified alkylalkoxysilane. - b. Active alkylalkoxysilane content: ASTM D 2369 20 percent by weight, plus or minus 1 percent. - c. Appearance: White, milky liquid. - d. Average depth of penetration: Up to 3/8 inchdepending on substrate. - e. VOC content: Less than 350 grams per liter. - f. Flash point, ASTM D 3278. - g. Specific gravity, at 78 degrees F: 0.96 to 0.98. - h. Density:.0 to 8.2 pounds per gallon. #### 2.2.2 Siloxanes Penetrating water repellent. Alkylalkoxysiloxanes that are oligomerous with alcohol, ethanol, mineral spirits, or water. - a. Solids by weight: ASTM D 2369, 7.5-16.0 percent. - b. Volatile Organic Content (VOC) after blending: Less than 175 grams per liter. - c. Density, activated: 8.4 pounds per gallon, plus or minus one percent. - d. Flash point, ASTM D 3278: Greater than212 degrees F. # 2.2.3 Low-Solids
Acrylic Water-clear, breathing coating of acrylic resins, water-based, solvent-based, or acrylic emulsions solution containing less than 15 percent solids by volume. ## 2.2.4 High-Solids Acrylic Water-clear, breathing coating of acrylic resins, water-based, solvent-based, or acrylic emulsions solution containing 15 percent solids or more by volume. # 2.2.5 VOC-Complying Water Repellents Products certified by the manufacturer that they comply with local regulations controlling use of volatile organic compounds (VOC's). ## 2.3 PERFORMANCE CRITERIA ## 2.3.1 Silane, 20 Percent Solids - a. Water absorption test: ASTM C 642 and ASTM E 514. - b. Moisture vapor transmission: ASTM D 1653, 28.33 perms or 51.61 percent maximum compared to untreated surfaces. - c. Scaling resistance: ASTM C 672, non-air-entrained concrete, zero rating, no scaling, 100 cycles treated concrete. - d. Resistance to chloride ion penetration: AASHTO T259 and AASHTO T260. - e. Water penetration and leakage through masonry, ASTM E 514 percentage reduction of leakage: 97 percent minimum. - f. Resistance to accelerated weathering, ASTM G 53 testing 2,500 hours: No loss in repellency. - g. Drying time under normal conditions: Four hours per 75 degrees F. # 2.3.2 Siloxanes - a. Dry time for recoat, if necessary: One to two hours depending on weather conditions. - b. Penetration: 3/8 inch, depending on substrate. - c. Water penetration and leakage through masonry, ASTM E 514, percentage reduction of leakage: 97.0 percent minimum - d. Moisture vapor transmission, ASTM E 96: 47.5 perms or 82 percent maximum compared to untreated sample. - e. Resistance to accelerated weathering, ASTM G 53. Testing 2,500 hours: No loss in repellency. - f. Resistance to chloride ion penetration, AASHTO T259 and AASHTO T260. - g. Scaling resistance, ASTM C 672, non-air-entrained concrete: Zero rating, no scaling, 100 cycles treated concrete. #### PART 3 EXECUTION #### 3.1 EXAMINATION Examine , or masonry surfaces to be treated to ensure that: - a. All visible cracks, voids or holes have been repaired. - b. All mortar joints in masonry are tight and sound, have not been re-set or misaligned and show no cracks or spalling. - c. Moisture contents of walls does not exceed 15 percent when measured on an electronic moisture register, calibrated for the appropriate substrate. - d. Concrete surfaces are free of form release agents, curing compounds and other compounds that would prevent full penetration of the water repellent material. Do not start water repellent treatment work until all deficiencies have been corrected, examined and found acceptable to the Contracting Officer and the water repellent treatment manufacturer. Do not apply treatment to damp, dirty, dusty or otherwise unsuitable surfaces. Comply with the manufacturer's recommendations for suitability of surface. #### 3.2 PREPARATION # 3.2.1 Surface Preparation Prepare substrates in accordance with water repellent treatment manufacturer's recommendation. Clean surfaces of dust, dirt, efflorescence, alkaline, and foreign matter detrimental to proper application of water repellent treatment. ### 3.2.2 Protection Provide masking or protective covering for materials which could be damaged by water repellent treatment. - a. Protect glass, glazed products, and prefinished products from contact with water repellent treatment. - b. Protect landscape materials with breathing type drop cloths: plastic covers are not acceptable. ## 3.2.3 Compatibility - a. Confirm treatment compatibility with each type of joint sealer within or adjacent to surfaces receiving water repellent treatment in accordance with manufacturer's recommendations. - c. Mask surfaces indicated to receive joint sealers which would be adversely affected by water repellent treatment where treatment must be applied prior to application of joint sealers. #### 3.3 MIXING Mix water repellent material thoroughly in accordance with the manufacturer's recommendations. Mix, in quantities required for that days work, all containers prior to application. Mix each container the same length of time. ## 3.4 APPLICATION In strict accordance with the manufacturers written requirements. Do not start application without the manufacturer's representative being present or his written acceptance of the surface to be treated. ## 3.4.1 Water Repellent Treatment ## 3.4.1.1 Spray Application Spray apply water repellent material to exterior masonry surfaces using low-pressure airless spray equipment in strict accordance with manufacturer's printed application, instructions, and precautions. Maintain copies at the job site. Apply flood coat in an overlapping pattern allowing approximately 8 to 10 inch rundown on the vertical surface. Maintain a wet edge at all overlaps, both vertical and horizontal. Hold gun maximum 18 inches from wall. ## 3.4.1.2 Brush or Roller Application Brush or roller apply water repellent material only at locations where overspray would affect adjacent materials and where not practical for spray applications. ## 3.4.1.3 Covered Surfaces Coat all exterior or masonry surfaces including back faces of parapets, tops of walls, edges and returns adjacent to window and door frames, window sills, and free-standing walls. ## 3.4.1.4 Rate of Application Apply materials to exterior surfaces at the coverages recommended by the manufacturer and as determined from sample panel test. Increase or decrease application rates depending upon the surface texture and porosity of the substrate so as to achieve even appearance and total water repellency. # 3.4.1.5 Number of Coats The sample panel test shall determine the number of coats required to achieve full coverage and protection. ## 3.4.1.6 Appearance If unevenness in appearance, lines of work termination or scaffold lines exist, or detectable changes from the approved sample panel occur, the Contracting Officer may require additional treatment at no additional cost to the Government. Apply any required additional treatment to a natural break off point. #### 3.5 CLEANING Clean all runs, drips, and overspray from adjacent surfaces while the water repellent treatment is still wet in a manner recommended by the manufacturer. #### 3.6 FIELD QUALITY CONTROL Do not remove drums containing water repellent material from the job site until completion of all water repellent treatment and until so authorized by the Contracting Officer. ## 3.6.1 Field Testing AAMA 501. At a time not less than twenty days after completion of the water repellent coating application, subject a representative wall area of the building to the Navy Hose Stream Field Test similiar to AAMA 501 hose test to simulated rainfall for a period of three hours. Use a minimum 5/8 inch diameter hose and a fixed lawn sprinkler spray head which will direct a full flow of water against the wall. Place the sprinkler head so that the water will strike the wall downward at a 45 degree angle to the wall. If the inside of the wall shows any trace of moisture during or following the test, apply another coat of water repellent, at the manufacturer's recommended coverage rate to the entire building. Repeat testing and re-coating process until no moisture shows on the inside wall face. Accomplish any required work retesting and re-coating at no additional cost to the Government. ## 3.6.2 Site Inspection Inspect treatment in progress by manufacturer's representative to verify compliance with manufacturer instructions and recommendations. -- End of Section -- #### SECTION 07212N # MINERAL FIBER BLANKET INSULATION 09/99 # PART 1 GENERAL 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only. ## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM C 665 | (1998) Mineral-Fiber Blanket Thermal
Insulation for Light Frame Construction
and Manufactured Housing | |------------|--| | ASTM C 930 | (1992) Potential Health and Safety
Concerns Associated with Thermal
Insulation Materials and Accessories | | ASTM E 136 | (1996; Rev. A) Behavior of Materials in a
Vertical Tube Furnace at 750 Degrees C | #### U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA) 29 CFR 1910.134 Respiratory Protection # 1.2 SUBMITTALS Submit the following in accordance with Section 01330, "Submittal Procedures." SD-03 Product Data Blanket insulation; G A/E Sill sealer insulation; G A/E SD-08 Manufacturer's Instructions Insulation;G A/E ## 1.3 DELIVERY, STORAGE, AND HANDLING ## 1.3.1 Delivery Deliver materials to site in original sealed wrapping bearing manufacturer's name and brand designation, specification number, type, grade, R-value, and class. Store and handle to protect from damage. Do not allow insulation materials to become wet, soiled, crushed, or covered with ice or snow. Comply with manufacturer's recommendations for handling, storing, and protecting of materials before and during installation. ## 1.3.2 Storage Inspect materials delivered to the site for damage; unload and store out of weather in manufacturer's original packaging. Store only in dry locations, not subject to open flames or sparks, and easily accessible for inspection and handling. #### 1.4 SAFETY PRECAUTIONS #### 1.4.1 Respirators Provide installers with dust/mist respirators, training in their use, and protective clothing, all approved by National Institute for Occupational Safety and Health (NIOSH)/Mine Safety and Health Administration (MSHA) in accordance with 29 CFR 1910.134. #### 1.4.2 Smoking Do not smoke during installation of blanket thermal insulation. ## 1.4.3 Other Safety Concerns Consider other safety concerns and measures as outlined in ASTM C 930. #### PART 2 PRODUCTS #### 2.1 BLANKET INSULATION ASTM C 665, Type I, acousticalblankets without membrane coverings and and III, blankets
with reflective coverings ## 2.1.1 Thermal Resistance Value (R-VALUE) As indicated ## 2.1.2 Recycled Materials Provide Thermal Insulation containing recycled materials to the extent practicable, provided the material meets all other requirements of this section. The minimum required recycled materials content by weight are: Rock Wool: 75 percent slag Fiberglass: 20 to 25 percent glass cullet #### 2.1.3 Prohibited Materials Do not provide asbestos-containing materials. #### 2.2 SILL SEALER INSULATION ASTM C 665, Type I. #### 2.3 BLOCKING Wood, metal, unfaced mineral fiber blankets in accordance with ASTM C 665, Type I, or other approved materials. Use only non-combustible materials meeting the requirements of ASTM E 136 for blocking around chimneys and heat producing devices. ## PART 3 EXECUTION #### 3.1 EXISTING CONDITIONS Before installing insulation, ensure that areas that will be in contact with the insulation are dry and free of projections which could cause voids, compressed insulation, or punctured vapor retarders. If moisture or other conditions are found that do not allow the workmanlike installation of the insulation, do not proceed but notify Contracting Officer of such conditions. #### 3.2 PREPARATION #### 3.2.1 Blocking at Attic Vents and Access Doors Prior to installation of insulation, install permanent blocking to prevent insulation from slipping over, clogging, or restricting air flow through soffit vents at eaves. #### 3.3 INSTALLATION #### 3.3.1 Insulation Install and handle insulation in accordance with manufacturer's instructions. Keep material dry and free of extraneous materials. Ensure personal protective clothing and respiratory equipment is used as required. Observe safe work practices. # 3.3.1.1 Electrical wiring Do not install insulation in a manner that would sandwich electrical wiring between two layers of insulation. ## 3.3.1.2 Continuity of Insulation Install blanket insulation to butt tightly against adjoining blankets and to studs, rafters, joists, sill plates, headers and any obstructions. Provide continuity and integrity of insulation at corners, wall to ceiling joints, roof, and floor. Avoid creating thermal bridges. # 3.3.1.3 Installation at Bridging and Cross Bracing Insulate at bridging and cross bracing by splitting blanket vertically at center and packing one half into each opening. Butt insulation at bridging and cross bracing; fill in bridged area with loose or scrap insulation. ## 3.3.1.4 Cold Climate Requirement Place insulation to the outside of pipes. # 3.3.1.5 Insulation Blanket with Affixed Vapor Retarder Locate vapor retarder as indicated. Do not install blankets with affixed vapor retarders unless so specified. Unless the insulation manufacturer's instructions specifically recommend not to staple the flanges of the vapor retarder facing, staple flanges of vapor retarder at 6 inch intervals flush with face or set in the side of truss, joist, or stud. Avoid gaps and bulges in insulation and "fishmouth" in vapor retarders. Overlap both flanges when using face method. Seal joints and edges of vapor retarder with pressure sensitive tape. Stuff pieces of insulation into small cracks between trusses, joists, studs and other framing, such as at attic access doors, door and window heads, jambs, and sills, band joists, and headers. Cover these insulated cracks with vapor retarder material and tape all joints with pressure sensitive tape to provide air and vapor tightness. ## 3.3.1.6 Insulation without Affixed Vapor Retarder Provide snug friction fit to hold insulation in place. Stuff pieces of insulation into cracks between trusses, joists, studs and other framing, such as at attic access doors, door and window heads, jambs, and sills, band joists, and headers. # 3.3.1.7 Sizing of Blankets Provide only full width blankets when insulating between trusses, joists, or studs. Size width of blankets for a snug fit where trusses, joists or studs are irregularly spaced. ## 3.3.1.8 Installation of Sill Sealer Size sill sealer insulation and place insulation over top of masonry or concrete perimeter walls or concrete perimeter floor slab on grade. Fasten sill plate over insulation. -- End of Section -- ## SECTION 07840A # FIRESTOPPING 08/00 ## PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM E 119 | (2000) Fire Tests of Building Construction and Materials | |-------------|--| | ASTM E 1399 | (1997) Cyclic Movement and Measuring the
Minimum and Maximum Joint widths of
Architectural Joint Systems | | ASTM E 814 | (2000) Fire Tests of Through-Penetration Fire Stops | | ASTM E 84 | (2000a) Surface Burning Characteristics of Building Materials | | | | UNDERWRITERS | LABORATORIES | (UL) | | | | | | |----|------|--------------|---------------------------------------|-------|--------------------------------|--------|---------|---------|-----| | UL | 1479 | | | | Rev thru Feb
n-Penetration | | | ests of | | | UL | 2079 | | · · · · · · · · · · · · · · · · · · · | , | Tests for Fire | | istence | of | | | UL | 723 | | E | | Rev thru Dec
G Characterist | • | | | ace | | UL | Fire | Resist Dir | (| 1999) | Fire Resistar | nce Di | rectory | (2 Vol | .) | ## 1.2 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: # SD-02 Shop Drawings Firestopping Materials; . Detail drawings including manufacturer's descriptive data, typical details conforming to UL Fire Resist Dir or other details certified by another nationally recognized testing laboratory, installation instructions or UL listing details for a firestopping assembly in lieu of fire-test data or report. For those firestop applications for which no UL tested system is available through a manufacturer, a manufacturer's engineering judgement, derived from similar UL system designs or other tests, shall be submitted for review and approval prior to installation. Submittal shall indicate the firestopping material to be provided for each type of application. When more than 5 penetrations or construction joints are to receive firestopping, drawings shall indicate location and type of application. ## SD-07 Certificates Firestopping Materials; . Certificates attesting that firestopping material complies with the specified requirements. In lieu of certificates, drawings showing UL classified materials as part of a tested assembly may be provided. Drawings showing evidence of testing by an alternate nationally recognized independent laboratory may be substituted. Installer Qualifications;. Documentation of training and experience. Inspection;. Manufacturer's representative certification stating that firestopping work has been inspected and found to be applied according to the manufacturer's recommendations and the specified requirements. # 1.3 GENERAL REQUIREMENTS Firestopping shall consist of furnishing and installing tested and listed firestop systems, combination of materials, or devices to form an effective barrier against the spread of flame, smoke and gases, and maintain the integrity of fire resistance rated walls, partitions, floors, and ceiling-floor assemblies, including through-penetrations and construction joints and gaps. Through-penetrations include the annular space around pipes, tubes, conduit, wires, cables and vents. Construction joints include those used to accommodate expansion, contraction, wind, or seismic movement; firestopping material shall not interfere with the required movement of the joint. Gaps requiring firestopping include gaps between the curtain wall and the floor slab and between the top of the fire-rated walls and the roof or floor deck above. # 1.4 STORAGE AND DELIVERY Materials shall be delivered in the original unopened packages or containers showing name of the manufacturer and the brand name. Materials shall be stored off the ground and shall be protected from damage and exposure to elements. Damaged or deteriorated materials shall be removed from the site. # 1.5 INSTALLER QUALIFICATIONS The Contractor shall engage an experienced Installer who is certified, licensed, or otherwise qualified by the firestopping manufacturer as having the necessary staff, training, and a minimum of 3 years experience in the installation of manufacturer's products per specified requirements. A manufacturer's willingness to sell its firestopping products to the Contractor or to an installer engaged by the Contractor does not in itself confer qualification on the buyer. The Installer shall have been trained by a direct representative of the manufacturer (not distributor or agent) in the proper selection and installation procedures. #### 1.6 COORDINATION The specified work shall be coordinated with other trades. Firestopping materials, at penetrations of pipes and ducts, shall be applied prior to insulating, unless insulation meets requirements specified for firestopping. Firestopping materials at building joints and construction gaps shall be applied prior to completion of enclosing walls or assemblies. Cast-in-place firestop devices shall be located and installed in place before concrete placement. Pipe, conduit or cable bundles shall be installed through cast-in-place device after concrete placement but before area is concealed or made inaccessible. #### PART 2 PRODUCTS #### 2.1 FIRESTOPPING MATERIALS Firestopping materials shall consist of commercially manufactured, asbestos-free products complying
with the following minimum requirements: ## 2.1.1 Fire Hazard Classification Material shall have a flame spread of 25 or less, and a smoke developed rating of 50 or less, when tested in accordance with ASTM E 84 or UL 723. Material shall be an approved firestopping material as listed in UL Fire Resist Dir or by a nationally recognized testing laboratory. # 2.1.2 Toxicity Material shall be nontoxic to humans at all stages of application. ## 2.1.3 Fire Resistance Rating Firestopping will not be required to have a greater fire resistance rating than that of the assembly in which it is being placed. ## 2.1.3.1 Through-Penetrations Firestopping materials for through-penetrations, as described in paragraph GENERAL REQUIREMENTS, shall provide "F" and "T" fire resistance ratings in accordance with ASTM E 814 or UL 1479. Fire resistance ratings shall be as follows: a. Penetrations of Fire Resistance Rated Walls and Partitions: F Rating = one hour. ## 2.1.3.2 Construction Joints and Gaps Fire resistance ratings of construction joints, as described in paragraph GENERAL REQUIREMENTS, and as follows: construction joints in walls, one hour. Construction joints and gaps shall be provided with firestopping materials and systems that have been tested per ASTM E 119 or UL 2079 to meet the required fire resistance rating. Systems installed at construction joints shall meet the cycling requirements of ASTM E 1399 or UL 2079. ### PART 3 EXECUTION ### 3.1 PREPARATION Areas to receive firestopping shall be free of dirt, grease, oil, or loose materials which may affect the fitting or fire resistance of the firestopping system. For cast-in-place firestop devices, formwork or metal deck to receive device prior to concrete placement shall be sound and capable of supporting device. ### 3.2 INSTALLATION Firestopping material shall completely fill void spaces regardless of geometric configuration, subject to tolerance established by the manufacturer. Firestopping shall be installed in accordance with manufacturer's written instructions. Tested and listed firestop systems shall be provided in the following locations, except in floor slabs on grade: - a. Penetrations of duct, conduit, tubing, cable and pipe through floors and through fire-resistance rated walls and partition assemblies. - d. Gaps at perimeter of fire-resistance rated walls and partitions, such as between the top of the walls and the bottom of roof decks. - f. Other locations where required to maintain fire resistance rating of the construction. ### 3.2.1 Insulated Pipes and Ducts Thermal insulation shall be cut and removed where pipes or ducts pass through firestopping, unless insulation meets requirements specified for firestopping. Thermal insulation shall be replaced with a material having equal thermal insulating and firestopping characteristics. ### 3.2.2 Fire Dampers Fire dampers shall be installed and firestopped in accordance with Section 15895A AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM. ## 3.3 INSPECTION Firestopped areas shall not be covered or enclosed until inspection is complete and approved. A manufacturer's representative shall inspect the applications initially to ensure adequate preparations (clean surfaces suitable for application, etc.) and periodically during the work to assure that the completed work has been accomplished according to the manufacturer's written instructions and the specified requirements. -- End of Section -- ### SECTION 07900A # JOINT SEALING 06/97 ## PART 1 GENERAL ### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM C 734 | (1993) Low-Temperature Flexibility of
Latex Sealants After Artificial Weathering | |-------------|---| | ASTM C 834 | (2000) Latex Sealants | | ASTM C 920 | (1998) Elastomeric Joint Sealants | | ASTM D 1056 | (2000) Flexible Cellular Materials -
Sponge or Expanded Rubber | | ASTM D 217 | (1997) Cone Penetration of Lubricating Grease (IP50/88) | | ASTM E 84 | (2000a) Surface Burning Characteristics of Building Materials | ## 1.2 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: ## SD-03 Product Data Backing; . Bond-Breaker; . Sealant; . Manufacturer's descriptive data including storage requirements, shelf life, curing time, instructions for mixing and application, and primer data (if required). A copy of the Material Safety Data Sheet shall be provided for each solvent, primer or sealant material. ## SD-07 Certificates Sealant; . Certificates of compliance stating that the materials conform to the specified requirements. ## 1.3 ENVIRONMENTAL REQUIREMENTS The ambient temperature shall be within the limits of 40 to 90 degrees F when the sealants are applied. ### 1.4 DELIVERY AND STORAGE Materials shall be delivered to the job in the manufacturer's original unopened containers. The container label or accompanying data sheet shall include the following information as applicable: manufacturer, name of material, formula or specification number, lot number, color, date of manufacture, mixing instructions, shelf life, and curing time at the standard conditions for laboratory tests. Materials shall be handled and stored to prevent inclusion of foreign materials. Materials shall be stored at temperatures between40 and 90 degrees F unless otherwise specified by the manufacturer. ## PART 2 PRODUCTS #### 2.1 BACKING Backing shall be 25 to 33 percent oversize for closed cell and 40 to 50 percent oversize for open cell material, unless otherwise indicated. ### 2.1.1 Rubber Cellular rubber sponge backing shall be ASTM D 1056, Type 2, closed cell, Class Around cross section. ## 2.1.2 Neoprene Neoprene backing shall be ASTM D 1056, closed cell expanded neoprene cord Type 2, Class C, Grade 2C2. ## 2.2 BOND-BREAKER Bond-breaker shall be as recommended by the sealant manufacturer to prevent adhesion of the sealant to backing or to bottom of the joint. ## 2.3 PRIMER Primer shall be non-staining type as recommended by sealant manufacturer for the application. ## 2.4 SEALANT ## 2.4.1 LATEX Latex Sealant shall be ASTM C 834. ## 2.4.2 ELASTOMERIC Elastomeric sealants shall conform to ASTM C 920 and the following: b. Polyurethane sealant: Grade NS , Class 25 , Use NTMO. c. Silicone sealant: Type SNS, Class 25, Use NT, MGAO. ## 2.4.3 ACOUSTICAL Rubber or polymer-based acoustical sealant shall have a flame spread of 25 or less and a smoke developed rating of 50 or less when tested in accordance with ASTM E 84. Acoustical sealant shall have a consistency of 250 to 310 when tested in accordance with ASTM D 217, and shall remain flexible and adhesive after 500 hours of accelerated weathering as specified in ASTM C 734, and shall be non-staining. ## 2.4.4 Tape Tape sealant: cross-section dimensions shall be as reqd to meet code. ### 2.4.4.1 Bead Bead sealant: cross-section dimensions shall be as required to meet code. ## 2.4.4.2 Foam Strip Foam strip shall be polyurethane foam; cross-section dimensions shall be as required to meet code. Foam strip shall be capable of sealing out moisture, air, and dust when installed and compressed as recommended by the manufacturer. Service temperature shall beminus 40 to plus 275 degrees F. Untreated strips shall be furnished with adhesive to hold them in place. Adhesive shall not stain or bleed into adjacent finishes. Treated strips shall be saturated with butylene waterproofing or impregnated with asphalt. ## 2.5 SOLVENTS AND CLEANING AGENTS Solvents, cleaning agents, and accessory materials shall be provided as recommended by the manufacturer. #### PART 3 EXECUTION #### 3.1 GENERAL ## 3.1.1 Surface Preparation The surfaces of joints to receive sealant or caulk shall be free of all frost, condensation and moisture. Oil, grease, dirt, chalk, particles of mortar, dust, loose rust, loose mill scale, and other foreign substances shall be removed from surfaces of joints to be in contact with the sealant. Oil and grease shall be removed with solvent and surfaces shall be wiped dry with clean cloths. For surface types not listed below, the sealant manufacturer shall be contacted for specific recommendations. ## 3.1.2 Concrete and Masonry Surfaces Where surfaces have been treated with curing compounds, oil, or other such materials, the materials shall be removed by sandblasting or wire brushing. Laitance, efflorescence and loose mortar shall be removed from the joint cavity. ## 3.1.3 Steel Surfaces Steel surfaces to be in contact with sealant shall be sandblasted or, if sandblasting would not be practical or would damage adjacent finish work, the metal shall be scraped and wire brushed to remove loose mill scale. Protective coatings on steel surfaces shall be removed by sandblasting or by a solvent that leaves no residue. #### 3.1.4 Aluminum Surfaces Aluminum surfaces to be in contact with sealants shall be cleaned of temporary protective coatings. When masking tape is used for a protective cover, the tape and any residual adhesive shall be removed just prior to applying the sealant. Solvents used to remove protective coating shall be as recommended by the manufacturer of the aluminum work and shall be non-staining. ### 3.1.5 Wood Surfaces Wood surfaces to be in contact with sealants shall be free of splinters and sawdust or other loose particles. ### 3.2 APPLICATION ## 3.2.1 Masking Tape Masking tape may be placed on the finish surface on one or both sides of a joint cavity to protect adjacent finish surfaces from primer
or sealant smears. Masking tape shall be removed within 10 minutes after joint has been filled and tooled. ## 3.2.2 Backing Backing shall be installed to provide the indicated sealant depth. The installation tool shall be shaped to avoid puncturing the backing. ### 3.2.3 Bond-Breaker Bond-breaker shall be applied to fully cover the bottom of the joint without contaminating the sides where sealant adhesion is required. ## 3.2.4 Primer Primer shall be used on concrete masonry units, wood, or other porous surfaces in accordance with instructions furnished with the sealant. Primer shall be applied to the joint surfaces to be sealed. Surfaces adjacent to joints shall not be primed. ## 3.2.5 Sealant Sealant shall be used before expiration of shelf life. Multi-component sealants shall be mixed according to manufacturer's printed instructions. Sealant in guns shall be applied with a nozzle of proper size to fit the width of joint. Joints shall be sealed as detailed in the drawings. Sealant shall be forced into joints with sufficient pressure to expel air and fill the groove solidly. Sealant shall be installed to the indicated depth without displacing the backing. Unless otherwise indicated, specified, or recommended by the manufacturer, the installed sealant shall be dry tooled to produce a uniformly smooth surface free of wrinkles and to ensure full adhesion to the sides of the joint; the use of solvents, soapy water, etc., will not be allowed. Sealants shall be installed free of air pockets, foreign embedded matter, ridges and sags. Sealer shall be applied over the sealant when and as specified by the sealant manufacturer. # 3.3 CLEANING The surfaces adjoining the sealed joints shall be cleaned of smears and other soiling resulting from the sealant application as work progresses. -- End of Section -- ### SECTION 08110 ## STEEL DOORS AND FRAMES ### 05/01 ## PART 1 GENERAL ## 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only. ## AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) | ANSI A250.4 | (1994) Test Procedure and Acceptance | |-------------|---| | | Criteria for Physical Endurance for Steel | | | Doors and Hardware Reinforcings | | | | ANSI A250.6 (1997) Hardware on Standard Steel Doors (Reinforcement - Application) ANSI A250.8 (1998) Standard Steel Doors and Frames ## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM A 591 | | Title | Not | Found | | |------------|--|-------|-----|-------|--| |------------|--|-------|-----|-------|--| ASTM C 591 (1994) Unfaced Preformed Rigid Cellular Polyisocyanurate Thermal Insulation ASTM D 2863 (2000) Measuring the Minimum Oxygen Concentration to Support Candle-Like Combustion of Plastics (Oxygen Index) ## DOOR AND HARDWARE INSTITUTE (DHI) ANSI/DHI A115 (1991) Steel Door Preparation Standards (Consisting of A115.1 through A115.6 and A115.12 through A115.18) ## STEEL DOOR INSTITUTE (SDOI) SDI 105 (1998) Recommended Erection Instructions for Steel Frames SDI 113 (1979) Apparent Thermal Performance of STEEL DOOR and FRAME ASSEMBLIES ## 1.2 SUBMITTALS Submit the following in accordance with Section 01330, "Submittal Procedures." ## SD-02 Shop Drawings Doors; G Frames; G Accessories Show elevations, construction details, metal gages, hardware provisions, method of glazing, and installation details. Schedule of doors; G Schedule of frames; G Submit door and frame locations. SD-03 Product Data Doors; G Frames; G Accessories Submit manufacturer's descriptive literature for doors, frames, and accessories. Include data and details on door construction, panel (internal) reinforcement, insulation, and door edge construction. When "custom hollow metal doors" are provided in lieu of "standard steel doors," provide additional details and data sufficient for comparison to ANSI A250.8 requirements. ## 1.3 DELIVERY, STORAGE, AND HANDLING Deliver doors, frames, and accessories undamaged and with protective wrappings or packaging. Strap knock-down frames in bundles.Provide temporary steel spreaders securely fastened to the bottom of each welded frame. Store doors and frames on platforms under cover in clean, dry, ventilated, and accessible locations, with 1/4 inch airspace between doors. Remove damp or wet packaging immediately and wipe affected surfaces dry. Replace damaged materials with new. ## PART 2 PRODUCTS ## 2.1 STANDARD STEEL DOORS ANSI A250.8, except as specified otherwise. Prepare doors to receive hardware specified in Section 08710, "Door Hardware." Undercut where indicated. Exterior doors shall have top edge closed flush and sealed to prevent water intrusion. Doors shall be 1 3/4 inches thick, unless otherwise indicated. ## 2.1.1 Classification - Level, Performance, Model # 2.1.1.1 Maximum Duty Doors ANSI A250.8, Level 4, physical performance Level A, Model 1 with core construction as required by the manufacturer for indicated exterior doors, of size(s) and design(s) indicated. ## 2.2 INSULATED STEEL DOOR SYSTEMS Insulated steel doors shall have a core of polyurethane foam and an R factor of 10.0 or more (based on a k value of 0.16); face sheets, edges, and frames of galvanized steel not lighter than 23 gage, 16 gage, and 16 gage respectively; magnetic weatherstripping; nonremovable-pin hinges; thermal-break aluminum threshold; and vinyl door bottom. Doors and frames shall receive phosphate treatment, rust-inhibitive primer, and baked acrylic enamel finish. Doors shall have been tested in accordance with ANSI A250.4 and shall have met the requirements for Level C. Prepare doors to receive hardware specified in Section 08710, "Door Hardware." Doors shall be 1 3/4 inches thick. Provide insulated steel doors and frames to all exterior locations, with the exception of the storefront. ### 2.3 ACCESSORIES #### 2.4 INSULATION CORES Insulated cores shall be of type specified, and provide an apparent U-factor of .48 in accordance with SDI 113 and shall conform to: a. Rigid Polyurethane Foam: ASTM C 591, Type 1 or 2, foamed-in-place or in board form, with oxygen index of not less than 22 percent when tested in accordance with ASTM D 2863 ## 2.5 STANDARD STEEL FRAMES ANSI A250.8, except as otherwise specified. Form frames to sizes and shapes indicated, with welded corners(for masonry walls) and knock-down field-assembled corners(for drywall walls. Provide steel frames for doors, unless otherwise indicated. #### 2.5.1 Welded Frames Continuously weld frame faces at corner joints. Mechanically interlock or continuously weld stops and rabbets. Grind welds smooth. ## 2.5.2 Knock-Down Frames Design corners for simple field assembly by concealed tenons, splice plates, or interlocking joints that produce square, rigid corners and a tight fit and maintain the alignment of adjoining members. Provide locknuts for bolted connections. ## 2.5.3 Anchors Provide anchors to secure the frame to adjoining construction. Provide steel anchors, zinc-coated or painted with rust-inhibitive paint, not lighter than 18 gage. ## 2.5.3.1 Wall Anchors Provide at least three anchors for each jamb. For frames which are more than 7.5 feet in height, provide one additional anchor for each jamb for each additional 2.5 feet or fraction thereof. - a. Masonry: Provide anchors of corrugated or perforated steel straps or 3/16 inch diameter steel wire, adjustable or T-shaped; - b. Stud partitions: Weld or otherwise securely fasten anchors to backs of frames. Design anchors to be fastened to closed steel studs with sheet metal screws, and to open steel studs by wiring or welding. ### 2.5.3.2 Floor Anchors Provide floor anchors drilled for 3/8 inch anchor bolts at bottom of each jamb member. ### 2.6 HARDWARE PREPARATION Provide minimum hardware reinforcing gages as specified in ANSI A250.6. Drill and tap doors and frames to receive finish hardware. Prepare doors and frames for hardware in accordance with the applicable requirements of ANSI A250.8 and ANSI A250.6. For additional requirements refer to ANSI/DHI A115. Drill and tap for surface-applied hardware at the project site. Build additional reinforcing for surface-applied hardware into the door at the factory. Locate hardware in accordance with the requirements of ANSI A250.8, as applicable. Punch door frames, with the exception of frames that will have weatherstripping to receive a minimum of two rubber or vinyl door silencers on lock side of single doors and one silencer for each leaf at heads of double doors. Set lock strikes out to provide clearance for silencers. ## 2.7 FINISHES ## 2.7.1 Factory-Primed Finish All surfaces of doors and frames shall be thoroughly cleaned, chemically treated and factory primed with a rust inhibiting coating as specified in ANSI A250.8. ## 2.7.2 Electrolytic Zinc-Coated Anchors and Accessories Provide electrolytically deposited zinc-coated steel in accordance with ASTM A 591, Commercial Quality, Coating Class A. Phosphate treat and factory prime zinc-coated surfaces as specified in ANSI A250.8. ## 2.8 FABRICATION AND WORKMANSHIP Finished doors and frames shall be strong and rigid, neat in appearance, and free from defects, waves, scratches, cuts, dents, ridges, holes, warp, and buckle. Molded members shall be clean cut, straight, and true, with joints coped or mitered, well formed, and in true alignment. Dress exposed welded and soldered joints smooth. Design door frame sections for use with the wall construction indicated. Corner joints shall be well formed and in true alignment. Conceal fastenings where practicable. Design frames in exposed masonry walls or partitions to allow sufficient space between the inside back of trim and masonry to receive calking compound. ## 2.8.1 Grouted Frames For frames to be installed in exterior walls and to be filled with mortar or grout, fill the stops with strips of rigid insulation to keep the grout out of the stops and to facilitate
installation of stop-applied head and jamb seals. ## PART 3 EXECUTION #### 3.1 INSTALLATION ### 3.1.1 Frames Set frames in accordance with SDI 105. Plumb, align, and brace securely until permanent anchors are set. Anchor bottoms of frames with expansion bolts or powder-actuated fasteners. Build in or secure wall anchors to adjoining construction. Where frames require ceiling struts or overhead bracing, anchor frames to the struts or bracing. Backfill frames with mortar. When an additive is provided in the mortar, coat inside of frames with corrosion-inhibiting bituminous material. For frames in exterior walls, ensure that stops are filled with rigid insulation before grout is placed. ### 3.1.2 Doors Hang doors in accordance with clearances specified in ANSI A250.8. After erection and glazing, clean and adjust hardware. ### 3.2 PROTECTION Protect doors and frames from damage. Repair damaged doors and frames prior to completion and acceptance of the project or replace with new, as directed. Wire brush rusted frames until rust is removed. Clean thoroughly. Apply an all-over coat of rust-inhibitive paint of the same type used for shop coat. ### 3.3 CLEANING Upon completion, clean exposed surfaces of doors and frames thoroughly. Remove mastic smears and other unsightly marks. -- End of Section -- SECTION 08210 WOOD DOORS 09/99 ## PART 1 GENERAL ### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only. AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) ASTM E 90 (1999) Laboratory Measurement of Airborne Sound Transmission Loss of Building Partitions NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) NFPA 80 (1999) Fire Doors and Fire Windows NATIONAL WOOD WINDOW & DOOR ASSOCIATION (NWWDA) NWWDA I.S.1-A (1997) Architectural Wood Flush Doors WINDOW AND DOOR MANUFACTURERS ASSOCIATION (WDMA) NWWDA TM-5 (1990) Split Resistance Test NWWDA TM-7 (1990) Cycle - Slam Test NWWDA TM-8 (1990) Hinge Loading Resistance Test #### 1.2 SUBMITTALS Submit the following in accordance with Section 01330, "Submittal Procedures." SD-02 Shop Drawings Doors; G Submit drawings or catalog data showing each type of door unit . Drawings and data shall indicate door type and construction, sizes, thickness, and . SD-03 Product Data Doors; G Sample warranty SD-04 Samples Doors Prior to the delivery of wood doors, submit a sample section of each type of door which shows the stile, rail, veneer, finish, and core construction. SD-06 Test Reports Split resistance Cycle-slam Hinge loading resistance Sound Transmission Class rating Submit split resistance test report for doors tested in accordance with NWWDA TM-5, cycle-slam test report for doors tested in accordance with NWWDA TM-7, and hinge loading resistance test report for doors tested in accordance with NWWDA TM-8. ## 1.3 DELIVERY, STORAGE, AND HANDLING Deliver doors to the site in an undamaged condition and protect against damage and dampness. Stack doors flat under cover. Support on blocking, a minimum of 4 inches thick, located at each end and at the midpoint of the door. Store doors in a well-ventilated building so that they will not be exposed to excessive moisture, heat, dryness, direct sunlight, or extreme changes of temperature and humidity. Do not store in a building under construction until concrete, masonry work, and plaster are dry. Replace defective or damaged doors with new ones. ## 1.4 WARRANTY Warranty shall warrant doors free of defects as set forth in the door manufacturer's standard door warranty. ## PART 2 PRODUCTS ## 2.1 DOORS Provide doors of the types, sizes, and designs specified. ## 2.1.1 Flush Doors Flush doors shall conform to NWWDA I.S.1-A. Hollow core doors shall have lock blocks and one inch minimum thickness hinge stile. Stile edge bands of doors to receive natural finish shall be hardwood, compatible with face veneer. Stile edge bands of doors to be painted shall be mill option specie. No visible finger joints will be accepted in stile edge bands. When used, locate finger-joints under hardware. ## 2.1.1.1 Interior Flush Doors Provide particleboard core, Type II flush doors conforming to NWWDA I.S.1-A with faces of sound grade hardwood or hardboard for painted finishgood grade. ## 2.1.2 Acoustical Doors at SCIF Perimeter NWWDA I.S.1-A, solid core, constructed to provide Sound Transmission Class rating of 45 when tested in accordance with ASTM E 90. ## 2.2 FABRICATION ### 2.2.1 Marking Each door shall bear a stamp, brand, or other identifying mark indicating quality and construction of the door. ## 2.2.2 Quality and Construction Identify the standard on which the construction of the door was based and identify doors having a Type I glue bond. ## 2.2.3 Adhesives and Bonds NWWDA I.S.1-A. Use Type I bond for exterior doors and Type II bond for interior doors. Adhesive for doors to receive a natural finish shall be nonstaining. ## 2.2.4 Prefitting At the Contractor's option, doors may be provided factory pre-fit. Doors shall be sized and machined at the factory by the door manufacturer in accordance with the standards under which they are produced. The work shall include sizing, bevelling edges, mortising, and drilling for hardware and providing necessary beaded openings for glass and louvers. Provide the door manufacturer with the necessary hardware samples, and frame and hardware schedules as required to coordinate the work. ## 2.2.5 Finishes ## 2.2.5.1 Field Painting Factory prime or seal doors, and field paint as specified in Section 09900, "Paints and Coatings." ## 2.2.5.2 Factory Finish ## 2.3 SOURCE QUALITY CONTROL - a. Split resistance: Average of ten test samples shall be not less than 500 pounds load when tested in accordance with NWWDA TM-5. - b. Cycle-slam: 200,000 cycles with no loose hinge screws or other visible signs of failure when tested in accordance with the requirements of NWWDA TM-7. - c. Hinge loading resistance: Average of ten test samples shall be not less than 700 pounds load when tested for direct screw withdrawal in accordance with NWWDA TM-8 using a No. 12, 1 1/4 inch long, steel, fully threaded wood screw. Drill 5/32 inch pilot hole, use 1 1/2 inch opening around screw for bearing surface, and engage screw full, except for last 1/8 inch. Do not use a steel plate to reinforce screw area. ## PART 3 EXECUTION ### 3.1 INSTALLATION Before installation, seal top and bottom edges of doors with the approved water-resistant sealer. Seal cuts made on the job immediately after cutting using approved water-resistant sealer. Fit, trim, and hang doors with a 1/16 inch minimum, 1/8 inch maximum clearance at sides and top, and a 3/16 inch minimum, 1/4 inch maximum clearance over thresholds. Provide 3/8 inch minimum, 7/16 inch maximum clearance at bottom where no threshold occurs. Bevel edges of doors at the rate of 1/8 inch in 2 inches. Door warp shall not exceed 1/4 inch when measured in accordance with NWWDA I.S.1-A. ## 3.1.1 Fire Doors Install fire doors in accordance with NFPA 80. Do not paint over labels. -- End of Section -- ## SECTION 08710 # DOOR HARDWARE 08/01 # PART 1 GENERAL # 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only. ## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM E 283 | (1991) Determining the Rate of Air Leakage | |------------|--| | | Through Exterior Windows, Curtain Walls, | | | and Doors Under Specified Pressure | | | Differences Across the Specimen | ## BUILDERS HARDWARE MANUFACTURERS ASSOCIATION (BHMA) | ANSI/BHMA A156.1 | (1997) Butts and Hinges (BHMA 101) | |-------------------|---| | ANSI/BHMA A156.2 | (1996) Bored and Preassembled Locks and
Latches (BHMA 601) | | ANSI/BHMA A156.3 | (1994) Exit Devices (BHMA 701) | | ANSI/BHMA A156.4 | (1992) Door Controls - Closers (BHMA 301) | | ANSI/BHMA A156.5 | (1992) Auxiliary Locks & Associated Products (BHMA 501) | | ANSI/BHMA A156.7 | (1988) Template Hinge Dimensions | | ANSI/BHMA A156.13 | (1994) Mortise Locks & Latches (BHMA 621) | | ANSI/BHMA A156.16 | (1997) Auxiliary Hardware | | ANSI/BHMA A156.18 | (1993) Materials and Finishes (BHMA 1301) | | ANSI/BHMA A156.21 | (1996) Thresholds | | | | # STEEL DECK INSTITUTE (SDI) ANSI/SDI 100 (1991) Standard Steel Doors and Frames ## 1.2 SUBMITTALS Submit the following in accordance with Section 01330, "Submittal Procedures." # SD-02 Shop Drawings Hardware schedule; G Keying system SD-03 Product Data Hardware items; G SD-08 Manufacturer's Instructions Installation SD-10 Operation and Maintenance Data Hardware Schedule items, Data Package 1; G SD-11 Closeout Submittals Key bitting ### 1.3 HARDWARE SCHEDULE Prepare and submit hardware schedule in the following form: | | | | Referen | .ce | Mfr. | | UL Mark | | |-------|-------|------|---------|--------|---------|---------|----------|-----------| | | | | Publi- | | Name | Key | (If fire | ANSI/BHMA | | Hard- | | | cation | | and | Con- | rated | Finish | | ware | Quan- | | Type | | Catalog | trol | and | Designa- | | Item | tity | Size | No. | Finish | No. | Symbols | listed) | tion | | | | | | | | | | | ## 1.4 KEY BITTING CHART REQUIREMENTS Submit key bitting charts to the Contracting Officer prior to completion of the work. Include: - a. Complete listing of all keys (AA1, AA2, etc.). - b. Complete listing of all key cuts (AA1-123456, AA2-123458). - c. Tabulation showing which key fits which door. - d. Copy of floor plan showing doors and door numbers. - e. Listing of 20 percent more key cuts than are presently required in each master system. ## 1.5 QUALITY ASSURANCE ## 1.5.1 Hardware Manufacturers and Modifications Provide, as far as feasible, locks, hinges, and closers of one lock, hinge, or closer manufacturer's make. Modify
hardware as necessary to provide features indicated or specified. ## 1.6 DELIVERY, STORAGE, AND HANDLING Deliver hardware in original individual containers, complete with necessary appurtenances including fasteners and instructions. Mark each individual container with item number as shown in hardware schedule. Deliver permanent keys and removable cores to the Contracting Officer, either directly or by certified mail. Deliver construction master keys with the locks. ## PART 2 PRODUCTS #### 2.1 TEMPLATE HARDWARE Hardware to be applied to metal shall be made to template. Promptly furnish template information or templates to door and frame manufacturers. Template hinges shall conform to ANSI/BHMA A156.7. Coordinate hardware items to prevent interference with other hardware. ## 2.2 HARDWARE ITEMS Hinges, pivots, locks, latches, exit devices, bolts, and closers shall be clearly and permanently marked with the manufacturer's name or trademark where it will be visible after the item is installed. For closers with covers, the name or trademark may be beneath the cover. ## 2.2.1 Hinges ANSI/BHMA A156.1, 4 1/2 by 4 1/2 inches unless otherwise specified. Construct loose pin hinges for exterior doors and reverse-bevel interior doors so that pins will be nonremovable when door is closed. Other antifriction bearing hinges may be provided in lieu of ball-bearing hinges. ### 2.2.2 Locks and Latches ## 2.2.2.1 Mortise Locks and Latches ANSI/BHMA A156.13, Series 1000, Operational Grade 1, Security Grade 2. Provide mortise locks with escutcheons not less than 7 by 2 1/4 inches with a bushing at least 1/4 inch long. Cut escutcheons to suit cylinders and provide trim items with straight, beveled, or smoothly rounded sides, corners, and edges. Knobs and roses of mortise locks shall have screwless shanks and no exposed screws. ## 2.2.2.2 Bored Locks and Latches ANSI/BHMA A156.2, Series 4000, Grade 1. 2.2.2.3 Combination Locks Heavy-duty, mechanical combination lockset with five pushbuttons, standard-sized knobs, 3/4 inch deadlocking latch, 2 3/4 inch backset. Lock shall be operated by pressing two or more of the buttons in unison or individually in the proper sequence. Inside knob shall always operate the latch. Provide a keyed cylinder on the interior to permit setting the combination. ## 2.2.3 Exit Devices ANSI/BHMA A156.3, Grade 1. Provide adjustable strikes for rim type and vertical rod devices. Provide open back strikes for pairs of doors with mortise and vertical rod devices. Touch bars may be provided in lieu of conventional crossbars and arms. ## 2.2.4 Exit Locks With Alarm ANSI/BHMA A156.5, Type E0431 (with full-width horizontal actuating bar) for single doors; Type E0431 (with actuating bar) or E0471 (with actuating bar and top and bottom bolts, both leaves active) for pairs of doors, unless otherwise specified. Provide terminals for connection to remote indicating panel. ## 2.2.5 Cylinders and Cores Provide cylinders and cores for new locks, including locks provided under other sections of this specification. Cylinders and cores shall have six pin tumblers. Cylinders shall be products of one manufacturer, and cores shall be the products of one manufacturer. Rim cylinders, mortise cylinders, and knobs of bored locksets shall have interchangeable cores which are removable by special control keys. Stamp each interchangeable core with a key control symbol in a concealed place on the core. ## 2.2.6 Keying System Provide grand master keying systemProvide construction interchangeable cores. ### 2.2.7 Lock Trim Cast, forged, or heavy wrought construction and commercial plain design. ### 2.2.7.1 Lever Handles Lever handles for exit devices shall meet the test requirements of ANSI/BHMA A156.13 for mortise locks. Lever handle locks shall have a breakaway feature (such as a weakened spindle or a shear key) to prevent irreparable damage to the lock when a force in excess of that specified in ANSI/BHMA A156.13 is applied to the lever handle. Lever handles shall return to within 1/2 inch of the door face. ## 2.2.8 Keys Furnish one file key, one duplicate key, and one working key for each key change. Furnish one additional working key for each lock of each keyed-alike group. Furnish a quantity of key blanks equal to 20 percent of the total number of file keys. Stamp each key with appropriate key control symbol and "U.S. property - Do not duplicate." Do not place room number on keys. ## 2.2.9 Closers ANSI/BHMA A156.4, Series C02000, Grade 1, with PT 4C. Provide with brackets, arms, mounting devices, fasteners, full size covers, except at storefront mounting, and other features necessary for the particular application. Size closers in accordance with manufacturer's recommendations, or provide multi-size closers, Sizes 1 through 6, and list sizes in the Hardware Schedule. Provide manufacturer's 10 year warranty. ## 2.2.9.1 Identification Marking Engrave each closer with manufacturer's name or trademark, date of manufacture, and manufacturer's size designation located to be visible after installation. ## 2.2.10 Door Stops and Silencers ANSI/BHMA A156.16. Silencers Type L03011. Provide three silencers for each single door, two for each pair. ### 2.2.11 Thresholds ANSI/BHMA A156.21. Use J35100, with vinyl or silicone rubber insert in face of stop, for exterior doors opening out, unless specified otherwise. ## 2.2.12 Weather Stripping A set shall include head and jamb seals, sweep strips, and, for pairs of doors, astragals. Air leakage of weather stripped doors shall not exceed 0.5 1.25 cubic feet per minute of air per square foot of door area when tested in accordance with ASTM E 283. Weather stripping shall be one of the following: ## 2.2.13 Soundproofing A set shall include adjustable doorstops at head and jambs and an automatic door bottom, both of extruded aluminum, clear (natural) anodized, surface applied, with vinyl fin seals between plunger and housing. Doorstops shall have solid neoprene tube, silicone rubber, or closed-cell sponge gasket. Door bottoms shall have adjustable operating rod and silicone rubber or closed-cell sponge neoprene gasket. Doorstops shall be mitered at corners. Zero "Sound Stop 1" (No. 770 and No. 361); Pemko No. 350ASN and No. 430AS; National Guard No. 1038N and No. 420; or equal. ## 2.2.14 Special Tools Provide special tools, such as spanner and socket wrenches and dogging keys, required to service and adjust hardware items. ## 2.3 FASTENERS Provide fasteners of proper type, quality, size, quantity, and finish with hardware. Fasteners exposed to weather shall be of nonferrous metal or stainless steel. Provide fasteners of type necessary to accomplish a permanent installation. ## 2.4 FINISHES ANSI/BHMA A156.18. Hardware shall have BHMA 630 finish (satin stainless steel), unless specified otherwise. Provide items not manufactured in stainless steel in BHMA 626 finish (satin chromium plated) over brass or bronze, except surface door closers which shall have aluminum paint finish, and except steel hinges which shall have BHMA 652 finish (satin chromium plated). Hinges for exterior doors shall be stainless steel with BHMA 630 finish or chromium plated brass or bronze with BHMA 626 finish. Exit devices may be provided in BHMA 626 finish in lieu of BHMA 630 finish except where BHMA 630 is specified under paragraph entitled "Hardware Sets". Exposed parts of concealed closers shall have finish to match lock and door trim. Hardware for aluminum doors shall be finished to match the doors. ## 2.5 KEY CABINET AND CONTROL SYSTEM ANSI/BHMA A156.5, ## PART 3 EXECUTION #### 3.1 INSTALLATION Install hardware in accordance with manufacturers' printed instructions. Fasten hardware to wood surfaces with full-threaded wood screws or sheet metal screws. Provide machine screws set in expansion shields for fastening hardware to solid concrete and masonry surfaces. Provide toggle bolts where required for fastening to hollow core construction. Provide through bolts where necessary for satisfactory installation. ## 3.1.1 Weather Stripping Installation Handle and install weather stripping so as to prevent damage. Provide full contact, weather-tight seals. Doors shall operate without binding. ## 3.1.2 Soundproofing Installation Install as specified for stop-applied weather stripping. #### 3.1.3 Threshold Installation Extend thresholds the full width of the opening and notch end for jamb stops. Set thresholds in a full bed of sealant and anchor to floor with cadmium-plated, countersunk, steel screws in expansion sleeves. ### 3.2 HARDWARE LOCATIONS ANSI/SDI 100, unless indicated or specified otherwise. ## 3.3 FIELD QUALITY CONTROL After installation, protect hardware from paint, stains, blemishes, and other damage until acceptance of work. Submit notice of testing 15 days before scheduled, so that testing can be witnessed by the Contracting Officer. Adjust hinges, locks, latches, bolts, holders, closers, and other items to operate properly. Demonstrate that permanent keys operate respective locks, and give keys to the Contracting Officer. Correct, repair, and finish, as directed, errors in cutting and fitting and damage to adjoining work. 3.4 HARDWARE SETS ## HARDWARE SET SCHEDULE - SCIF HS1 Typical Office - 3 Hinges B45M - 1 Latchset F01 Passage or closet latch set - 1 Stop L02251 - 3 Silencers L03011 HS2 Storeroom - 3 Hinges B45M - 1 Lockset F07 Entrance or storeroom lock - 1 Stop L02251 - 3 Silencers L03011 HS3 Toilet Room - 3 Hinges B45M - 1 Latchset F01 Passage or closet latch set - 1 Closer C02011 (Surface closer, modern type w/ cover, hinge side mounting) - 1 Stop L02161 - 3 Silencers L03011 ## HS4 Security Storeroom - 3 Hinges B45M, set screw in hinge barrel on interior side - 1 Cypher lock - 1 Latchset F01 Passage or closet latch set - 1 Closer C02011 (Surface closer, modern type w/ cover, hinge side mounting). - 1 Stop L02251 - 3 Silencers L03011 Prep for X08 Government furnished, Government installed ## HS5 Exterior Pair with
exit devices - 6 Hinges B45M, set screw in hinge barrel on interior side - 2 Exit Devices Type 8 Function 01 (Metal door concealed vertical rod exit device, exit only, no trim - 2 Surface Closers C02021 (Surface closer, modern type w/ cover, parallel arm mounting) - 2 Self Adjusting Magnetic Astragals R0Y265 Surface mounted - 1 Threshold J15100 (Threshold to act as latch holder). - 2 Door Bottom Seals R0Y335 Surface mounted. - 1 set Weatherseals Head & Jambs R0Y154 - 2 sets Magnetic Contacts ### HS6 SCIF Entrance - 3 Hinges B45M, set screw in hinge barrel on interior side - 1 Exit Device Type 3 Function 13 (Mortise exit device, entrance by key or combination lock). - 1 Cypher lock - 1 Surface Closer C02021 (Surface closer, modern type w/ cover, parallel arm mounting) - 1 set Weatherseals Head & Jambs R0Y154 - 1 Threshold J12100 - 1 Door bottom seal R0Y344 mortised. - 1 set Magnetic Contacts ## Additional requirements: Monitor switch - Government furnished, Government installed. Factory prepare door and frame. Provide 5'-0" of 1" empty conduit from rough-in location for monitor switch to ceiling space Door lock X08 - Government furnished, Government installed. Provide 5'-0" of 1" empty conduit from rough-in location for to ceiling space. -- End of Section -- ### SECTION 09100N # METAL SUPPORT ASSEMBLIES 09/99 ### PART 1 GENERAL ### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only. ## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM A 463/A 463M | (2000) Steel Sheet, Aluminum-Coated, by the Hot-Dip Process | |-------------------|--| | ASTM A 653/A 653M | (2000) Steel Sheet, Zinc-Coated
(Galvanized) or Zinc-Iron Alloy-Coated
(Galvannealed) by the Hot-Dip Process | | ASTM C 645 | (2000) Nonstructural Steel Framing Members | | ASTM C 754 | (1999a) Installation of Steel Framing
Members to Receive Screw-Attached Gypsum
Panel Products | | ASTM C 841 | (1999) Installation of Interior Lathing and Furring | METAL LATH/STEEL FRAMING ASSOCIATION (ML/SFA) ML/SFA MLF (1991) Metal Lathing and Furring ## 1.2 SUBMITTALS Submit the following in accordance with Section 01330, "Submittal Procedures." SD-02 Shop Drawings Metal support systems; G Submit for the erection of metal framing, furringandceiling suspension systems. Indicate materials, sizes, thicknesses, and fastenings. ## 1.3 DELIVERY, STORAGE, AND HANDLING Deliver materials to the job site and store in ventilated dry locations. Storage area shall permit easy access for inspection and handling. If materials are stored outdoors, stack materials off the ground, supported on a level platform, and fully protected from the weather. Handle materials carefully to prevent damage. Remove damaged items and provide new items. ## PART 2 PRODUCTS ### 2.1 MATERIALS Provide steel materials for metal support systems with galvanized coating ASTM A 653/A 653M, G-60; aluminum coating ASTM A 463/A 463M, T1-25; or a 55-percent aluminum-zinc coating. 2.1.1 Suspended and Furred Ceiling Systems and Wall Furring ASTM C 841. 2.1.1.1 Nonload-Bearing Wall Framing ML/SFA MLF. - 2.1.2 Materials for Attachment of Gypsum Wallboard - 2.1.2.1 Suspended and Furred Ceiling Systems ASTM C 645. 2.1.2.2 Nonload-Bearing Wall Framing and Furring ASTM C 645, but not thinner than 0.0179 inch thickess, with 0.0329 inch minimum thickness supporting wall hung items such as cabinetwork, equipment and fixtures. 2.1.2.3 Z-Furring Channels with Wall Insulation Not lighter than 26 gage galvanized steel, Z-shaped, with 1/4 inch and 3/4 inch flanges and inch furring depth . PART 3 EXECUTION - 3.1 INSTALLATION - 3.1.1 Systems for Attachment of Lath - 3.1.1.1 Suspended and Furred Ceiling Systems and Wall Furring ASTM C 841, except as indicated otherwise. 3.1.1.2 Nonload-Bearing Wall Framing $\operatorname{ML}/\operatorname{SFA}$ MLF, except that framing members shall be 16 inches o.c. unless indicated otherwise. - 3.1.2 Systems for Attachment of Gypsum Wallboard - 3.1.2.1 Suspended and Furred Ceiling Systems ASTM C 754, except that framing members shall be 16 inches o.c. unless indicated otherwise. 3.1.2.2 Nonload-Bearing Wall Framing and Furring ASTM C 754, except as indicated otherwise. 3.1.2.3 Z-Furring Channels with Wall Insulation Install Z-furring channels vertically spaced not more than 24 inches o.c. Locate Z-furring channels at interior and exterior corners in accordance with manufacturer's printed erection instructions. Fasten furring channels to masonry walls with powder-driven fasteners or hardened concrete steel nails through narrow flange of channel. Space fasteners not more than 24 inches o.c. ### 3.2 ERECTION TOLERANCES Framing members which will be covered by finish materials such as wallboard, plaster, or ceramic tile set in a mortar setting bed, shall be within the following limits: - a. Layout of walls and partitions: 1/4 inch from intended position; - b. Plates and runners: 1/4 inch in 8 feet from a straight line; - c. Studs: 1/4 inch in 8 feet out of plumb, not cumulative; and - d. Face of framing members: 1/4 inch in 8 feet from a true plane. Framing members which will be covered by ceramic tile set in dry-set mortar, latex-portland cement mortar, or organic adhesive shall be within the following limits: - a. Layout of walls and partitions: 1/4 inch from intended position; - b. Plates and runners: 1/8 inch in 8 feet from a straight line; - c. Studs: 1/8 inch in 8 feet out of plumb, not cumulative; and - d. Face of framing members: 1/8 inch in 8 feet from a true plane. -- End of Section -- # SECTION 09250A # GYPSUM WALLBOARD 04/01 # PART 1 GENERAL ## 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM A 580/A 580M | (1998) Stainless Steel Wire | |---------------------|---| | ASTM A 853 | (1993; R 1998) Steel Wire, Carbon, for
General Use | | ASTM B 164 | (1998) Nickel-Copper Alloy Rod, Bar, and Wire | | ASTM C 1002 | (2000) Steel Drill Screws for the
Application of Gypsum Panel Products or
Metal Plaster Bases | | ASTM C 1047 | (1999) Accessories for Gypsum Wallboard and Gypsum Veneer Base | | ASTM C 1178/C 1178M | (1999) Glass Mat Water-Resistant Gypsum
Backing Panel | | ASTM C 36/C 36M | (2001) Gypsum Wallboard | | ASTM C 475 | (1994) Joint Compound and Joint Tape for Finishing Gypsum Board | | ASTM C 514 | (1996) Nails for the Application of Gypsum
Board | | ASTM C 557 | (1999) Adhesives for Fastening Gypsum
Wallboard to Wood Framing | | ASTM C 630/C 630M | (2000) Water-Resistant Gypsum Backing Board | | ASTM C 645 | (2000) Nonstructural Steel Framing Members | | ASTM C 754 | (1999a) Installation of Steel Framing
Members to Receive Screw-Attached Gypsum
Panel Products | | ASTM C 840 | (1999) Application and Finishing of Gypsum
Board | ## GYPSUM ASSOCIATION (GA) GA 214 (1996) Recommended Levels of Gypsum Board Finish GA 216 (1996) Application and Finishing of Gypsum Board ### 1.2 SYSTEM DESCRIPTION ### 1.3 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: ### SD-07 Certificates Gypsum Board; Water-Resistant Gypsum Board; Certificates stating that the steel framing and gypsum wallboard meet the specified requirements. ### 1.4 OUALIFICATIONS Manufacturer shall specialize in manufacturing the types of material specified and shall have a minimum of 5 years of documented successful experience. Installer shall specialize in the type of gypsum board work required and shall have a minimum of3 years of documented successful experience. ## 1.5 DELIVERY, STORAGE AND HANDLING Materials shall be delivered in original containers bearing the name of manufacturer, contents, and brand name. Materials shall be stored off the ground in a weathertight structure for protection. Gypsum boards shall be stacked flat, off floor and supported to prevent sagging and warpage. Adhesives and joint materials shall be stored in accordance with manufacturer's printed instructions. Damaged or deteriorated materials shall be removed from jobsite. ## 1.6 ENVIRONMENTAL CONDITIONS Environmental conditions for application and finishing of gypsum board shall be in accordance with ASTM C 840. During the application of gypsum board without adhesive, a room temperature of not less than 40 degrees F shall be maintained. During the application of gypsum board with adhesive, a room temperature of not less than 50 degrees F shall be maintained for 48 hours prior to application and continuously afterwards until completely dry. Building spaces shall be ventilated to remove water not required for drying joint treatment materials. Drafts shall be avoided during dry hot weather to prevent materials from drying too rapidly. ## PART 2 MATERIALS ## 2.1 NON-LOADBEARING STUD WALLS #### 2.1.1 Studs Studs for non-loadbearing walls shall conform to ASTM C 645. Studs shall be C-shaped, roll formed steel with minimum uncoated design thickness of 0.0179 in made from G40 hot-dip galvanized coated sheet. ### 2.1.2 Runner Tracks Floor and ceiling runner tracks shall conform to ASTM C 645. Tracks shall be prefabricated, U-shaped with minimum 1 inch flanges, unpunched web, thickness to match studs, made from G40 hot-dip galvanized coated sheet. ### 2.2 SUSPENDED CEILING FRAMING Suspended ceiling
framing system shall have the capability to support the finished ceiling, light fixtures, air diffusers, and accessories, as shown. The suspension system shall have a maximum deflection of L/240. Carrying channels shall be formed from minimum 0.0548 in thick cold-rolled steel, $1-1/2 \times 3/4$ inch. Furring members shall be formed from cold-rolled steel, $7/8 \times 2-9/16$ inch. Carrying channels and furring members shall be made from hot-dip galvanized coated sheet. ### 2.3 GYPSUM BOARD Gypsum board shall be asbestos-free. Gypsum board shall have square-cut ends, tapered or beveled edges and shall be maximum possible length. Gypsum board thickness shall be as shown. ## 2.3.1 Standard Gypsum Board Regular gypsum board shall conform to ASTM C 36/C 36M, and shall be 48 inches wide. ## 2.3.2 Water-Resistant Gypsum Board Water-resistant gypsum board shall conform to ASTM C 630/C 630M, regular with water-resistant paper faces, paintable surfaces, and shall be 48 inch width and maximum permissible length. ## 2.3.3 Water-Resistant Gypsum Backing Panel Glass mat water-resistant gypsum backing panels shall conform to ASTM C 1178/C 1178M, shall have a water-resistant cove with water and mold/mildew resistant fiberglass faces imbedded into the cove and shall have square edges 48 inches wide by 5/8 inch thick. ## 2.4 TRIM, MOLDINGS, AND ACCESSORIES ## 2.4.1 Taping and Embedding Compound Taping and embedding compound shall conform to ASTM C 475. Compound shall be specifically formulated and manufactured for use in embedding tape at gypsum wallboard joints and fastener heads, and shall be compatible with tape and substrate. ## 2.4.2 Finishing or Topping Compound Finishing or topping compound shall conform to ASTM C 475. Compound shall be specifically formulated and manufactured for use as a finishing compound for gypsum board. ## 2.4.3 All-Purpose Compound All-purpose compound shall be specifically formulated and manufactured to use as a taping and finishing compound, and shall be compatible with tape and substrate. ## 2.4.4 Joint Tape Joint tape shall conform to ASTM C 475 and shall be as recommended by $qypsum\ board\ manufacturer.$ ## 2.4.5 Trim, Control Joints, Beads, Stops and Nosings Items used to protect edges, corners, and to provide architectural features shall be in accordance with ASTM C 1047. ### 2.5 FASTENINGS AND ADHESIVES #### 2.5.1 Nails Nails shall conform to ASTM C 514. Nails shall be hard-drawn low or medium-low carbon steel, suitable for intended use. Special nails for predecorated gypsum board shall be as recommended by predecorated gypsum board manufacturer. ## 2.5.2 Screws Screws shall conform to ASTM C 1002. Screws shall be self-drilling and self-tapping steel, . ## 2.5.3 Adhesives Adhesives shall conform to ASTM C 557. Adhesives shall be formulated to bond gypsum board to wood framing members. For securing gypsum board to metal framing, adhesive shall be as recommended by gypsum board manufacturer. ## 2.5.4 Hangers Suspended ceiling runner channel hangers shall be soft, annealed steel wire not less than No. 8 SWG, conforming to ASTM A 853 or flat iron or steel straps, at least $3/32 \times 7/8$ inch size, coated with zinc, cadmium, or rust-inhibiting paint. ## 2.5.5 Wire and Clip Type Fastenings Tie wire, clips, rings, and other fastenings shall be corrosion-resisting steel conforming to ASTM A 580/A 580M, composition 302, 304, or 316, Condition A, or nickel-copper alloy conforming to ASTM B 164, annealed condition except that walls, partitions, and other vertical surfaces not incorporated in ceiling construction may be erected with soft, annealed steel conforming to ASTM A 853. ## 2.5.5.1 Tie Wire Tie wire for constructing partitions and vertical furring, for securing metal lath to supports, and for lacing shall be not less than No. 18 SWG. Tie wire for other applications shall be not less than No. 16 SWG. ## 2.5.5.2 Clips Clips used in lieu of tie wire for securing the furring channels to the runner channels in ceiling construction shall be made from strip not less than 1/8 inch thick or shall be hairpin clip, formed of wire not less than 0.01620 inch nominal diameter. Other clips and rings or fastenings of similar materials shall be equivalent in holding power to that provided by tie wire for the specific application. ## PART 3 EXECUTION ## 3.1 INTERIOR WALL FRAMING Steel framing and furring members shall be installed in accordance with ASTM C 754. Members shall be in alignment with spacings not to exceed the maximum spacings indicated on drawings. Runners shall be aligned accurately at the floor and ceiling and securely anchored. ## 3.1.1 Wall Openings The framing system shall provide for the installation and anchorage of the required subframes or finish frames for wall openings at doors, pass-through openings, and access panels. Partitions abutting continuous suspended ceilings shall be strengthened for rigidity at rough openings of more than 30 inches wide. Studs at openings shall be 0.0329 in minimum bare metal thickness and spot grouted at jamb anchor inserts. Double studs shall be fastened together with screws and secured to floor and overhead runners. Two studs shall be used for framing solid-core doors, doors over 36 inches wide and extra-heavy doors such as X-ray room doors. ## 3.1.2 Wall Control Joints Control joints for expansion and contraction in the walls shall be constructed with double studs installed 1/2 inch apart in interior walls or wall furrings where indicated on drawings. Control joint spacing shall not exceed 30 feet. Ceiling-height door frames may be used as vertical control joints. Door frames of less than ceiling height may be used as control joints only if standard control joints extend to ceiling from both corners of top of door frame. Control joints between studs shall be filled with firesafing insulation in fire rated partitions. ## 3.1.3 Blocking Blocking shall be provided as necessary for mounted equipment. Blocking shall be metal or wood and shall be cut to fit between framing members. Blocking shall be rigidly anchored to the framing members. Under no circumstances will accessories or other wall mounted equipment be anchored directly to gypsum wallboard. ## 3.2 SUSPENDED CEILING FRAMING Suspended ceiling system framing shall be installed in accordance with ASTM C 754. ## 3.2.1 Hangers Hangers shall be spaced not more than 48 inches along runner channels and 36 inches in the other direction or 42 inches in both directions unless otherwise indicated. Locations of hanger wires shall be coordinated with other work. Hangers at ends of runner channels shall be located not more than 6 inches from wall. Hanger wire shall be looped around bottom chord of open-web steel joists, or secured to structural elements with suitable fasteners. Sags or twists which develop in the suspended system shall be adjusted. Damaged or faulty parts shall be replaced. ## 3.2.2 Main Runners Main runner channels shall be installed in accordance with ASTM C 754. Hanger wires shall be double strand saddle-tied to runner channels and the ends of hanger wire shall be twisted three times around itself. Main runners shall be located to within 6 inches of the paralleling wall to support the ends of cross furring. Main runners shall not come in contact with abutting masonry or concrete walls. Where main runners are spliced, ends shall be overlapped 12 inches with flanges of channels interlocked, and shall be securely tied at each end of splice with wire looped twice around the channels. ## 3.2.3 Furring Channels Furring channels shall be spaced in accordance with ASTM C 754. Furring channels shall be secured to the runner channels and to structural supports at each crossing with tie wire, hairpin clips, or equivalent fastenings. Furring channels shall be located within 2 inches of parallel walls and beams, and shall be cut 1/2 inch short of abutting walls. ## 3.2.4 Ceiling Openings Support members shall be provided as required at ceiling openings for access panels, recessed light fixtures, and air supply or exhaust. Support members shall be not less than 1-1/2 inch main runner channels and vertically installed suspension wires or straps shall be located to provide at least the minimum support specified herein for furring and wallboard attachment. Intermediate structural members not a part of the structural system, shall be provided for attachment or suspension of support members. ## 3.2.5 Light Fixtures and Air Diffusers Light fixtures and air diffusers shall be supported directly from suspended ceiling runners. Wires shall be provided at appropriate locations to carry the weight of recessed or surface mounted light fixtures and air diffusers. # 3.2.6 Control Joints Ceiling control joints for expansion and contraction shall be located where indicated on drawings. A control joint or intermediate blocking shall be installed where ceiling framing members change direction. ## 3.2.6.1 Interior Ceilings Without Perimeter Relief Control joints shall be installed so that linear dimensions between control joints shall not exceed 30 feet in either direction nor more than 900 square feet. ## 3.3 APPLICATION OF GYPSUM BOARD Gypsum board shall be installed in accordance with ASTM C 840, GA 214 and GA 216 and as specified. Paragraph 17.3.1 GENERAL of ASTM C 840 which permits usage of water resistant gypsum board as a base for adhesive application of ceramic or plastic tile on ceilings, does not apply. Edges and ends of gypsum boards shall be cut to obtain neat fitting joints. End joints of adjoining boards shall be staggered, and shall be staggered on opposite sides of wall. Boards shall be applied with moderate contact without forcing in place. Holes for pipes, fixtures or other small openings shall be cut with a tool which will provide a neat fit. Screws shall be driven so that the heads are slightly below the plane of paper face. Fracturing the paper face or damaging the core shall be avoided. Trim shall be
installed at external and internal angles formed by the intersecting gypsum board surfaces with other surfaces. Corner beads shall be installed to vertical and horizontal corners in accordance with manufacturer's published instructions. Boards of maximum practical length shall be used so that an absolute minimum number of end joints occur. Gypsum board partitions in rooms with ceiling heights less than 10 feet shall have full height boards installed vertically with no end joints in the gypsum installation. ## 3.3.1 Water-Resistant Gypsum Board Water-resistant gypsum board shall be installed at the locations indicated. ## 3.3.2 Adhesively-Applied Gypsum Board Walls scheduled to receive adhesively-applied gypsum board shall be dry, free of dust, oil, or form release agents, protrusions or voids, or foreign matter that would affect a proper bond. # 3.3.3 Exterior Gypsum Sheathing Exterior gypsum sheathing and glass mat gypsum sheathing shall be flashed at openings so that water intrusion will not contact the sheathing. Vertical end and edge joints shall abut over the centers of framing members and shall be offset a minimum of one framing space between adjacent rows of gypsum sheathing. Sheathing shall be installed in accordance with manufacturer's instructions. ## 3.4 TRIM, MOLDINGS, AND ACCESSORIES INSTALLATION Trim, moldings and accessories shall be installed in accordance with GA 216. ## 3.5 PATCHING Surface defects and damage shall be corrected as required to leave gypsum board smooth, uniform in appearance, and ready to receive finish as specified. -- End of Section -- # SECTION 09310A # CERAMIC TILE 10/01 # PART 1 GENERAL ## 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ## AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) | ANSI A108.10 | (1992) Installation of Grout in Tilework | |--------------------------|--| | ANSI A108.1A | (1992) Installation of Ceramic Tile in the Wet-Set Method, with Portland Cement Mortar | | ANSI A108.1B | (1992) Installation of Ceramic Tile on a
Cured Portland Cement Mortar Setting Bed
with Dry-Set or Latex Portland Cement
Mortar | | ANSI A108.4 | (1992) Installation of Ceramic Tile with
Organic Adhesives or Water Cleanable Tile
Setting Epoxy Adhesive | | ANSI A118.4 | (1992) Latex-Portland Cement Mortar | | ANSI A118.6 | (1992) Ceramic Tile Grouts | | ANSI A136.1 | (1992) Organic Adhesives for Installation of Ceramic Tile | | ANSI A137.1 | (1988) Ceramic Tile | | AMERICAN SOCIETY FOR TES | STING AND MATERIALS (ASTM) | | ASTM C 1026 | (1987; R 1996) Measuring the Resistance of
Ceramic Tile to Freeze-Thaw Cycling | | ASTM C 1027 | (1999) Determining Visible Abrasion
Resistance of Glazed Ceramic Tile | | ASTM C 1028 | (1996) Determining the Static Coefficient
of Friction of Ceramic Tile and Other Like
Surfaces by the Horizontal Dynamometer
Pull-Meter Method | | ASTM C 1178/C 1178M | (1999) Glass Mat Water-Resistant Gypsum
Backing Panel | | ASTM C 144 | (1999) Aggregate for Masonry Mortar | | ASTM C 150 | (1999a) Portland Cement | | ASTM C 206 | (1984; R 1997) Finishing Hydrated Lime | |-------------------------|--| | ASTM C 207 | (1991; R 1997) Hydrated Lime for Masonry Purposes | | ASTM C 241 | (1997) Abrasion Resistance of Stone
Subjected to Foot Traffic | | ASTM C 33 | (1999ael) Concrete Aggregates | | ASTM C 373 | (1988; R 1994) Water Absorption, Bulk
Density, Apparent Porosity, and Apparent
Specific Gravity of Fired Whiteware
Products | | ASTM C 648 | (1998)Breaking Strength of Ceramic Tile | | MARBLE INSTITUTE OF AME | RICA (MIA) | | MIA Design Manual | (1991) Design Manual IV Dimension Stone | TILE COUNCIL OF AMERICA (TCA) TCA Hdbk (1997) Handbook for Ceramic Tile Installation ## 1.2 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: ``` SD-03 Product Data ``` Tile; Setting-Bed; Mortar, Grout, and Adhesive; Manufacturer's catalog data. Tile; MORTAR, GROUT, AND ADHESIVE; Manufacturers preprinted installation and cleaning instructions. SD-04 Samples Tile; Samples of sufficient size to show color range, pattern, type and joints. SD-07 Certificates Tile; Mortar, Grout, and Adhesive; Certificates indicating conformance with specified requirements. A master grade certificate shall be furnished for tile. ## 1.3 DELIVERY AND STORAGE Materials shall be delivered to the project site in manufacturer's original unopened containers with seals unbroken and labels and hallmarks intact. Materials shall be kept dry, protected from weather, and stored under cover in accordance with manufacturer's instructions. ## 1.4 ENVIRONMENTAL REQUIREMENTS Ceramic tile work shall not be performed unless the substrate and ambient temperature is at least 50 degrees F and rising. Temperature shall be maintained above 50 degrees F while the work is being performed and for at least 7 days after completion of the work. When temporary heaters are used they shall be vented to the outside to avoid carbon dioxide damage to new tilework. ### 1.5 WARRANTY Manufacturer's standard performance guarantees or warranties that extend beyond a 1-year period shall be provided. ## PART 2 PRODUCTS #### 2.1 TILE Tile shall be standard grade conforming to ANSI A137.1. Containers shall be grade sealed. Seals shall be marked to correspond with the marks on the signed master grade certificate. Tile shall be impact resistant with a minimum breaking strength for wall tile of 90 lbs and 250 lbs for floor tile in accordance with ASTM C 648. Tile for cold climate projects shall be rated frost resistant by the manufacturer as determined by ASTM C 1026. Water absorption shall be 0.50 maximum percent in accordance with ASTM C 373. Floor tile shall have a minimum coefficient of friction of 0.50 wet and dry in accordance with ASTM C 1028. Floor tile shall be Class IV-Heavy Traffic, durability classification as rated by the manufacturer when tested in accordance with ASTM C 1027for abrasion resistance as related to foot traffic. ## 2.1.1 Glazed Wall Tile Ceramic Mosiacwall tile and trim shall be cushion edged with bright glaze. Tile shall be $4\text{-}1/4 \times 4\text{-}1/4$ inches. Color shall be in accordance with Section 09915 COLOR SCHEDULE. ## 2.2 SETTING-BED The setting-bed shall be composed of the following: ### 2.2.1 Aggregate for Concrete Fill Aggregate shall conform to ASTM C 33. Maximum size of coarse aggregate shall not be greater than one-half the thickness of concrete fill. ### 2.2.2 Portland Cement Cement shall conform to ASTM C 150, Type I, white for wall mortar and gray for other uses. ### 2.2.3 Sand Sand shall conform to ASTM C 144. ## 2.2.4 Hydrated Lime Hydrated lime shall conform to ASTM C 206, Type S or ASTM C 207, Type S. #### 2.3 WATER Water shall be potable. ## 2.4 MORTAR, GROUT, AND ADHESIVE Mortar, grout, and adhesive shall conform to the following: #### 2.4.1 Latex-Portland Cement Mortar ANSI A118.4. ## 2.4.2 Ceramic Tile Grout ANSI A118.6; latex-portland cement grout. ## 2.4.3 Organic Adhesive ANSI A136.1, Type I. # 2.4.4 Glass Mat Gypsum Backer Panel Glass mat water-resistant gypsum backer board, for use as tile substrate over wood subfloors, shall be in accordance with ASTM C 1178/C 1178M. Glass mat gypsum backer board shall be 1/2 inch thick. # 2.5 MARBLE THRESHOLDS Marble thresholds shall be of size required by drawings or conditions. Marble shall be Group A as classified by MIA Design Manual. Marble shall have a fine sand-rubbed finish and shall be gray in color as approved by the Contracting Officer. Marble abrasion shall be not less than 12.0 when tested in accordance with ASTM C 241. ## PART 3 EXECUTION ### 3.1 PREPARATORY WORK AND WORKMANSHIP Surface to receive tile shall be inspected and shall conform to the requirements of ANSI A108.1A or ANSI A108.1B for surface conditions for the type setting bed specified and for workmanship. Variations of surface to be tiled shall fall within maximum values shown below: | TYPE | WALLS | FLOORS | |------------------------------|-------------------|--------------------| | Dry-Set Mortar | 1/8 inch in 8 ft. | 1/8 inch in 10 ft. | | Organic Adhesives | 1/8 inch in 8 ft. | 1/16 inch in 3 ft. | | Latex portland cement mortar | 1/8 inch in 8 ft. | 1/8 inch in 10 ft. | | Epoxy | 1/8 inch in 8 ft. | 1/8 inch in 10 ft. | ## 3.2 GENERAL INSTALLATION REQUIREMENTS Tile work shall not be started until roughing in for mechanical and electrical work has been completed and tested, and built-in items requiring membrane waterproofing have been installed and tested. Floor tile installation shall not be started in spaces requiring wall tile until after wall tile has been installed. Tile in colors and patterns indicated shall be applied in the area shown on the drawings. Tile shall be installed with the respective surfaces in true even planes to the elevations and grades shown. Special shapes shall be provided as required for sills, jambs, recesses, offsets, external corners, and other conditions to provide a complete and neatly finished installation. Tile bases and coves shall be solidly backed with mortar. #### 3.3 INSTALLATION OF WALL TILE Wall tile shall be installed in accordance with the TCA Hdbk, method $\ensuremath{\text{W243-91}}$. ## 3.3.1 Workable or Cured Mortar Bed Tile shall be installed over a workable mortar bed or a
cured mortar bed at the option of the Contractor. A 4 mil polyethylene membrane, metal lath, and scratch coat shall also be installed. Workable mortar bed, materials, and installation of tile shall conform to ANSI A108.1A. Cured mortar bed and materials shall conform to ANSI A108.1B. #### 3.3.2 Organic Adhesive Organic adhesive installation of ceramic tile shall conform to ANSI A108.4. # 3.4 INSTALLATION OF FLOOR TILE Floor tile shall be installed in accordance with TCA Hdbk, method F112-91__. . #### 3.4.1 Workable or Cured Mortar Bed Floor tile shall be installed over a workable mortar bed or a cured mortar bed at the option of the Contractor. Workable mortar bed materials and installation shall conform to ANSI A108.1A. Cured mortar bed and materials shall conform to ANSI A108.1B. 3.4.2 Ceramic Tile Grout Ceramic Tile grout shall be prepared and installed in accordance with ANSI A108.10. # 3.5 INSTALLATION OF MARBLE THRESHOLDS Thresholds shall be installed where indicated in a manner similar to that of the ceramic tile floor. Thresholds shall be the full width of the opening. Head joints at ends shall not exceed 1/4 inch in width and shall be grouted full as specified for ceramic tile. # 3.6 CLEANING AND PROTECTING Upon completion, tile surfaces shall be thoroughly cleaned in accordance with manufacturer's approved cleaning instructions. Acid shall not be used for cleaning glazed tile. Floor tile with resinous grout or with factory mixed grout shall be cleaned in accordance with instructions of the grout manufacturer. After the grout has set, tile wall surfaces shall be given a protective coat of a noncorrosive soap or other approved method of protection. Tiled floor areas shall be covered with building paper before foot traffic is permitted over the finished tile floors. Board walkways shall be laid on tiled floors that are to be continuously used as passageways by workmen. Damaged or defective tiles shall be replaced. -- End of Section -- #### SECTION 09510A # ACOUSTICAL CEILINGS 10/01 #### PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM C 635 | (2000) Manufacture, Performance, and
Testing of Metal Suspension Systems for
Acoustical Tile and Lay-In Panel Ceilings | |-------------|---| | ASTM C 636 | (1996) Installation of Metal Ceiling
Suspension Systems for Acoustical Tile and
Lay-In Panels | | ASTM E 1264 | (1998) Standard Classification for
Acoustical Ceiling Products | | ASTM E 580 | (2000) Application of Ceiling Suspension
Systems for Acoustical Tile and Lay-In
Panels in Areas Requiring Moderate Seismic
Restraint | #### U.S. ARMY CORPS OF ENGINEERS (USACE) TI 809-04 (1998) Seismic Design for Buildings #### 1.2 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: ## SD-02 Shop Drawings Approved Detail Drawings; Drawings showing suspension system, method of anchoring and fastening, details, and reflected ceiling plan. # SD-03 Product Data ### Acoustical Units; Manufacturer's descriptive data, catalog cuts, and installation instructions. Submittals which do not provide adequate data for the product evaluation will be rejected. SD-04 Samples Acoustical Units; SUSPENSION SYSTEM Two samples of each type of acoustical unit and each type of suspension grid tee section showing texture, finish, and color. SD-07 Certificates Acoustical Units; Certificate attesting that the mineral based acoustical units furnished for the project contain recycled material and showing an estimated percent of such material. ## 1.3 GENERAL REQUIREMENTS Acoustical treatment shall consist of sound controlling units mechanically mounted on a ceiling suspension system. The unit size, texture, finish, and color shall be as specified. . The location and extent of acoustical treatment shall be as shown on the approved detail drawings. Reclamation of mineral fiber acoustical ceiling panels to be removed from the job site shall be in accordance with paragraph RECLAMATION PROCEDURES. ## 1.4 DELIVERY AND STORAGE Materials shall be delivered to the site in the manufacturer's original unopened containers with brand name and type clearly marked. Materials shall be carefully handled and stored in dry, watertight enclosures. Immediately before installation, acoustical units shall be stored for not less than 24 hours at the same temperature and relative humidity as the space where they will be installed in order to assure proper temperature and moisture acclimation. # 1.5 ENVIRONMENTAL REQUIREMENTS A uniform temperature of not less than 60 degrees F nor more than 85 degrees F and a relative humidity of not more than 70 percent shall be maintained before, during, and after installation of acoustical units. # 1.6 SCHEDULING Interior finish work such as plastering, concrete and terrazzo work shall be complete and dry before installation. Mechanical, electrical, and other work above the ceiling line shall be completed and heating, ventilating, and air conditioning systems shall be installed and operating in order to maintain temperature and humidity requirements. #### 1.7 WARRANTY Manufacturer's standard performance guarantees or warranties that extend beyond a one year period shall be provided. Standard performance guarantee or warranty shall contain an agreement to repair or replace acoustical panels that fail within the warranty period. Failures include, but are not limited to, sagging and warping of panels; rusting and manufacturers defects of grid system. #### PART 2 PRODUCTS #### 2.1 ACOUSTICAL UNITS Contractor shall comply with EPA requirements in accordance with Section 01670 RECYCLED / RECOVERED MATERIALS. Acoustical units shall conform to ASTM E 1264, Class A, and the following requirements: ## 2.1.1 Units for Exposed-Grid System A Type: III (mineral fiber with painted finish). acoustical units shall have a minimum recycled material content of 72 percent. Minimum NRC: 0.75 when tested on mounting No. E-400 Pattern: EIC. Nominal size: inches. Edge detail: Tegular/Reveal. Finish: Factory-applied vinyl latex paint. Minimum LR coefficient: 0.83. Minimum CAC:35. #### 2.2 SUSPENSION SYSTEM Suspension system shall be standardstandard width flange, and shall conform to ASTM C 635 for intermediate-duty systems. Surfaces exposed to view shall bealuminum or steel with a factory-applied white. Wall molding shall have a flange of not less than 15/16 inch. Inside and outside corner capsStandardMitered corners shall be provided. Suspended ceiling framing system shall have the capability to support the finished ceiling, light fixtures, air diffusers, and accessories, as shown. The suspension system shall have a maximum deflection of 1/360 of span length. Seismic details shall conform to the guidance in TI 809-04 and ASTM E 580 . # 2.3 HANGERS Hangers shall be galvanized steel wire. Hangers and attachment shall support a minimum 300 pound ultimate vertical load without failure of supporting material or attachment. #### 2.4 FINISHES Acoustical units and suspension system members shall have manufacturer's standard textures, patterns and finishes as specified. Ceiling suspension system components shall be treated to inhibit corrosion. # 2.5 COLORS AND PATTERNS Colors and patterns for acoustical units and suspension system components shall be as specified in Section 09915 COLOR SCHEDULE. ## PART 3 EXECUTION #### 3.1 INSTALLATION Acoustical work shall be provided complete with necessary fastenings, clips, and other accessories required for a complete installation. Mechanical fastenings shall not be exposed in the finished work. Hangers shall be laid out for each individual room or space. Hangers shall be placed to support framing around beams, ducts, columns, grilles, and other penetrations through ceilings. Main runners and carrying channels shall be kept clear of abutting walls and partitions. At least two main runners shall be provided for each ceiling span. Wherever required to bypass an object with the hanger wires, a subsuspension system shall be installed, so that all hanger wires will be plumb. ## 3.1.1 Suspension System Suspension system shall be installed in accordance with ASTM C 636 and as specified herein. There shall be no hanger wires or other loads suspended from underside of steel decking. ## 3.1.1.1 Plumb Hangers Hangers shall be plumb and shall not press against insulation covering ducts and pipes. ## 3.1.1.2 Splayed Hangers Where hangers must be splayed (sloped or slanted) around obstructions, the resulting horizontal force shall be offset by bracing, countersplaying, or other acceptable means. # 3.1.2 Wall Molding Wall molding shall be provided where ceilings abut vertical surfaces. Wall molding shall be secured not more than 3 inches from ends of each length and not more than 16 inches on centers between end fastenings. Wall molding springs shall be provided at each acoustical unit in semi-exposed or concealed systems. # 3.2 CLEANING Following installation, dirty or discolored surfaces of acoustical units shall be cleaned and left free from defects. Units that are damaged or improperly installed shall be removed and new units provided as directed. ## 3.4 RECLAMATION PROCEDURES Ceiling tile, designated for recycling by the Contracting Officer, shall be neatly stacked on 4 by 4 foot pallets not higher than 4 foot. Panels shall be completely dry. Pallets shall then be shrink
wrapped and symmetrically stacked on top of each other without falling over. Disposal shall be in accordance with Section 01572 CONSTRUCTION AND DEMOLITION WASTE MANAGEMENT. -- End of Section -- #### SECTION 09651N # RESILIENT TILE FLOORING 08/01 #### PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by the basic designation only. AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) ASTM F 1066 (1999) Vinyl Composition Floor Tile F #### 1.2 SUBMITTALS Submit the following in accordance with Section 01330, "Submittal Procedures." SD-03 Product Data Vinyl-Composition Tile Adhesives SD-04 Samples Floor materials; G Wall base; G Edging strips; G SD-10 Operation and Maintenance Data Floor materials, Data Package 1; G # 1.3 DELIVERY AND STORAGE Deliver materials to job in manufacturer's original, unopened containers with brands, names, and production runs clearly marked thereon. Handle carefully and store in original containers at no less than 65 degrees F for at least 48 hours prior to starting work. Do not open containers until they are inspected and accepted by Contracting Officer. #### 1.4 ENVIRONMENTAL CONDITIONS Maintain temperature of spaces in which flooring work is to be performed at no less than 65 degrees F at floor level for 48 hours prior to starting work, during time work is performed, and for 48 hours after work is complete. Maintain minimum temperature of 55 degrees F, thereafter. Provide adequate ventilation to remove moisture and fumes from area. ### PART 2 PRODUCTS #### 2.1 FLOOR MATERIALS #### 2.1.1 Color and Pattern Color and distinct pattern shall be uniformly distributed throughout thickness of tile. Materials of same type, pattern, and color shall be of same production run and so marked. Variations in shades and off-pattern matches between containers not acceptable. Flooring in continuous area or replacement of damaged flooring in continuous area shall be from same production run with same shade and pattern. ## 2.1.2 Vinyl-Composition Tile ASTM F 1066, Composition 1, Class 1 (solid color), smooth surface, 12 by 12 by 1/8 inch thick. ## 2.1.3 Wall Base Rubbercove, adjacent to resilient flooring. Base shall be 4 inches high, 0.125 inch thick, . Use flexible base to conform to irregularities in walls, partitions, and floors. Provide premolded corners in matching size, shape, and color for all right-angle inside and outside corners. Scribe and butt inside corners of 0.08 inch thick base. Outside corners of 0.08 inch thick base may be either premolded or formed by wrapping base tightly around corner, except that when return length is 3 inches or less, use premolded corners. #### 2.1.4 Adhesives ## 2.1.4.1 Adhesive for Vinyl-Composition Tile Cutback adhesive for installation of tile over concrete above, on or above grade. Moisture and alkali resistant. Non-asbestos formulated or a latex adhesive recommended by flooring manufacturer. # 2.1.4.2 Adhesive for Wall Base Emulsified acrylic latex; non-flammable. # 2.1.4.3 Other Adhesives As recommended by floor material manufacturer. #### 2.1.5 Finish Flooring manufacturer's standard high-solids finish for shine without buffing; non-flammable; compatible with factory-applied finish. May be buffed or burnished for maximum gloss. # 2.1.6 Edging Strips Beveled rubber. # PART 3 EXECUTION # 3.1 CONDITION OF SURFACES Surfaces that are to receive flooring shall be clean, dry, smooth, firm, sound and free of oil, paint, wax, dirt, or other damaging materials. ## 3.1.1 Preparation of Surfaces # 3.1.1.1 Concrete Floor Surfaces Grind ridges and other uneven surfaces smooth. Remove concrete curing compounds, other than types that do not adversely affect adhesive. Cut out and fill all cracks 1/16 inch wide and wider with crack filler. Provide latex underlayment to fill remaining holes, cracks, and depressions and for smoothing, leveling, and feather-edging concrete. Remove loose particles; vacuum chalky, dusty surfaces; prime cleaned surfaces, if recommended by flooring manufacturer. #### 3.2 APPLICATION To avoid damage, install flooring after other tradesmen in same area have completed their work. Apply flooring and accessories in accordance with manufacturer's directions, using workmen experienced in application of such flooring. Detailed requirements: - a. Adhesives: Apply in accordance with adhesive manufacturer's printed directions. Do not allow smoking, open flames or other sources of ignition in area where solvent-containing adhesives are being used or spread. Post conspicuous signs reading "NO SMOKING OR OPEN FLAME" in area of the spread adhesive. - c. Cutting: Cut to fit around permanent fixtures, built-in furniture, pipes, and outlets. Cut flooring edges and scribe to walls and partitions after field flooring has been applied. - d. Edge Strips: Provide edging strips where flooring terminates at points higher than contiguous finished flooring, except where thresholds are provided. Secure plastic strips with adhesive. ## 3.2.1 Application of Vinyl-Composition Tile Apply only recommended adhesives to concrete surface. # 3.2.2 Application of Wall Base Apply wall base after flooring is complete and wall surface is dry. Form inside and outside corners with base materials, as specified herein. ## 3.2.2.1 Surface Preparation Fill cracks and voids in wall with crack filler. Bring irregular surfaces to smooth finish with smoothing compound. # 3.2.2.2 Wall Base Apply adhesive to back of base with notched trowel, leaving approximately 1/4 inch bare space along top edge of base. Immediately press base firmly against wall, and move into place, making sure that toe is in contact with floor surface and wall. Roll entire vertical surface of base with hand roller, and press toe of base with a straight piece of wood to ensure proper alignment. # 3.3 CLEANING AND FINISHING #### 3.3.1 Cleaning Follow flooring manufacturer's recommendations to remove surplus adhesive, and clean flooring and adjacent surfaces. Five days after installing, wash flooring with flooring manufacturer's recommended cleaning solution; rinse thoroughly with cool, clean water. Avoid flooding of floor. # 3.3.2 Finishing Give flooring two coats of wax, each coat buffed to even luster with electric polish. Clean bases and stair treads, but do not polish them. ## 3.4 PROTECTION Protect flooring from traffic for 48 hours after installation to allow set of adhesive. From time of laying until acceptance, protect floor from damage. Remove and replace defects which develop, such as damaged, loose, broken, or curled tiles prior to final inspection. -- End of Section -- ## SECTION 09680A CARPET 05/01 # PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # AMERICAN ASSOCIATION OF TEXTILE CHEMISTS AND COLORISTS (AATCC) | AATCC TM 16 | (1998) | Test Method: | Colorfastness | to | Light | |-------------|--------|--------------|---------------|----|-------| | | | | | | | AATCC TM 165 (1999) Test Method: Colorfastness to Crocking: Carpets - AATCC Crockmeter Method ## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM D 1423 | (1999) Twist in Yarns by the
Direct-Counting Method | |-------------|---| | ASTM D 3278 | (1996el) Test Methods for Flash Point of
Liquids by Small Scale Closed-Cup Apparatus | | ASTM D 418 | (1993; R 1997) Pile Yarn Floor Covering
Construction | | ASTM D 5252 | (1998a) Practice for the Operation of the
Hexapod Tumble Drum Tester | | ASTM D 5417 | (1999) Practice for Operation of the
Vettermann Drum Tester | | ASTM E 648 | (2000) Critical Radiant Flux of | Heat Energy Source Floor-Covering Systems Using a Radiant # CARPET AND RUG INSTITUTE (CRI) CRI 104 (1996) Commercial Carpet Installation Standard # U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA) | 16 CFR 1630 | Standard for the Surface Flammability of | |-------------|--| | | Carpets and Rugs (FF 1-70) | 40 CFR 247 Comprehensive Procurement Guideline for Products Containing Recovered Materials # 1.2 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: ## SD-02 Shop Drawings Three copies of drawings indicating areas receiving carpet, carpet types, textures and patterns, direction of pile, location of seams, and locations of edge molding. ## SD-03 Product Data #### Carpet; Manufacturer's catalog data and printed documentation stating physical characteristics, durability, resistance to fading, and flame resistance characteristics for each type of carpet material and installation accessory. Surface Preparation; Installation; Threecopies of the manufacturer's printed installation instructions for the carpet, including preparation of substrate, seaming techniques, and recommended adhesives and tapes. Regulatory Requirements; , Three copies of report stating that carpet contains recycled materials and/or involvement in a recycling or reuse program. Report shall include percentage of recycled material. ## SD-04 Samples # Carpet; a. Carpet: Two "Production Quality" samples 18×18 inches of each carpet proposed for use, showing quality, pattern, and color specified. # SD-06 Test Reports Moisture and Alkalinity Tests; Three copies of test reports of moisture and alkalinity content of concrete slab stating date of test, person conducting the test, and the area tested. ## SD-07 Certificates #### Carpet; Certificates of compliance from a
laboratory accredited by the National Laboratory Accreditation Program of the National Institute of Standards and Technology attesting that each type of carpet and carpet with cushion material conforms to the standards specified. Regulatory Requirements; Report stating that the carpet contains recycled materials and indicating the actual percentage of recycled material. SD-10 Operation and Maintenance Data Carpet; Cleaning and Protection; Three copies of carpet manufacturer's maintenance instructions describing recommended type of cleaning equipment and material, spotting and cleaning methods, and cleaning cycles. ## 1.3 REGULATORY REQUIREMENTS Carpet and adhesives shall bear the Carpet and Rug Institute (CRI) Indoor Air Quality (IAQ) label or demonstrate compliance with testing criteria and frequencies through independent laboratory test results. Carpet type bearing the label will indicate that the carpet has been tested and meets the criteria of the CRI IAQ Carpet Testing Program, and minimizes the impact on indoor air quality. Contractor shall procure carpet in accordance with 40 CFR 247. Carpet shall conform to EPA requirements in accordance with Section 01670 RECYCLED / RECOVERED MATERIALS. Where possible, product shall be purchased locally to reduce emissions of fossil fuels from transporting. ### 1.4 DELIVERY AND STORAGE Materials shall be delivered to the site in the manufacturer's original wrappings and packages clearly labeled with the manufacturer's name, brand name, size, dye lot number, and related information. Materials shall be stored in a clean, dry, well ventilated area, protected from damage and soiling, and shall be maintained at a temperature above 60 degrees F for 2 days prior to installation. # 1.5 ENVIRONMENTAL REQUIREMENTS Areas in which carpeting is to be installed shall be maintained at a temperature above 60 degrees F for 2 days before installation, during installation, and for 2 days after installation. A minimum temperature of 55 degrees F shall be maintained thereafter for the duration of the contract. Traffic or movement of furniture or equipment in carpeted area shall not be permitted for 24 hours after installation. Other work which would damage the carpet shall be completed prior to installation of carpet. #### 1.6 WARRANTY Manufacturer's standard performance guarantees or warranties including minimum ten (10) year wear warranty, two (2) year material and workmanship and ten (10) year tuft bind and delamination. # PART 2 PRODUCTS ## 2.1 Carpet Type A Carpet shall be first quality; free of visual blemishes, streaks, poorly dyed areas, fuzzing of pile yarn, spots or stains, and other physical and manufacturing defects. Carpet materials and treatments shall be reasonably nonallergenic and free of other recognized health hazards. All grade carpets shall have a static control construction which gives adequate durability and performance. # 2.1.1 Physical Characteristics Carpet shall comply with the following: - a. Recycle Efforts: . - b. Carpet Construction: Enhanced Loop. - c. Type: Broadloom 12 feet minimum usable carpet width with exception of corridors - d. Pile Type: Multilevel loop. - e. Pile Fiber: Commercial 100% branded (federally registered trademark) nylon continuous filament. - f. Pile or Wire Height: Minimum 3.17 $_$ inch in accordance with ASTM D 418. - g. Yarn Ply: Minimum 2 in accordance with ASTM D 1423. - h. Gauge or Pitch: Minimum 1/10___inch in accordance with ASTM D 418. - j. Finished Pile Yarn Weight: Minimum 0.992__ ounces per square yard. This does not include weight of backings. Weight shall be determined in accordance with ASTM D 418. - 1. Dye Method: Yarn (or Skein) dyed. - m. Backing Materials: Primary backing materials shall be polypropylene. Secondary backing to suit project requirements shall be those customarily used and accepted by the trade for each type of carpet, except when a special unitary back designed for gluedown is provided. # 2.1.2 Performance Requirements - a. ARR (Appearance Retention Rating): Carpet shall be tested and have the minimum 3.0--3.5 (Heavy) ARR when tested in accordance with either the ASTM D 5252 (Hexapod) or ASTM D 5417 (Vettermann) test methods using the number of cycles for short and long term tests as specified. - c. Flammability and Critical Radiant Flux Requirements: Carpet shall comply with 16 CFR 1630. Carpet in corridors and exits shall have a minimum average critical radiant flux of 0.22 watts per square centimeter when tested in accordance with ASTM E 648. - d. Tuft Bind: Tuft bind force required to pull a tuft or loop free from carpet backing shall be a minimum 10 pound average force for loop pile. - e. Colorfastness to Crocking: Dry and wet crocking shall comply with AATCC TM 165 and shall have a Class 4 minimum rating on the AATCC Color Transference Chart for all colors. - f. Colorfastness to Light: Colorfastness to light shall comply with AATCC TM 16, Test Option E "Water-Cooled Xenon-Arc Lamp, Continuous Light" and shall have a minimum 4 grey scale rating after 40 hours. - g. Delamination Strength: Delamination strength for tufted carpet with a secondary back shall be minimum of 2.5 lbs./inch. ## 2.2 ADHESIVES AND CONCRETE PRIMER Adhesives and concrete primers for installation of carpet shall be waterproof, nonflammable, meet local air-quality standards, and shall be as required by the carpet manufacturer. Seam adhesive shall be waterproof, nonflammable, and nonstaining as recommended by the carpet manufacturer. Release adhesive for modular tile carpet shall be as recommended by the carpet manufacturer. Adhesives flashpoint shall be minimum 140 degrees F in accordance with ASTM D 3278. #### 2.3 TAPE Tape for seams shall be as recommended by the carpet manufacturer for the type of seam used in installation. ## 2.4 COLOR, TEXTURE, AND PATTERN Color, texture, and pattern shall be in accordance with Section 09915 COLOR ${\tt SCHEDULE}$. #### PART 3 EXECUTION #### 3.1 SURFACE PREPARATION Carpet shall not be installed on surfaces that are unsuitable and will prevent a proper installation. Holes, cracks, depressions, or rough areas shall be repaired using material recommended by the carpet or adhesive manufacturer. Floor shall be free of any foreign materials and swept broom clean. Before beginning work, subfloor shall be tested with glue and carpet to determine "open time" and bond. #### 3.2 MOISTURE AND ALKALINITY TESTS Concrete slab shall be tested for moisture content and excessive alkalinity in accordance with CRI 104. #### 3.3 PREPARATION OF CONCRETE SUBFLOOR Installation of the carpeting shall not commence until concrete substrate is at least 90 days old. The concrete surfaces shall be prepared in accordance with instructions of the carpet manufacturer. Type of concrete sealer, when required, shall be compatible with the carpet. #### 3.4 INSTALLATION All work shall be performed by installers who are CFI certified (International Certified Floorcovering Installer Association), or manufacturer's approved installers. Installation shall be in accordance with the manufacturer's instructions and CRI 104. Edges of carpet meeting hard surface flooring shall be protected with molding; installation shall be in accordance with the molding manufacturer's instructions. ## 3.4.1 Broadloom Installation Broadloom carpet shall be installed direct glue down and shall be smooth, uniform, and secure, with a minimum of seams. Seams shall be uniform, unnoticeable, and treated with a seam adhesive. Side seams shall be run toward the light where practical and where such layout does not increase the number of seams. Breadths shall be installed parallel, with carpet pile in the same direction. Patterns shall be accurately matched. Cutouts, as at door jambs, columns and ducts shall be neatly cut and fitted securely. Seams at doorways shall be located parallel to and centered directly under doors. Seams shall not be made perpendicular to doors or at pivot points. Seams at changes in directions of corridors shall follow the wall line parallel to the carpet direction. Corridors with widths less than 6 feet shall have the carpet laid lengthwise down the corridors. #### 3.5 CLEANING AND PROTECTION # 3.5.1 Cleaning After installation of the carpet, debris, scraps, and other foreign matter shall be removed. Soiled spots and adhesive shall be removed from the face of the carpet with appropriate spot remover. Protruding face yarn shall be cut off and removed. Carpet shall be vacuumed clean. ## 3.5.2 Protection The installed carpet shall be protected from soiling and damage with heavy, reinforced, nonstaining kraft paper, plywood, or hardboard sheets. Edges of kraft paper protection shall be lapped and secured to provide a continuous cover. Traffic shall be restricted for at least 45 hours. Protective covering shall be removed when directed by the Contracting Officer. # 3.6 REMNANTS Remnants remaining from the installation, consisting of scrap pieces more than 2 feet in dimension with more than 6 square feet total, shall be provided. Non-retained scraps shall be removed from site and recycled appropriately. -- End of Section -- ## SECTION 09900 # PAINTS AND COATINGS 09/01 # PART 1 GENERAL # 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to within the text by the basic designation only. | AMERICAN | CONFERENCE | OF | GOVERNMENTAL | INDUSTRIAL | HYGIENISTS | (ACGIH) |) | |----------|------------|----|--------------|------------|------------|---------|---| | | | | | | | | | | ACGIH TLV-BKLT | (1991-1992) Threshold Limit Values (TLVs) | |----------------|---| | | for Chemical Substances and Physical | | | Agents and Biological Exposure Indices (BEIs) | ACGIH TLV-DOC (2001) Documentation of Threshold Limit Values and Biological Exposure Indices ## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM D 235 |
(1999) Mineral Spirits (Petroleum Spirits)
(Hydrocarbon Dry Cleaning Solvent) | |-------------|---| | ASTM D 4263 | (1999) Indicating Moisture in Concrete by
the Plastic Sheet Method | | ASTM D 4444 | (1998) Standard Test Methods for Use and
Calibration of Hand-Held Moisture Meters | | ASTM D 523 | (1989; R 1999) Specular Gloss | | ASTM F 1869 | (1998) Measuring Moisture Vapor Emission
Rate of Concrete Subfloor Using Anhydrous
Calcium Chloride | # MASTER PAINTERS INSTITUTE (MPI) | MPI 101 | (Mar 2000) Cold Curing Epoxy Primer | |---------|--| | MPI 107 | (2001) Rust Inhibitive Primer (Water-Based) | | MPI 108 | (2001) High Build Epoxy Marine Coating | | MPI 110 | (Mar 2000) Interior/Exterior High
Performance Acrylic | | MPI 119 | (Mar 2000) Exterior Latex, High Gloss (acrylic) | | MPI 19 | (2001) Inorganic Zinc Rich Coating | | MPI 21 | (2001) Heat Resistant Enamel, Gloss | | MPI 23 | (2001) Surface Tolerant Metal Primer | |--------------------------|---| | MPI 4 | (Mar 2000) Interior/Exterior Latex Block
Filler | | MPI 42 | (Mar 2000) Latex Stucco and Masonry
Coating (medium texture) | | MPI 44 | Interior Latex, Gloss Level 2 | | MPI 45 | (Mar 2000) Interior Primer Sealer | | MPI 47 | (Mar 2000) Interior Alkyd, Semi-Gloss | | MPI 49 | (Mar 2000) Interior Alkyd, Flat | | MPI 50 | (Mar 2000) Interior Latex Primer Sealer | | MPI 51 | (Mar 2000) Interior Alkyd, Eggshell | | MPI 79 | (Mar 2000) Marine Alkyd Metal Primer | | MPI 94 | (Mar 2000) Exterior Alkyd, Semi-Gloss | | MPI 95 | (2001) Fast Drying Metal Primer | | SCIENTIFIC CERTIFICATION | ON SYSTEMS (SCS) | | SCS-EPP-SP01-01 | (2001) Environmentally Preferable Product
Specification for Architectural and
Anti-Corrosive Paints | | THE SOCIETY FOR PROTECT | TIVE COATINGS (SSPC) | | SSPC PA 1 | (1991) Shop, Field, and Maintenance
Painting | | SSPC PA 3 | (1995) Safety in Paint Application | | SSPC SP 1 | (1982) Solvent Cleaning | | SSPC SP 10 | (1994) Near-White Blast Cleaning | | SSPC SP 12 | (1995) Surface Preparation and Cleaning of
Steel and Other Hard Materials by High-and
Ultra high-Pressure Water Jetting Prior to
Recoating | | SSPC SP 2 | (1995) Hand Tool Cleaning | | SSPC SP 3 | (1995) Power Tool Cleaning | | SSPC SP 6 | (1994) Commercial Blast Cleaning | | SSPC SP 7 | (1994) Brush-Off Blast Cleaning | | SSPC VIS 1 | (1989) Visual Standard for Abrasive Blast
Cleaned Steel (Standard Reference
Photographs) | SSPC VIS 3 (1995) Visual Standard for Power-and Hand-Tool Cleaned Steel (Standard Reference Photographs) SSPC VIS 4 (2001) Guide and Reference Photographs for Steel Surfaces Prepared by Waterjetting U.S. DEPARTMENT OF DEFENSE (DOD) MIL-STD-101 (Rev B) Color Code for Pipelines & for Compressed Gas Cylinders U.S. GENERAL SERVICES ADMINISTRATION (GSA) FED-STD-313 (Rev. C) Material Safety Data, Transportation Data and Disposal Data for Hazardous Materials Furnished to Government Activities U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA) 29 CFR 1910.1000 Air Contaminants #### 1.2 SUBMITTALS Submit the following in accordance with Section 01330, "Submittal Procedures." In keeping with the intent of Executive Order 13101, "Greening the Government through Waste Prevention, Recycling, and Federal Acquisition", products certified by SCS as meeting SCS-EPP-SP01-01 shall be given preferential consideration over registered products. Products that are registered shall be given preferential consideration over products not carrying any EPP designation. SD-02 Shop Drawings Piping identification Submit color stencil codes SD-03 Product Data Coating; Manufacturer's Technical Data Sheets SD-04 Samples Color; G Submit manufacturer's samples of paint colors. Cross reference color samples to color scheme as indicated. SD-07 Certificates Applicator's qualifications Qualification Testing laboratory for coatings G SD-08 Manufacturer's Instructions Application instructions Mixing Detailed mixing instructions, minimum and maximum application temperature and humidity, potlife, and curing and drying times between coats. Manufacturer's Material Safety Data Sheets Submit manufacturer's Material Safety Data Sheets for coatings, solvents, and other potentially hazardous materials, as defined in FED-STD-313. SD-10 Operation and Maintenance Data Coatings: G Preprinted cleaning and maintenance instructions for all coating systems shall be provided. #### 1.3 APPLICATOR'S QUALIFICATIONS #### 1.3.1 Contractor Qualification Submit the name, address, telephone number, FAX number, and e-mail address of the contractor that will be performing all surface preparation and coating application. Submit evidence that key personnel have successfully performed surface preparation and application of coatings on a minimum of three similar projects within the past three years. List information by individual and include the following: - a. Name of individual and proposed position for this work. - b. Information about each previous assignment including: Position or responsibility Employer (if other than the Contractor) Name of facility owner Name of individual in facility owner's organization who can be contacted as a reference Location, size and description of structure Dates work was carried out Description of work carried out on structure ## 1.4 QUALITY ASSURANCE ## 1.4.1 Field Samples and Tests The Contracting Officer may choose up to two coatings that have been delivered to the site to be tested at no cost to the Government. Take samples of each chosen product as specified in the paragraph "Sampling Procedures." Test each chosen product as specified in the paragraph "Testing Procedure." Products which do not conform, shall be removed from the job site and replaced with new products that confrom to the referenced specification. Testing of replacement products that failed initial testing shall be at no cost to the Government. #### 1.4.1.1 Sampling Procedure The Contracting Officer will select paint at random from the products that have been delivered to the job site for sample testing. The Contractor shall provide one quart samples of the selected paint materials. The samples shall be taken in the presence of the Contracting Officer, and labeled, identifying each sample. Provide labels in accordance with the paragraph "Packaging, Labeling, and Storage" of this specification. # 1.4.1.2 Testing Procedure Provide Batch Quality Conformance Testing for specified products, as defined by and performed by MPI. As an alternative to Batch Quality Conformance testing, the Contractor may provide Qualification Testing for specified products above to the appropriate MPI product specification, using the third-party laboratory approved under the paragraph "Qualification Testing" laboratory for coatings. The qualification testing lab report shall include the backup data and summary of the test results. The summary shall list all of the reference specification requirements and the result of each test. The summary shall clearly indicate whether the tested paint meets each test requirement. Note that Qualification Testing may take 4 to 6 weeks to perform, due to the extent of testing required. Submit name, address, telephone number, FAX number, and e-mail address of the independent third party laboratory selected to perform testing of coating samples for compliance with specification requirements. Submit documentation that laboratory is regularly engaged in testing of paint samples for conformance with specifications, and that employees performing testing are qualified. If the Contractor chooses MPI to perform the Batch Quality Conformance testing, the above submittal information is not required, only a letter is required from the Contractor stating that MPI will perform the testing. ## 1.5 REGULATORY REQUIREMENTS #### 1.5.1 Environmental Protection In addition to requirements specified elsewhere for environmental protection, provide coating materials that conform to the restrictions of the local Air Pollution Control District and regional jurisdiction. Notify Contracting Officer of any paint specified herein which fails to conform. # 1.5.2 Lead Content Do not use coatings having a lead content over 0.06 percent by weight of nonvolatile content. #### 1.5.3 Chromate Content Do not use coatings containing zinc-chromate or strontium-chromate. #### 1.5.4 Asbestos Content Materials shall not contain asbestos. ## 1.5.5 Mercury Content Materials shall not contain mercury or mercury compounds. #### 1.5.6 Silica Abrasive blast media shall not contain free crystilline silica. ## 1.5.7 Human Carcinogens Materials shall not contain ACGIH TLV-BKLT and ACGIH TLV-DOC confirmed human carcinogens (A1) or suspected human carcinogens (A2). #### 1.6 PACKAGING, LABELING, AND STORAGE Paints shall be in sealed containers that legibly show the contract specification number, designation name, formula or specification number, batch number, color, quantity, date of manufacture, manufacturer's formulation number, manufacturer's directions including any warnings and special precautions, and name and address of manufacturer. Pigmented paints shall be furnished in containers not larger than 5 gallons. Paints and thinners shall be stored in accordance with the manufacturer's written directions, and as a minimum, stored off the ground, under cover, with sufficient ventilation to prevent the buildup of flammable vapors, and at temperatures between 40 to 95 degrees F. # 1.7 SAFETY AND HEALTH Apply coating materials using safety methods and equipment in accordance with the following: Work shall comply with applicable Federal, State, and local laws and regulations, and with the ACCIDENT PREVENTION PLAN,
including the Activity Hazard Analysis as specified in Section 01525, "Safety Requirements" and in Appendix A of COE EM-385-1-1. The Activity Hazard Analysis shall include analyses of the potential impact of painting operations on painting personnel and on others involved in and adjacent to the work zone. # 1.7.1 Safety Methods Used During Coating Application Comply with the requirements of SSPC PA 3. # 1.7.2 Toxic Materials To protect personnel from overexposure to toxic materials, conform to the most stringent guidance of: a. The applicable manufacturer's Material Safety Data Sheets (MSDS) or local regulation. - b. 29 CFR 1910.1000. - c. ACGIH TLV-BKLT, threshold limit values. #### 1.8 ENVIRONMENTAL CONDITIONS ## 1.8.1 Coatings Do not apply coating when air or substrate conditions are: - a. Less than 5 degrees F above dew point; - b. Below 50 degrees F or over 95 degrees F, unless specifically pre-approved by the Contracting Officer and the product manufacturer. Under no circumstances shall application conditions exceed manufacturer recommendations. ### 1.9 COLOR SELECTION Colors of finish coats shall be as indicated or specified. Where not indicated or specified, colors shall be selected by the Contracting Officer. Manufacturers' names and color identification are used for the purpose of color identification only. Named products are acceptable for use only if they conform to specified requirements. Products of other manufacturers are acceptable if the colors approximate colors indicated and the product conforms to specified requirements. Tint each coat progressively darker to enable confirmation of the number of coats. Color, texture, and pattern of wall coating systems shall be in accordance with Section 09915 COLOR SCHEDULE. # 1.10 LOCATION AND SURFACE TYPE TO BE PAINTED ## 1.10.1 Painting Included Where a space or surface is indicated to be painted, include the following unless indicated otherwise. - a. Surfaces behind portable objects and surface mounted articles readily detachable by removal of fasteners, such as screws and bolts. - b. New factory finished surfaces that require identification or color coding and factory finished surfaces that are damaged during performance of the work. - c. Existing coated surfaces that are damaged during performance of the work. # 1.10.1.1 Exterior Painting Includes new surfaces, existing coated surfaces, of the building and appurtenances as indicated. Also included are existing coated surfaces made bare by cleaning operations. #### 1.10.1.2 Interior Painting Includes new surfaces, existing uncoated surfaces, and existing coated surfaces of the building and appurtenances as indicated and existing coated surfaces made bare by cleaning operations. Where a space or surface is indicated to be painted, include the following items, unless indicated otherwise. b. Other contiguous surfaces. ## 1.10.2 Painting Excluded Do not paint the following unless indicated otherwise. - a. Surfaces concealed and made inaccessible by panelboards, fixed ductwork, machinery, and equipment fixed in place. - b. Surfaces in concealed spaces. Concealed spaces are defined as enclosed spaces above suspended ceilings, furred spaces, attic spaces, crawl spaces, elevator shafts and chases. - c. Steel to be embedded in concrete. - d. Copper, stainless steel, aluminum, brass, and lead except existing coated surfaces. - e. Hardware, fittings, and other factory finished items. ### 1.10.3 Mechanical and Electrical Painting Includes field coating of interiorandexterior new surfaces. - a. Where a space or surface is indicated to be painted, include the following items unless indicated otherwise. - (1) Exposed piping, conduit, and ductwork; - (2) Supports, hangers, air grilles, and registers; - (3) Miscellaneous metalwork and insulation coverings. - b. Do not paint the following, unless indicated otherwise: - (1) New zinc-coated, aluminum, and copper surfaces under insulation # 1.10.4 Exterior Painting of Site Work Items Field coat the following items: New Surfaces Existing Surfaces a. Metal doors and Frames Concrete Masonry b. New Concrete Masonry metal downspouts c. New Metal Railings #### 1.10.5 Definitions and Abbreviations ## 1.10.5.1 Qualification Testing Qualification testing is the performance of all test requirements listed in the product specification. This testing is accomplished by MPI to qualify each product for the MPI Approved Product List, and may also be accomplished by Contractor's third party testing lab if an alternative to Batch Quality Conformance Testing by MPI is desired. ## 1.10.5.2 Batch Quality Conformance Testing Batch quality conformance testing determines that the product provided is the same as the product qualified to the appropriate product specification. This testing shall only be accomplished by MPI testing lab. #### 1.10.5.3 Coating A film or thin layer applied to a base material called a substrate. A coating may be a metal, alloy, paint, or solid/liquid suspensions on various substrates (metals, plastics, wood, paper, leather, cloth, etc.). They may be applied by electrolysis, vapor deposition, vacuum, or mechanical means such as brushing, spraying, calendering, and roller coating. A coating may be applied for aesthetic or protective purposes or both. The term "coating" as used herein includes emulsions, enamels, stains, varnishes, sealers, epoxies, and other coatings, whether used as primer, intermediate, or finish coat. The terms paint and coating are used interchangeably. # 1.10.5.4 DFT or dft Dry film thickness, the film thickness of the fully cured, dry paint or coating. ## 1.10.5.5 DSD Degree of Surface Degradation, the MPI system of defining degree of surface degradation. Five (5) levels are generically defined under the Assessment sections in the MPI Maintenance Repainting Manual. ## 1.10.5.6 EPP Environmentally Preferred Products, a standard for determining environmental preferability in support of Executive Order 13101. #### 1.10.5.7 EXT MPI short term designation for an exterior coating system. #### 1.10.5.8 INT MPI short term designation for an interior coating system. # 1.10.5.9 micron / microns The metric measurement for 0.001 mm or one/one-thousandth of a millimeter. ## 1.10.5.10 mil / mils The English measurement for 0.001 in or one/one-thousandth of an inch, equal to 25.4 microns or 0.0254 mm. #### 1.10.5.11 mm The metric measurement for millimeter, 0.001 meter or one/one-thousandth of a meter. #### 1.10.5.12 MPI Gloss Levels MPI system of defining gloss. Seven (7) gloss levels (G1 to G7) are generically defined under the Evaluation sections of the MPI Manuals. Traditionally, Flat refers to G1/G2, Eggshell refers to G3, Semigloss refers to G5, and G10ss refers to G6. Gloss levels are defined by MPI as follows: | Gloss
Level | Description | Units
@ 60 degrees | Units
@ 85 degrees | |----------------|---------------|-----------------------|-----------------------| | G1 | Matte or Flat | 0 to 5 | 10 max | | G2 | Velvet | 0 to 10 | 10 to 35 | | G3 | Eggshell | 10 to 25 | 10 to 35 | | G4 | Satin | 20 to 35 | 35 min | | G5 | Semi-Gloss | 35 to 70 | | | G6 | Gloss | 70 to 85 | | | G7 | High Gloss | | | Gloss is tested in accordance with ASTM D 523. Historically, the Government has used Flat (G1 / G2), Eggshell (G3), Semi-Gloss (G5), and Gloss (G6). ## 1.10.5.13 MPI System Number The MPI coating system number in each Division found in either the MPI Architectural Painting Specification Manual or the Maintenance Repainting Manual and defined as an exterior (EXT/REX) or interior system (INT/RIN). The Division number follows the CSI Master Format. # 1.10.5.14 Paint See Coating definition. #### 1.10.5.15 REX MPI short term designation for an exterior coating system used in repainting projects or over existing coating systems. ### 1.10.5.16 RIN MPI short term designation for an interior coating system used in repainting projects or over existing coating systems. # PART 2 PRODUCTS ### 2.1 MATERIALS Conform to the coating specifications and standards referenced in PART 3. Submit manufacturer's technical data sheets for specified coatings and solvents. #### PART 3 EXECUTION ## 3.1 PROTECTION OF AREAS AND SPACES NOT TO BE PAINTED Prior to surface preparation and coating applications, remove, mask, or otherwise protect, hardware, hardware accessories, machined surfaces, radiator covers, plates, lighting fixtures, public and private property, and other such items not to be coated that are in contact with surfaces to be coated. Following completion of painting, workmen skilled in the trades involved shall reinstall removed items. Restore surfaces contaminated by coating materials, to original condition and repair damaged items. ## 3.2 RESEALING OF EXISTING EXTERIOR JOINTS3.2.1 Surface Condition Surfaces shall be clean, dry to the touch, and free from frost and moisture; remove grease, oil, wax, lacquer, paint, defective backstop, or other foreign matter that would prevent or impair adhesion. Where adequate grooves have not been provided, clean out to a depth of 1/2 inch and grind to a minimum width of 1/4 inch without damage to adjoining work. Grinding shall not be required on metal surfaces. #### 3.2.2 Backstops In joints more than 1/2 inch deep, install glass fiber roving or neoprene, butyl, polyurethane, or polyethylene foams free of oil or other staining elements as recommended by sealant manufacturer. Backstop material shall be compatible with sealant. Do not use oakum and other types of absorptive materials as backstops. # 3.2.3 Primer and Bond Breaker Install the type recommended by the sealant manufacturer. #### 3.2.4 Ambient Temperature Between 38 degrees F and 95 degrees F when applying sealant. ## 3.3 SURFACE PREPARATION Remove dirt, splinters, loose particles, grease, oil, disintegrated coatings, and other foreign matter and substances deleterious to coating performance as specified for each substrate before application of paint or surface treatments.
Oil and grease shall be removed prior to mechanical cleaning. Cleaning shall be programmed so that dust and other contaminants will not fall on wet, newly painted surfaces. Exposed ferrous metals such as nail heads on or in contact with surfaces to be painted with water-thinned paints, shall be spot-primmed with a suitable corrosion-inhibitive primer capable of preventing flash rusting and compatible with the coating specified for the adjacent areas. # 3.3.1 Additional Requirements for Preparation of Surfaces With Existing Coatings Before application of coatings, perform the following on surfaces covered by soundly-adhered coatings, defined as those which cannot be removed with a putty knife: - a. Wipe previously painted surfaces to receive solvent-based coatings, except stucco and similarly rough surfaces clean with a clean, dry cloth saturated with mineral spirits, ASTM D 235. Allow surface to dry. Wiping shall immediately precede the application of the first coat of any coating, unless specified otherwise. - b. Sand existing glossy surfaces to be painted to reduce gloss. Brush, and wipe clean with a damp cloth to remove dust. - c. The requirements specified are minimum. Comply also with the application instructions of the paint manufacturer. - d. Previously painted surfaces specified to be repainted damaged during construction shall be thoroughly cleaned of all grease, dirt, dust or other foreign matter. - e. Blistering, cracking, flaking and peeling or other deteriorated coatings shall be removed. - f. Chalk shall be removed so that when tested in accordance with ASTM D 4214, the chalk resistance rating is no less than 8. - g. Slick surfaces shall be roughened. Damaged areas such as, but not limited to, nail holes, cracks, chips, and spalls shall be repaired with suitable material to match adjacent undamaged areas. - h. Edges of chipped paint shall be feather edged and sanded smooth. - i. Rusty metal surfaces shall be cleaned as per SSPC requirements. Solvent, mechanical, or chemical cleaning methods shall be used to provide surfaces suitable for painting. - j. New, proposed coatings shall be compatible with existing coatings. # 3.3.2 Removal of Existing Coatings Remove existing coatings from the following surfaces: - a. Surfaces containing large areas of minor defects; - b. Surfaces containing more than 20 percent peeling area; and - c. Surfaces designated by the Contracting Officer, such as surfaces where rust shows through existing coatings. # 3.4 PREPARATION OF METAL SURFACES ## 3.4.1 Existing and New Ferrous Surfaces a. Ferrous Surfaces including Shop-coated Surfaces and Small Areas That Contain Rust, Mill Scale and Other Foreign Substances: Solvent clean or detergent wash in accordance with SSPC SP 1 to remove oil and grease. Where shop coat is missing or damaged, clean according to SSPC SP 2.; Shop-coated ferrous surfaces shall be protected from corrosion by treating and touching up corroded areas immediately upon detection. - b. Surfaces With More Than 20 Percent Rust, Mill Scale, and Other Foreign Substances: Clean entire surface in accordance with SSPC SP 6/ - 3.4.2 Final Ferrous Surface Condition: For tool cleaned surfaces, the requirements are stated in SSPC SP 2 and SSPC SP 3. As a visual reference, cleaned surfaces shall be similar to photographs in SSPC VIS 3. For abrasive blast cleaned surfaces, the requirements are stated in SSPC SP 7, SSPC SP 6, and SSPC SP 10. As a visual reference, cleaned surfaces shall be similar to photographs in SSPC VIS 1. For waterjet cleaned surfaces, the requirements are stated in SSPC SP 12. As a visual reference, cleaned surfaces shall be similar to photographs in SSPC VIS 4. #### 3.4.3 Non-Ferrous Metallic Surfaces Aluminum and aluminum-alloy, lead, copper, and other nonferrous metal surfaces. a. Surface Cleaning: Solvent clean in accordance with SSPC SP 1 and wash with mild non-alkaline detergent to remove dirt and water soluble contaminants. ## 3.4.4 Terne-Coated Metal Surfaces Solvent clean surfaces with mineral spirits, ASTM D 235. Wipe dry with clean, dry cloths. # 3.5 PREPARATION OF CONCRETE AND CEMENTITIOUS SURFACE # 3.5.1 Concrete and Masonry - a. Curing: Concrete, stucco and masonry surfaces shall be allowed to cure at least 30 days before painting, except concrete slab on grade, which shall be allowed to cure 90 days before painting. - b. Surface Cleaning: Remove the following deleterious substances. - (1) Dirt, Chalking, Grease, and Oil: Wash new surfaces with a solution composed of 1/2 cup trisodium phosphate, 1/4 cuphousehold detergent, and 4 quarts of warm water. Then rinse thoroughly with fresh water. For large areas, water blasting may be used. - (2) Fungus and Mold: Wash , existing coated, surfaces with a solution composed of 1/2 cup trisodium phosphate, 1/4 cup household detergent, 1 quart 5 percent sodium hypochlorite solution and 3 quarts of warm water. Rinse thoroughly with fresh water. - (3) Paint and Loose Particles: Remove by wire brushing. - (4) Efflorescence: Remove by scraping or wire brushing followed by washing with a 5 to 10 percent by weight aqueous solution of hydrochloric (muriatic) acid. Do not allow acid to remain on the surface for more than five minutes before rinsing with fresh water. Do not acid clean more than 4 square feet of surface, per workman, at one time. - (5) Removal of Existing Coatings: For surfaces to receive textured coating MPI 42, remove existing coatings including soundly adhered coatings if recommended by textured coating manufacturer. - c. Cosmetic Repair of Minor Defects: Repair or fill mortar joints and minor defects, including but not limited to spalls, in accordance with manufacturer's recommendations and prior to coating application. - d. Allowable Moisture Content: Latex coatings may be applied to damp surfaces, but not to surfaces with droplets of water. Do not apply epoxies to damp vertical surfaces as determined by ASTM D 4263 or horizontal surfaces that exceed 3 lbs of moisture per 1000 square feet in 24 hours as determined by ASTM F 1869. In all cases follow manufacturers recommendations. Allow surfaces to cure a minimum of 30 days before painting. # 3.5.2 Gypsum Board, Plaster, and Stucco - a. Surface Cleaning: Plaster and stucco shall be clean and free from loose matter; gypsum board shall be dry. Remove loose dirt and dust by brushing with a soft brush, rubbing with a dry cloth, or vacuum-cleaning prior to application of the first coat material. A damp cloth or sponge may be used if paint will be water-based. - b. Repair of Minor Defects: Prior to painting, repair joints, cracks, holes, surface irregularities, and other minor defects with patching plaster or spackling compound and sand smooth. - c. Allowable Moisture Content: Latex coatings may be applied to damp surfaces, but not surfaces with droplets of water. Do not apply epoxies to damp surfaces as determined by ASTM D 4263. New plaster to be coated shall have a maximum moisture content of 8 percent, when measured in accordance with ASTM D 4444, Method A, unless otherwise authorized. In addition to moisture content requirements, allow new plaster to age a minimum of 30 days before preparation for painting. #### 3.6 APPLICATION # 3.6.1 Coating Application Painting practices shall comply with applicable federal, state and local laws enacted to insure compliance with Federal Clean Air Standards. Apply coating materials in accordance with SSPC PA 1. SSPC PA 1 methods are applicable to all substrates, except as modified herein. At the time of application, paint shall show no signs of deterioration. Uniform suspension of pigments shall be maintained during application. Unless otherwise specified or recommended by the paint manufacturer, paint may be applied by brush, roller, or spray. Rollers for applying paints and enamels shall be of a type designed for the coating to be applied and the surface to be coated. Paints, except water-thinned types, shall be applied only to surfaces that are completely free of moisture as determined by sight or touch. Thoroughly work coating materials into joints, crevices, and open spaces. Special attention shall be given to insure that all edges, corners, crevices, welds, and rivets receive a film thickness equal to that of adjacent painted surfaces. Each coat of paint shall be applied so dry film shall be of uniform thickness and free from runs, drops, ridges, waves, pinholes or other voids, laps, brush marks, and variations in color, texture, and finish. Hiding shall be complete. Touch up damaged coatings before applying subsequent coats. Interior areas shall be broom clean and dust free before and during the application of coating material. Apply paint to new fire extinguishing sprinkler systems including valves, piping, conduit, hangers, supports, miscellaneous metal work, and accessories. Shield sprinkler heads with protective coverings while painting is in progress. Remove sprinkler heads which have been painted and replace with new sprinkler heads. For piping in unfinished spaces, provide primed surfaces with one coat of red alkyd gloss enamel to a minimum dry film thickness of 1.0 mil. Unfinished spaces include attic spaces, spaces above suspended ceilings, crawl spaces, pipe chases, mechanical equipment room, and space where walls or ceiling are not painted or not constructed of a prefinished material. For piping in finished areas, provide prime surfaces with two coats of paint to match adjacent surfaces, except provide valves and operating accessories with one coat of red alkyd gloss enamel. Upon completion of painting, remove protective covering from sprinkler heads. - a. Drying Time: Allow time between coats, as recommended by the coating manufacturer, to permit thorough drying, but not to present topcoat adhesion problems. Provide each coat in specified condition to receive next coat. - b. Primers, and Intermediate Coats: Do not allow primers or intermediate coats to dry more than 30 days, or
longer than recommended by manufacturer, before applying subsequent coats. Follow manufacturer's recommendations for surface preparation if primers or intermediate coats are allowed to dry longer than recommended by manufacturers of subsequent coatings. Each coat shall cover surface of preceding coat or surface completely, and there shall be a visually perceptible difference in shades of successive coats. - c. Finished Surfaces: Provide finished surfaces free from runs, drops, ridges, waves, laps, brush marks, and variations in colors. ## 3.6.2 Mixing and Thinning of Paints Reduce paints to proper consistency by adding fresh paint, except when thinning is mandatory to suit surface, temperature, weather conditions, application methods, or for the type of paint being used. Obtain written permission from the Contracting Officer to use thinners. The written permission shall include quantities and types of thinners to use. When thinning is allowed, paints shall be thinned immediately prior to application with not more than 0.125 L of suitable thinner per liter. The use of thinner shall not relieve the Contractor from obtaining complete hiding, full film thickness, or required gloss. Thinning shall not cause the paint to exceed limits on volatile organic compounds. Paints of different manufacturers shall not be mixed. ## 3.6.3 Two-Component Systems Two-component systems shall be mixed in accordance with manufacturer's instructions. Any thinning of the first coat to ensure proper penetration and sealing shall be as recommended by the manufacturer for each type of substrate. # 3.6.4 Coating Systems - a. Systems by Substrates: Apply coatings that conform to the respective specifications listed in the following Tables: - b. Minimum Dry Film Thickness (DFT): Apply paints, primers, varnishes, enamels, undercoats, and other coatings to a minimum dry film thickness of 1.5 mil each coat unless specified otherwise in the Tables. Coating thickness where specified, refers to the minimum dry film thickness. - c. Coatings for Surfaces Not Specified Otherwise: Coat surfaces which have not been specified, the same as surfaces having similar conditions of exposure. - d. Existing Surfaces Damaged During Performance of the Work, Including New Patches In Existing Surfaces: Coat surfaces with the following: - (1) One coat of primer. - (2) One coat of undercoat or intermediate coat. - (3) One topcoat to match adjacent surfaces. - e. Existing Coated Surfaces To Be Painted: Apply coatings conforming to the respective specifications listed in the Tables herein, except that pretreatments, sealers and fillers need not be provided on surfaces where existing coatings are soundly adhered and in good condition. Do not omit undercoats or primers. # 3.7 COATING SYSTEMS FOR METAL Apply coatings of Tables in Division 5 for Exterior and Interior. - a. Apply specified ferrous metal primer on the same day that surface is cleaned, to surfaces that meet all specified surface preparation requirements at time of application. - b. Inaccessible Surfaces: Prior to erection, use one coat of specified primer on metal surfaces that will be inaccessible after erection. - c. Shop-primed Surfaces: Touch up exposed substrates and damaged coatings to protect from rusting prior to applying field primer. - e. Pipes and Tubing: The semitransparent film applied to some pipes and tubing at the mill is not to be considered a shop coat, but shall be overcoated with the specified ferrous-metal primer prior to application of finish coats. - f. Exposed Nails, Screws, Fasteners, and Miscellaneous Ferrous Surfaces. On surfaces to be coated with water thinned coatings, spot prime exposed nails and other ferrous metal with latex primer MPI 107. ## 3.8 COATING SYSTEMS FOR WOOD AND PLYWOOD - a. Apply coatings of Tables in Division 6 for Exterior and Interior. - b. Prior to erection, apply two coats of specified primer to treat and prime wood and plywood surfaces which will be inaccessible after erection. #### 3.9 PIPING IDENTIFICATION Piping Identification, Including Surfaces In Concealed Spaces: Provide in accordance with MIL-STD-101ANSI A13.1. Place stenciling in clearly visible locations. On piping not covered by MIL-STD-101ANSI A13.1, stencil approved names or code letters, in letters a minimum of 1/2 inch high for piping and a minimum of 2 inches high elsewhere. Stencil arrow-shaped markings on piping to indicate direction of flow using black stencil paint. ## 3.10 INSPECTION AND ACCEPTANCE In addition to meeting previously specified requirements, demonstrate mobility of moving components, including swinging and sliding doors, cabinets, and windows with operable sash, for inspection by the Contracting Officer. Perform this demonstration after appropriate curing and drying times of coatings have elapsed and prior to invoicing for final payment. #### 3.11 PAINT TABLES All DFT's are minimum values. # 3.11.1 EXTERIOR PAINT TABLES DIVISION 4: EXTERIOR CONCRETE MASONRY UNITS PAINT TABLE - A. Newand Existing concrete masonry on uncoated surface: - 1. Latex New; MPI EXT 4.2A-G6 (Gloss) / Existing; MPI REX 4.2A-G6 (Gloss) Block Filler: Primer: Intermediate: Topcoat: MPI 4 N/A MPI 119 MPI 119 System DFT: 11 mils Topcoat: Coating to match adjacent surfaces. DIVISION 5: EXTERIOR METAL, FERROUS AND NON-FERROUS PAINT TABLE ## STEEL / FERROUS SURFACES - A. New Steel that has been hand or power tool cleaned to SSPC SP 2 or SSPC SP 3 $\,$ - 1. Alkyd New; MPI EXT 5.1Q-G5 (Semigloss) Existing; MPI REX 5.1D-G5 Primer: Intermediate: Topcoat: MPI 23 MPI 94 MPI 94 System DFT: 5.25 mils - B. New Steel that has been blast-cleaned to SSPC SP 6: - 2. Alkyd New; MPI EXT 5.1D-G5 (Semigloss) / Existing; MPI REX 5.1D-G5 Primer: Intermediate: Topcoat: MPI 79 MPI 94 MPI 94 System DFT: 5.25 mils - C. Existing steel that has been spot-blasted to SSPC SP 6: - 1. Surface previously coated with alkyd or latex: Waterborne Light Industrial Coating MPI REX 5.1C-G5 (Semigloss) Spot Primer: Intermediate: Topcoat: MPI 79 MPI 110-G5 MPI 110-G5 System DFT: 5 mils - D. New steel blast cleaned to SSPC SP 10: - 1. Waterborne Light Industrial MPI EXT 5.1R-G5 (Semigloss) Primer: Intermediate: Topcoat: MPI 101 MPI 108 MPI 110-G5 System DFT: 8.5 mils # EXTERIOR SURFACES, OTHER METALS (NON-FERROUS) - I. Aluminum, aluminum alloy and other miscellaneous non-ferrous metal items not otherwise specified except hot metal surfaces, roof surfaces, and new prefinished equipment. Match surrounding finish: - 1. Alkyd MPI EXT 5.4F-G5 (Semigloss) Primer: Intermediate: Topcoat: MPI 95 MPI 94 MPI 94 System DFT: 5 mils #### 3.11.2 INTERIOR PAINT TABLES DIVISION 5: INTERIOR METAL, FERROUS AND NON-FERROUS PAINT TABLE INTERIOR STEEL / FERROUS SURFACES A. Metal, Mechanical, Electrical, Fire extinguishing sprinkler systems including valves, conduit, hangers, supports, Surfaces adjacent to painted surfaces (Match surrounding finish), not otherwise specified except floors, hot metal surfaces, and new prefinished equipment: 2. Alkyd MPI INT 5.1E-G2 (Flat) Primer: Intermediate: Topcoat: MPI 79 MPI 49 MPI 49 - System DFT: 5.25 mils - E. Miscellaneous non-ferrous metal items not otherwise specified except floors, hot metal surfaces, and new prefinished equipment. Match surrounding finish: - 2. Alkyd MPI INT 5.4J-G2 (Flat) Primer: Intermediate: Topcoat: MPI 95 MPI 49 MPI 49 System DFT: 5 mils ______ MPI INT 5.4J-G5 (Semigloss) Primer: Intermediate: Topcoat: MPI 95 MPI 47 MPI 47 System DFT: 5 mils - F. Hot metal surfaces subject to temperatures up to 205 degrees C (400 degrees F): - 1. Heat Resistant Enamel MPI INT 5.2A Primer: Intermediate: Topcoat: MPI 21 Surface preparation and number of coats per manufacturer's instructions. System DFT: Per Manufacturer - G. Ferrous metal subject to high temperature, up to 400 degrees C (750 degrees F): - 1. Inorganic Zinc Rich Coating MPI INT 5.2C Primer: Intermediate: Topcoat: INTERIOR STEEL / FERROUS SURFACES MPI 19 Surface preparation and number of coats per manufacturer's instructions. System DFT: Per Manufacturer DIVISION 6: INTERIOR WOOD PAINT TABLE - A. New Wood and plywood not otherwise specified: - 2. Alkyd MPI INT 6.4B-G3 (Eggshell) Primer: Intermediate: Topcoat: MPI 45 MPI 51 MPI 51 System DFT: 4.5 mils MPI INT 6.4B-G5 (Semigloss) Primer: Intermediate: Topcoat: MPI 45 MPI 47 MPI 47 System DFT: 4.5 mils - F. New wood surfaces in toilets, not otherwise specified.: - 3. Alkyd MPI INT 6.3B-G5 (Semigloss) Primer: Intermediate: Topcoat: MPI 45 MPI 47 MPI 47 System DFT: 4.5 mils - I. New Wood Doors; Pigmented finish: - 1. Alkyd New; MPI INT 6.3B-G5 (Semigloss) Primer: Intermediat Topcoat: MPI 45 MPI 47 MPI 47 System DFT: 4.5 mils DIVISION 9: INTERIOR PLASTER, GYPSUM BOARD, TEXTURED SURFACES PAINT TABLE - A. NewWallboard not otherwise specified: - 1. Latex New; MPI INT 9.2A-G2 (Flat) / Existing; RIN 9.2A-G2 (Flat) Primer: Intermediate Topcoat: MPI 50 MPI 44 MPI 44 System DFT: 4 mils B. New Wallboard in toiletsand other high humidity areas not otherwise specified.: DIVISION 9: INTERIOR PLASTER, GYPSUM BOARD, TEXTURED SURFACES PAINT TABLE 2. Alkyd New; MPI INT 9.2C-G5 (Semigloss) / Existing; MPI RIN 9.2C-G5 (Semigloss) Primer: Intermediate: Topcoat: MPI 50 MPI 47 MPI 47 System DFT: 4 mils SECTION 09915 # COLOR SCHEDULE 06/93 ## PART 1 GENERAL #### 1.1 GENERAL This section covers only the color of the exterior and interior materials and products that are exposed to view in the finished construction. The word "color" as used herein includes surface color and pattern. Requirements for quality and method of installation are covered in other appropriate sections of the specifications. Specific locations where the various materials are required are shown on the drawings. Items not designated for color in this section may be specified in other sections. When color is not designated for items, the Contractor shall propose a color for approval. #### 1.2 SUBMITTALS Government approval is required for submittals with a "G"
designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: ## SD-04 Samples Color Schedule; Two sets of color boards, 120 days after the Contractor is given Notice to proceed, complying with the following requirements: - a. Color boards shall reflect all actual finish textures, patterns, and colors required for this contract. - b. Materials shall be labeled with the finish type, manufacturer's name, pattern, and color reference. - c. Samples shall be on size A4 or 8-1/2 by 11 inch boards with a maximum spread of size A1 or 25-1/2 by 33 inches for foldouts. - d. Samples for this color board are required in addition to samples requested in other specification sections. - e. Color boards shall be submitted to the Contracting Officer_. # PART 2 PRODUCTS # 2.1 REFERENCE TO MANUFACTURER'S COLOR Where color is shown as being specific to one manufacturer, an equivalent color by another manufacturer may be submitted for approval. Manufacturers and materials specified are not intended to limit the selection of equal colors from other manufacturers. #### 2.2 COLOR SCHEDULE The color schedule lists the colors, patterns and textures required for exterior and interior finishes, including both factory applied and field applied colors. Colors will be selected bt Architect ## 2.2.1 Exterior Walls Exterior wall colors shall apply to exterior wall surfaces including recesses at entrances and projecting vestibules. Conduit shall be painted to closely match the adjacent surface color. Wall color shall be provided to match the colors listed below. - b. Mortar: Manufacture: Mapei, Color Blanc. - c. Paint: To match Architects sample. ## 2.2.2 Exterior Trim Exterior trim shall be provided to match the colors listed below. - a. Doors and Door Frames: To match Architects sample. - e. Downspouts, Gutter, Louvers, and Flashings: To match Architects sample. - f. Handrails: To match Architects sample. - j. Caulking and Sealants: To match Architects sample. #### 2.2.3 Exterior Roof Roof color shall apply to exterior roof surfaces including sheet metal flashings and copings, mechanical units, roof trim, pipes, conduits, electrical appurtenances, and similar items. Roof color shall be provided to match the colors listed below. ## 2.2.4 Interior Floor Finishes Flooring materials shall be provided to match the colors listed below. - a. Carpet: Masland: Pattern Passage, 7411, color 14109 Erie. - c. Vinyl Composition Tile: Armstrong 51915 Charcoal. - h. Ceramic Tile: Daltile, Keysbries DK37 White Granite. - j. Grout: Mapei, Color Blanc. - m. Static Dissipative Tile: MR 15-Orchid. ## 2.2.5 Interior Base Finishes Base materials shall be provided to match the colors listed below. - a. Resilient Base and Edge Strips: Flexco, WF 058 Blue Shadow. - c. Ceramic Tile: Daltile: Keystone White Granite DK-37. - e. Grout: Mapei -00 Blanc. #### 2.2.6 Interior Wall Finishes Interior wall color shall apply to the entire wall surface, including reveals, vertical furred spaces, grilles, diffusers, electrical and access panels, and piping and conduit adjacent to wall surfaces unless otherwise specified. Items not specified in other paragraphs shall be painted to match adjacent wall surface. Wall materials shall be provided to match the colors listed below. - a. Paint: Benjamin Moore: 0c57 White Heron, Flat. - d. Ceramic Tile: Daltile: Keybries white granite DK37. - e. Ceramic Tile Grout: Mapei 00 Blanc. ## 2.2.7 Interior Ceiling Finishes Ceiling colors shall apply to ceiling surfaces including soffits, furred down areas, grilles, diffusers, registers, and access panels. Ceiling color shall also apply to joist, underside of roof deck, and conduit and piping where joists and deck are exposed and required to be painted. Ceiling materials shall be provided to match the colors listed below. - a. Acoustical Tile and Grid: white. - b. Paint: Benjamin Moore: 0c57 White Heron, Flat . ## 2.2.8 Interior Trim Interior trim shall be provided to match the colors listed below. - a. Doors: Benjamin Moore: OC 56 Moonshine (semi gloss). - b. Door Frames: Benjamin Moore: OC 56 Moonshine (semi gloss). # 2.2.9 Interior Window Treatment Window treatments shall be provided to match the colors listed below. ## 2.2.10 Interior Miscellaneous Miscellaneous items shall be provided to match the colors listed below. - a. Toilet Partitions and Urinal Screen: To be selected by architect from submitted samples. - b. Plastic Laminate: Nevamar: Platinum Gray Texture "A" 5-6-237; Nevamar: Charcoal Matrix Textured MR6-2T. - c. Signage Message Color (excluding handicapped signage): Dark Blue. - d. Signage Background Color (excluding handicapped signage): Light Gray. - h. Wall Switch Handles and Standard Receptacle Bodies: White. - i. Electrical Device Cover Plates and Panels: White. - j. Solid Surface (Restroom): Fountainhead FM-2-15 Arabian Sand. # PART 3 EXECUTION (Not Applicable) ## SECTION 10160A # TOILET PARTITIONS 07/98 # PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ## U.S. GENERAL SERVICES ADMINISTRATION (GSA) CID A-A-60003 (Basic) Partitions, Toilet, Complete #### 1.2 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: ## SD-02 Shop Drawings Approved Detail Drawings; Drawings showing plans, elevations, details of construction, hardware, reinforcing, fittings, mountings, and anchorings. SD-03 Product Data Manufacturer's technical data and catalog cuts including installation and cleaning instructions. SD-04 Samples Manufacturer's standard color charts and color samples. ## 1.3 SYSTEM DESCRIPTION Toilet partition system, including toilet enclosures, room entrance screens, and urinal screens, shall be a complete and usable system of panels, hardware, and support components. The partition system shall be provided by a single manufacturer and shall be a standard product as shown in the most recent catalog data. The partition system shall be as shown on the approved detail drawings. ## 1.4 DELIVERY, STORAGE, AND HANDLING Components shall be delivered to the jobsite in the manufacturer's original packaging with the brand, item identification, and project reference clearly marked. Components shall be stored in a dry location that is adequately ventilated; free from dust, water, or other contaminants; and shall have easy access for inspection and handling. ## 1.5 WARRANTY Manufacturer's standard performance guarantees or warranties that extend beyond a 1 year period shall be provided. ## PART 2 PRODUCTS #### 2.1 TOILET ENCLOSURES Toilet enclosures shall conform to CID A-A-60003, Type I, Style A, floor supported. Width, length, and height of toilet enclosures shall be as shown. Panels indicated to receive toilet paper holders or grab bars as specified in Section 10800A TOILET ACCESSORIES, shall be prepared for mounting of the items required. Grab bars shall withstand a bending stress, shear stress, shear force, and a tensile force induced by 250 lbf. Grab bars shall not rotate within their fittings. ## 2.2 URINAL SCREENS Urinal screens shall conform to CID A-A-60003, Type III, Style A, floor supported . Material of screens shall be Solid Plasticp. Width and height of urinal screens shall be as shown. ## 2.3 HARDWARE Hardware for the toilet partition system shall conform to CID A-A-60003 for the specified type and style of partitions. Hardware finish shall be highly resistant to alkalies, urine, and other common toilet room acids. ## 2.4 COLORS Color of finishes for toilet partition system components shall be manufacturer's standard as specified in Section 09915 COLOR SCHEDULE. # PART 3 EXECUTION # 3.1 INSTALLATION Toilet partitions shall be installed straight and plumb in accordance with approved manufacturer's instructions with horizontal lines level and rigidly anchored to the supporting construction. Where indicated, anchorage to walls shall be by toggle-bolting. Drilling and cutting for installation of anchors shall be at locations that will be concealed in the finished work. # 3.2 ADJUSTING AND CLEANING Doors shall have a uniform vertical edge clearance of approximately 3/16 inch and shall rest open at approximately 30 degrees when unlatched. Baked enamel finish shall be touched up with the same color of paint that was used for the finish. Toilet partitions shall be cleaned in accordance with approved manufacturer's instructions and shall be protected from damage until accepted. ## SECTION 10270A # RAISED FLOOR SYSTEM 01/97 ## PART 1 GENERAL ## 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. CEILINGS & INTERIOR SYSTEMS CONSTRUCTION ASSOCIATION (CISCA) CISCA Access Floors (1987) Recommended Test Procedures for Access Floors INTERNATIONAL CONFERENCE OF BUILDING OFFICIALS (ICBO) ICBO Building Code (1997) Uniform Building Code (3 Vol.) NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA) NEMA LD 3 (1995) High-Pressure Decorative Laminates NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) NFPA 75 (1999) Protection of Electronic Computer/Data Processing Equipment NFPA 99 (1999) Health Care Facilities U.S. GENERAL SERVICES ADMINISTRATION (GSA) FS SS-T-312 (Rev B; Int Am 1; Notice 2; Canc. Notice 2) Tile, Floor: Asphalt, Rubber, Vinyl, and Vinyl Composition UNDERWRITERS LABORATORIES (UL) UL 779
(1995; Rev thru Jan 1997) Electrically Conductive Floorings ## 1.2 SYSTEM DESCRIPTION Raised flooring shall be installed at the location and elevation and in the arrangement shown on the drawings. The floor system shall be of the stringer type, complete with all supplemental items, and shall be the standard product of a manufacturer specializing in the manufacture of raised floor systems. ## 1.2.1 Floor Panels Floor panel testing shall be conducted in accordance with CISCA Access Floors. When tested as specified, all deflection and deformation measurements shall be made at the point of load application on the top surface of the panel. Floor panels shall be capable of supporting 1250 concentrated load without deflecting more than 0.080 inch and without permanent deformation in excess of 0.010 inch in any of the specified tests. Floor panels shall be capable of supporting 300 pounds per square foot uniform live load without deflection more than 0.040 inch. Floor panels shall be capable of supporting 775 pounds rolling load without deflecting more than 0.040 inch and without permanent deformation in excess of 0.020 inch. In accordance with CISCA Access Floors, the permanent deformation limit under rolling load shall be satisfied in all of the specified tests. In the specified tests, the permanent deformation shall be measured after 10 passes with Wheel 1 and after 10,000 passes with Wheel 2. # 1.2.2 Stringers Stringers shall be capable of supporting a 250 poundconcentrated load at midspan without permanent deformation in excess of 0.010 inch. ## 1.2.3 Pedestals Pedestals shall be capable of supporting a 5000 poundaxial load without permanent deformation. ## 1.2.4 Pedestal Adhesive Adhesive shall be capable of securing a pedestal in place with sufficient bonding strength to resist an overturning force of 1000 inch pounds. # 1.2.5 Bond Strength of Factory Installed Floor Covering Bond strength of floor covering shall be sufficient to permit handling of the panels by use of the panel lifting device, and to withstand moving caster loads up to 1000 pounds, without separation of the covering from the panel. # 1.2.6 Grounding The raised floor system shall be grounded for safety hazard and static suppression. The structure should be referenced to ground by two pahts having 20% different electrical length. ## 1.3 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: ## SD-02 Shop Drawings Raised Floor System; Drawings showing layout of the work, sizes and details of components, details at floor perimeter, bracing to resist seismic or other lateral loads, typical cutout details including size and shape limitation, method of grounding, description of shop coating, and installation height above structural floor. ## SD-03 Product Data Raised Floor System; Manufacturer's descriptive data, catalog cuts, and installation instructions. The data shall include information about any design and production techniques, procedures and policies used to conserve energy, reduce material, improve waste management or incorporate green building/recycled products into the manufacturer of their components or products. Cleaning and maintenance instructions shall be included. Design calculations which demonstrate that the proposed floor system meets requirements for seismic loading, prepared in accordance with subparagraph Underfloor Bracing under paragraph PANEL SUPPORT SYSTEM and ICBO Building Code. Certified copies of test reports may be submitted in lieu of calculations. ## SD-06 Test Reports Tests; Testing of Electrical Resistance; Certified copies of test reports from an approved testing laboratory, attesting that the proposed floor system components meet the performance requirements specified. ## SD-07 Certificates Raised Floor System; Certificate of compliance attesting that the raised floor system meets specification requirements. # 1.4 DELIVERY, STORAGE, AND HANDLING Materials shall be stored in original protective packaging in a safe, dry, and clean location and shall be handled in a manner to prevent damage. Panels shall be stored at temperatures between 40 and 90 degrees F, and between 20 percent and 70 percent humidity. ## 1.5 EXTRA MATERIALS Spare floor panels, spare complete pedestal assemblies, and spare stringers shall be furnished at the rate of one space for each 100 or fraction thereof required. # 1.6 OPERATION AND MAINTENANCE MANUALS Provide maintenance instructions for proper care of the floor panel surface. When conductive flooring is specified, require submittal of maintenance instructions to identify special cleaning and maintenance requirements to maintain "conductivity" properties of the panel finish. PART 2 PRODUCTS ## 2.1 Raised Floor SystemFLOOR PANELS ## 2.1.1 Panel Construction Except for edge panels, panel size shall be 24 by 24 inches. Finished panels shall be within a 0.010 inch tolerance of the nominal size, and shall be square within a tolerance of 0.015 inch measured corner-to-corner. The top surface of panels shall be flat within a 0.020 inchtolerance measured corner-to-corner. Panels shall be permanently marked to indicate load rating and model number. ## 2.1.1.1 Metal-Clad Cementitious Fill Panel (Composite Panels) Composite panels shall be of die-formed steel construction totally enclosing the panel, including the top surface. The void spaces between the top sheet and the formed steel bottom sheet shall be completely filled with an incombustible cementitious or concrete material. ## 2.1.2 Floor Covering2.1.2.1 Conductive Surfacing Conductive surfacing shall conform to NEMA LD 3, Grade HW 62. The total system electrical resistivity from the wearing surface of the floor to the ground connection shall be between 25,000 ohms and 1,000,000 ohms. ## 2.1.2.2 Conductive High Pressure Laminate Conductive high pressure laminate floor surfacing shall conform to FS SS-T-312, Type III, Vinyl Tile and UL 779. The total system electrical resistivity from the wearing surface of the floor to the ground connection shall be between 25,000 ohms and 1,000,000 ohms. # 2.1.3 Edge Strip Panels shall be edged with extruded vinyl edge strips secured in place with mechanical interlock or adhesive bond, or shall be of a replaceable type. Top of strip shall be approximately 1/8 inch wide, and shall be flush with the floor surfacing. #### 2.1.4 Accessories Registers, grilles, perforated panels, and plenum dividers shall be provided where indicated, and shall be the manufacturer's standard type. Registers, grilles, and perforated panels shall be designed to support the same static loads as floor panels without structural failure, and shall be capable of delivering the air volumes indicated. Registers and perforated panels shall be 25 percent open area and shall be equipped with adjustable dampers. # 2.1.5 Resilient Base Base shall be manufacturers standard rubber . Base shall be inches high and a minimum 1/8 inch thick. Job Formed corners shall be furnished. # 2.1.6 Lifting Device Each individual room shall be provided with one floor panel lifting device standard with the floor manufacturer. A minimum of two devices shall be furnished. # 2.2 PANEL SUPPORT SYSTEM #### 2.2.1 Pedestals Pedestals shall be of steel . Ferrous materials shall have a factory-applied corrosion-resistant finish. Pedestal base plates shall provide a minimum of 16 square inches of bearing surface and shall be a minimum of 1/8 inch thick. Pedestal shafts shall be threaded to permit height adjustment within a range of approximately 2 inches, to permit overall floor adjustment within plus or minus 0.10 inch of the required elevation, and to permit leveling of the finished floor surface within 0.062 inch in 10 feet in all directions. Locking devices shall be provided to positively lock the final pedestal vertical adjustments in place. Pedestal caps shall interlock with panelsstringers to preclude tilting or rocking of the panels. # 2.2.2 Stringers Stringers shall be of rolled steel , and shall interlock with the pedestal heads to prevent lateral movement. Stringers shall support each panel edge and have bolted connections. They shall be rigidly connected to pedestals with one machine screw for each 300mm of length. The strigers shall be attached to the pedestal heads by single pitch machine screws having at least three turns of engagement. The screws should be installed with torque equal to electrical connection screws of similar threading ## 2.3 TESTS Raised flooring shall be factory tested by an independent laboratory at the same position and maximum design elevation and in the same arrangement as shown on the drawings for installation so as to duplicate service conditions as much as possible. ## 2.3.1 Load Tests Floor panel, stringer, and pedestal testing shall be conducted in accordance with CISCA Access Floors. # 2.4 Test for Bond Strength of Factory Installed Floor Covering The test panel shall be supported on pedestals and stringers as specified for the installed floor. The supports shall be braced as necessary to prevent sideways movement during the test. A test load of 1000 pounds shall be imposed on the test assembly through a hard plastic caster 3 inches in diameter and 1 inchwide. The caster shall be rolled completely across the center of the panel. The panel shall withstand 20 passes of the caster with no delamination or separation of the covering. # 2.5 COLOR Color shall be in accordance with Section 09915 COLOR SCHEDULE. # PART 3 EXECUTION ## 3.1 INSTALLATION The floor system shall be installed in accordance with the manufacturer's instructions and with the approved detail drawings. Open ends of the floor, where the floor system does not abut
wall or other construction, shall have positive anchorage and rigid support. Areas to receive raised flooring shall be maintained between 60 and 90 degrees F, and between 20 percent and 70 percent humidity for 24 hours prior to and during installation. # 3.1.1 Preparation for Installation The area in which the floor system is to be installed shall be cleared of all debris. Structural floor surfaces shall be thoroughly cleaned and all dust shall be removed. Floor coatings required for dust or vapor control shall be installed prior to installation of pedestals only if the pedestal adhesive will not damage the coating. If the coating and adhesive are not compatible, the coating shall be applied after the pedestals have been installed and the adhesive has cured. ## 3.1.2 Pedestals Pedestals shall be accurately spaced, and shall be set plumb and in true alignment. Base plates shall be in full and firm contact with the structural floor, and shall be secured to the structural floor with adhesiveplus steel expansion anchors. ## 3.1.3 Stringers Stringers shall be interlocked using machine screws with the pedestal caps to preclude lateral movement, and shall be spaced uniformly in parallel lines at the indicated elevation. # 3.1.4 Auxiliary Framing Auxiliary framing or pedestals shall be provided around columns and other permanent construction, at sides of ramps, at open ends of the floor, and beneath panels that are substantially cut to accommodate utility systems. Special framing for additional lateral support shall be as shown on the approved detail drawings. ## 3.1.5 Panels The panels shall be interlocked with supports in a manner that will preclude lateral movement. Perimeter panels, cutout panels, and panels adjoining columns, stairs, and ramps must be fastened to the supporting components to form a rigid boundary for the interior panels. Floors shall be level within 1/16 inch measured with a 10 foot straightedge in all directions. Cut edges of steel panels shall be painted as recommended by the panel manufacturer. Cut edges of composite panels shall be coated with a silicone rubber sealant or with an adhesive recommended by the panel manufacturer. Extruded vinyl edging shall be secured in place at all cut edges of all panel cut-outs to prevent abrasion of cables. Where the space below the floor is a plenum, cutouts for conduit and similar penetrations shall be closed using self-extinguishing sponge rubber. # 3.1.6 Resilient Base Base shall be provided at vertical wall intersections. Cracks and voids in walls and other vertical surfaces to receive base shall be filled with an approved filler. The base shall be applied after the floor system has been completely installed. Base shall be applied with adhesive in accordance with the manufacturer's recommendations. ## 3.1.7 Repair of Zinc Coating Zinc coating that has been damaged, and cut edges of zinc-coated components and accessories, shall be repaired by the application of a galvanizing repair paint. Areas to be repaired shall be thoroughly cleaned prior to application of the paint. ## 3.2 TESTING OF ELECTRICAL RESISTANCE Testing of electrical resistance in the completed installation shall be conducted in the presence of the Contracting Officer. Testing shall be in accordance with NFPA 99 modified by placing one electrode on the center of the panel surface and connecting the other electrode to the metal flooring support. Measurements shall be made at five or more locations. Each measurement shall be the average of five readings of 15 seconds duration at each location. During the tests, relative humidity shall be 45 to 55 percent and temperature shall be 69 to 75 degrees F. The panels used in the testing will be selected at random and will include two panels most distant from the ground connection. Electrical resistance shall be measured with instruments that are accurate within 2 percent and that have been calibrated within 60 days prior to the performance of the resistance tests. The metal-to-metal resistance from panel to supporting pedestal shall not exceed 10 ohms. The resistance between the wearing surface of the floor covering and the ground connection, as measured on the completed installation, shall be in accordance with paragraph FLOOR COVERING. ## 3.3 CLEANING AND PROTECTION # 3.3.1 Cleaning The space below the completed floor shall be free of all debris. Before any traffic or other work on the completed raised floor is started, the completed floor shall be cleaned in accordance with the floor covering manufacturer's instructions. # 3.3.2 Protection Traffic areas of raised floor systems shall be protected with a covering of building paper, fiberboard, or other suitable material to prevent damage to the surface. Cutouts shall be covered with material of sufficient strength to support the loads to be encountered. Plywood or similar material shall be placed on the floor to serve as runways for installation of heavy equipment. Protection shall be maintained until the raised floor system is accepted. ## 3.4 FIRE SAFETY An automatic detection system shall be installed below the raised floor meeting the requirements of NFPA 75 paragraph 5-2.1 and shall sound an audible and visual alarm. Air space below the raised floor shall be subdivided into areas not exceeding 10,000 square feet by tight, noncombustible bulkheads. All penetrations for piping and cables shall be sealed to maintain bulkhead properties. ## SECTION 10440A # INTERIOR SIGNAGE 06/01 # PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) ANSI Z97.1 (1984; R 1994) Safety Performance Specifications and Methods of Test for Safety Glazing Materials Used in Buildings #### 1.2 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: # SD-02 Shop Drawings Detail Drawings; Drawings showing elevations of each type of sign, dimensions, details and methods of mounting or anchoring, shape and thickness of materials, and details of construction. A schedule showing the location, each sign type, and message shall be included. # SD-03 Product Data Installation; manufacturer's instructions Protection and Cleaning Manufacturer's descriptive data, catalogs cuts, installation and cleaning instructions. # SD-04 Samples Interior Signage; One sample of each of the following sign types showing typical quality and workmanship. The samples may be installed in the work, provided each sample is identified and location recorded. - b. Door identification sign. - c. ADA Restroom Sign. Two samples of manufacturer's standard color chips for each material requiring color selection. ## 1.3 GENERAL Interior signage shall be of the design, detail, sizes, types, and message content shown on the drawings, shall conform to the requirements specified, and shall be provided at the locations indicated. Signs shall be complete with lettering, framing as detailed, and related components for a complete installation. Recyclable materials shall conform to EPA requirements in accordance with Section 01670 RECYCLED / RECOVERED MATERIALS. # 1.3.1 Character Proportions and Heights Letters and numbers on indicated signs in handicapped-accessible buildings, which do not designate permanent rooms or spaces, shall have a width-to-height ratio between 3:5 and 1:1 and a stroke-width-to-height ratio between 1:5 and 1:10. Characters and numbers on indicated signs shall be sized according to the viewing distance from which they are to be read. The minimum height is measured using an upper case letter "X". Lower case characters are permitted. Suspended or projected overhead signs shall have a minimum character height of 3 inches. ## 1.3.2 Raised and Brailled Characters and Pictorial Symbol Signs (Pictograms) Letters and numbers on indicated signs which designate permanent rooms and spaces in handicapped-accessible buildings shall be raised 1/32 inch upper case, sans serif or simple serif type and shall be accompanied with Grade 2 Braille. Raised characters shall be at least 5/8 inch in height, but no higher than 2 inches. Pictograms shall be accompanied by the equivalent verbal description placed directly below the pictogram. The border dimension of the pictogram shall be 6 inches minimum in height. Indicated accessible facilities shall use the international symbol of accessibility. # 1.4 QUALIFICATIONS Signs, plaques, and dimensional letters shall be the standard product of a manufacturer regularly engaged in the manufacture of such products and shall essentially duplicate signs that have been in satisfactory use at least 2 years prior to bid opening. # 1.5 DELIVERY AND STORAGE Materials shall be delivered to the jobsite in manufacturer's original packaging and stored in a clean, dry area in accordance with manufacturer's instructions. # 1.6 EXTRA STOCK The Contractor shall provide __10_ extra frames and extra stock of the following: _10__ blank plates of each color and size for sign types 20 pressure-sensitive letters in each color and size for all signs _25 changeable message strips for sign type A and B. # PART 2 PRODUCTS ## 2.1 ROOM IDENTIFICATION/DIRECTIONAL SIGNAGE SYSTEM Signs shall be fabricated of acrylic plastic conforming to ANSI Z97.1 . ## 2.1.1 Standard Room Signs Signs shall consist of gloss finish acrylic plastic Units shall be frameless. Corners of signs shall be squared. # 2.1.2 Changeable Message Strip Signs Changeable message strip signs shall consist of cast acrylic plastic captive messageslider sign face with message slots and associated end caps, as
detailed, for insertion of changeable message strips. Size of signs shall be as shown on the drawings. Individual message strips to permit removal, change, and reinsertion shall be provided as detailed. Corners of signs shall be squared. ## 2.1.3 Type of Mounting For Signs Surface mounted signs shall be provided with 1/16 inch thick vinyl foam tape. Sign inserts shall be provided with 1/16 inch thick foam tape. ## 2.1.4 Graphics Signage graphics for modular identification signs shall conform to the following: Message shall be applied to panel using the silkscreen process. Silkscreened images shall be executed with photo screens prepared from original art. Handcut screens will not be accepted. Original art shall be defined as artwork that is a first generation reproduction of the specified art. Edges and corners shall be clean. Graphics shall be raised 1/32 inch with background painted with low VOC paint #### PART 3 EXECUTION # 3.1 INSTALLATION Signs shall be installed in accordance with manufacturer's instructions at locations shown on the detail drawings. Illuminated signage shall be in conformance with the requirements of Section 16415A ELECTRICAL WORK, INTERIOR. Signs shall be installed plumb and true at mounting heights indicated, and by method shown or specified. Required blocking shall be installed as detailed. Signs which designate permanent rooms and spaces in handicapped-accessible buildings shall be installed on the wall adjacent to the latch side of the door. Where there is no wall space to the latch side of the door, including at double leaf doors, signs shall be placed on the nearest adjacent wall. Mounting location for such signage shall be so that a person may approach within 3 inches of signage without encountering protruding objects or standing within the swing of a door. Signs on doors or other surfaces shall not be installed until finishes on such surfaces have been installed. Signs installed on glass surfaces shall be installed with matching blank back-up plates in accordance with manufacturer's instructions. ## 3.1.1 Anchorage Anchorage shall be in accordance with approved manufacturer's instructions. Where recommended by signage manufacturer, foam tape pads may be used for anchorage. Foam tape pads shall be minimum 1/16 inch thick closed cell vinyl foam with adhesive backing. Adhesive shall be transparent, long aging, high tech formulation on two sides of the vinyl foam. Adhesive surfaces shall be protected with a 5 mil green flatstock treated with silicone. Foam pads shall be sized for the signage as per signage manufacturer's recommendations. Signs mounted to painted gypsum board surfaces shall be removable for painting maintenance. Signs mounted to lay-in ceiling grids shall be mounted with clip connections to ceiling tees. # 3.1.2 Protection and Cleaning The work shall be protected against damage during construction. Hardware and electrical equipment shall be adjusted for proper operation. Glass, frames, and other sign surfaces shall be cleaned in accordance with the manufacturer's approved instructions. ## SECTION 10520 # FIRE PROTECTION SPECIALTIES 09/00 #### PART 1 GENERAL ## 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred in the text by the basic designation only. NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) NFPA 10 (1998; Errata 10-98-1) Portable Fire Extinguishers UNDERWRITERS LABORATORIES (UL) UL FPED (2000) Fire Protection Equipment Directory ## 1.2 SUBMITTALS Submit the following in accordance with Section 01330, "Submittal Procedures." The Engineering Field Activity Fire Protection Engineer, will review and approve all submittals in this section requiring Government approval. SD-03 Product Data Storage cylinder; G Manufacturer's installation and maintenance manuals; G SD-07 Certificates Qualifications of installer; G Submit the extinguishing system manufacturer's installation manual. # 1.3 QUALITY ASSURANCE # 1.3.1 Qualifications of Installer Single-Source Responsibility: Obtain extinguishers and cabinets from one source from a single manufacturer. Coordination: Verify that the cabinets are sized to accommodate type and capacity of extinguishers indicated. UL-Listed Products: Fire extinguishers shall be UL listed with UL listing mark for type, rating, and classification of extinguisher.UL FPED ## PART 2 PRODUCTS ## 2.1 FIRE EXTINGUISHERS Provide fire extinguishers NFPA 10for each cabinet and other locations indicated, in colors and finishes selected by the Architect from manufacturers standard colors. Storage cylinder a. Type 1: Recessed cabinet Type 4A:60B:C Dry Chemical. Size 15 pound ## 2.2 MOUNTING BRACKETS Brackets designed to prevent accidentally dislodging extinguisher, of size required for type and capacity of extinguisher indicated in plated finish. #### 2.3 CABINETS #### 2.3.1 Construction Manufactures standard box, with trim, frame, door, and hardware to suit cabinet type, trim style, and door indicated. Weld joints and grind smooth. Miter and weld perimeter door frames. ## 2.3.2 Cabinet Mounting Recessed: Cabinet box fully recessed in walls of sufficeint depth to suit style of trim indicated. # 2.3.3 Trim Style Surface of surrounding wall finishs flush with exterior finished surface of cabinet door and frame, without overlapping trim attached to cabinet. Trimless with hidden flange of sme metal and finish as box that overlaps the surrounding wall finish and concealed form view by overlapping door. # 2.3.4 Door Style Manufactures enameled hollow steel door with tubular stiles and rails. Full door glazing fully tempered float glass complying with ASTM C1048, Condition A Type I, Quality Q3, Kind FT, Class 1 clear # 2.3.5 Door Hardware Provide manufactures standard door operating hardware od proper type for trim, style and door material. Provide door pull with friction latch. Provide continuous piano hinge opening to 180 deg. ## 2.3.6 Finish Immediately after cleaning and pretreatment, apply manufactures standard two coat baked enamel finish consisting of prime coat and thermosetting top coat. Minimum dry film thickness of 2.0 mils ## PART 3 EXECUTION ## 3.1 EXAMINATION Examine walls and partitions for thickness and framing for cabinets to verify the cabinet depths prior to installation. Do not proceed until unsatidfactory conditions have been corrected. # 3.2 INSTALLATION ## 3.2.1 Mounting Install in locations and at mounting heights indicated, or if not, at heights to comply with applicable regulationsText # 3.2.2 Installation Equipment, materials, installation, workmanship, inspection, and testing shall be in accordance with the manufacturer's installation and maintenance manuals and UL FPED, except as modified herein. ## SECTION 10800A # TOILET ACCESSORIES 04/01 # PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) ASTM C 1036 (1991; R 1997) Flat Glass #### 1.2 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-03 Product Data Finishes; Accessory Items; Manufacturer's descriptive data and catalog cuts indicating materials of construction, fasteners proposed for use for each type of wall construction, mounting instructions, operation instructions, and cleaning instructions. # 1.3 DELIVERY, STORAGE, AND HANDLING Toilet accessories shall be wrapped for shipment and storage, delivered to the jobsite in manufacturer's original packaging, and stored in a clean, dry area protected from construction damage and vandalism. ## 1.4 WARRANTY Manufacturer's standard performance guarantees or warranties that extend beyond a 1 year period shall be provided. # PART 2 PRODUCTS # 2.1 MANUFACTURED UNITS Toilet accessories shall be provided where indicated in accordance with paragraph SCHEDULE. . Each accessory item shall be complete with the necessary mounting plates and shall be of sturdy construction with corrosion resistant surface. ## 2.1.1 Anchors and Fasteners Anchors and fasteners shall be capable of developing a restraining force commensurate with the strength of the accessory to be mounted and shall be suited for use with the supporting construction. Exposed fasteners shall be of tamperproof design and shall be finished to match the accessory. ## 2.1.2 Finishes Except where noted otherwise, finishes on metal shall be provided as follows: Metal Finish Stainless steel No. 4 satin finish Carbon steel, copper alloy, Chromium plated, bright and brass ## 2.2 ACCESSORY ITEMS Accessory items shall conform to the requirements specified below. ## 2.2.1 Grab Bar (GB) Grab bar shall be 18 gauge, 1-1/4 inches OD Type 304 stainless steel. Grab bar shall be form and length as indicated. Exposed mounting flange shall have mounting holes concealed with a snap cover. Grab bar shall have satin finish. Installed bars shall be capable of withstanding a 500 pound vertical load without coming loose from the fastenings and without obvious permanent deformation. Space between wall and grab bar shall be 1-1/2 inch. # 2.2.2 Mirrors, Glass (MG) Glass for mirrors shall be Type I transparent flat type, Class 1-clear. Glazing Quality q1 1/4 inch thick conforming to ASTM C 1036. Glass shall be coated on one surface with silver coating, copper protective coating, and mirror backing paint. Silver coating shall be highly adhesive pure silver coating of a thickness which shall provide reflectivity of 83 percent or more of incident light when viewed through 1/4 inch thick glass, and shall be free of pinholes or other
defects. Copper protective coating shall be pure bright reflective copper, homogeneous without sludge, pinholes or other defects, and shall be of proper thickness to prevent "adhesion pull" by mirror backing paint. Mirror backing paint shall consist of two coats of special scratch and abrasion-resistant paint and shall be baked in uniform thickness to provide a protection for silver and copper coatings which will permit normal cutting and edge fabrication. Mirror size(s) shall be 450mm x 750mm with one unit being a tilt mirror. # 2.2.3 Mirror, Tilt (MT) Tilt mirror shall be surface mounted and shall provide full visibility for persons in a wheelchair. Mirror shall have fixed tilt, extending at least 4 inches from the wall at the top and tapering to 1 inch at the bottom. . Glass for mirrors shall conform to ASTM C 1036 and paragraph Glass Mirrors. ## 2.2.4 Combination Paper Towel Dispenser/Waste Receptacle Units (PTDWR) Dispenser/receptacle shall be recessed and shall have a capacity of 600 sheets of C-fold, single-fold, or quarter-fold towel. Waste receptacle shall be designed to be locked in unit and removable for service. Locking mechanism shall be tumbler key lock. Waste receptacle shall have a capacity of gallons. Unit shall be fabricated of not less than 0.30 inch stainless steel welded construction with all exposed surfaces having a satin finish. Waste receptacle that accepts reusable liner standard for unit manufacturer shall be provided. ## 2.2.5 Sanitary Napkin Disposer (SND) Sanitary napkin disposal shall be constructed of Type 304 stainless steel with removable leak-proof receptacle for disposable liners. Fifty disposable liners of the type standard with the manufacturer shall be provided. Receptacle shall be retained in cabinet by tumbler lock. Disposer shall be provided with a door for inserting disposed napkins, and shall be partition mounted, double access. # 2.2.6 Sanitary Napkin and Tampon Dispenser (SNTD) Sanitary napkin and tampon dispenser shall berecessed. Dispenser, including door shall be Type 304 stainless steel and shall dispense both napkins and tampons with a minimum capacity of 20 each. Dispensing mechanism shall be for complimentary operation. . Doors shall be hung with a full-length corrosion-resistant steel piano hinge and secured with a tumbler lock. Keys for coin box shall be different from the door keys. ## 2.2.7 Soap Dispenser (SD) Soap dispenser shall be lavatory mounted, liquid type consisting of a polyethylene tank with a minimum 32 fluid ounces holding capacity and a 4 inch spout length. ## 2.2.8 Toilet Tissue Dispenser (TTD) Toilet tissue holder shall be Type II - surface mounted with two rolls of standard tissue mounted horizontally. Cabinet shall be carbon steel, bright chromium plated finish. # 2.2.9 Toilet Seat Cover Dispenser (TSCD) Toilet seat cover dispensers shall be Type 304 stainless steel and shall be recessed mounted. Dispenser shall have a minimum capacity of 500 seat covers. ## PART 3 EXECUTION ## 3.1 INSTALLATION Toilet accessories shall be securely fastened to the supporting construction in accordance with the manufacturer's approved instructions. Accessories shall be protected from damage from the time of installation until acceptance. # 3.2 CLEANING Material shall be cleaned in accordance with manufacturer's recommendations. Alkaline or abrasive agents shall not be used. Precautions shall be taken to avoid scratching or marring of surfaces. # SECTION 13280A # ASBESTOS ABATEMENT 07/01 # PART 1 GENERAL # 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) | ANSI Z87.1 | (1989; Errata; Z87.1a) Occupational and Educational Eye and Face Protection | |-------------------------|---| | ANSI Z88.2 | (1992) Respiratory Protection | | ANSI Z9.2 | (1979; R 1991) Fundamentals Governing the
Design and Operation of Local Exhaust
Systems | | AMERICAN SOCIETY FOR TE | STING AND MATERIALS (ASTM) | | AMERICAN SOCIETY FOR TE | STING AND MATERIALS (ASTM) | |-------------------------|--| | ASTM C 732 | (1995) Aging Effects of Artificial
Weathering on Latex Sealants | | ASTM D 1331 | (1989; R 1995) Surface and Interfacial
Tension of Solutions of Surface-Active
Agents | | ASTM D 2794 | (1993; R 1999el) Resistance of Organic
Coatings to the Effects of Rapid
Deformation (Impact) | | ASTM D 4397 | (1996) Polyethylene Sheeting for
Construction, Industrial, and Agricultural
Applications | | ASTM D 522 | (1993a) Mandrel Bend Test of Attached
Organic Coatings | | ASTM E 119 | (2000) Fire Tests of Building Construction and Materials | | ASTM E 1368 | (2000) Visual Inspection of Asbestos
Abatement Projects | | ASTM E 736 | (1992) Cohesion/Adhesion of Sprayed
Fire-Resistive Materials Applied to
Structural Members | | ASTM E 84 | (2000a) Surface Burning Characteristics of
Building Materials | ASTM E 96 (2000) Water Vapor Transmission of Materials COMPRESSED GAS ASSOCIATION (CGA) CGA G-7 (1990) Compressed Air for Human Respiration CGA G-7.1 (1997) Commodity Specification for Air NATIONAL INSTITUTE FOR OCCUPATIONAL SAFETY AND HEALTH (NIOSH) NIOSH Pub No. 84-100 (1984; Supple 1985, 1987, 1988 & 1990) NIOSH Manual of Analytical Methods U.S. ARMY CORPS OF ENGINEERS (USACE) EM 385-1-1 (1996) U.S. Army Corps of Engineers Safety and Health Requirements Manual U.S. ENVIRONMENTAL PROTECTION AGENCY (EPA) EPA 340/1-90-018 (1990) Asbestos/NESHAP Regulated Asbestos Containing Materials Guidance EPA 340/1-90-019 (1990) Asbestos/NESHAP Adequately Wet Guidance EPA 560/5-85-024 (1985) Guidance for Controlling Asbestos-Containing Materials in Buildings U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA) 29 CFR 1910 Occupational Safety and Health Standards Safety and Health Regulations for 29 CFR 1926 Construction 40 CFR 61 National Emission Standards for Hazardous Air Pollutants 40 CFR 763 Asbestos 42 CFR 84 Approval of Respiratory Protective Devices 49 CFR 107 Hazardous Materials Program Procedures 49 CFR 171 General Information, Regulations, and 49 CFR 173 Shippers - General Requirements for Shipments and Packagings UNDERWRITERS LABORATORIES (UL) 49 CFR 172 Definitions Hazardous Materials Table, Special Provisions, Hazardous Materials Communications, Emergency Response Information, and Training Requirements UL 586 (1996; Rev thru Aug 1999) High-Efficiency, Particulate, Air Filter Units ## 1.2 DEFINITIONS - a. Adequately Wet: A term defined in 40 CFR 61, Subpart M, and EPA 340/1-90-019 meaning to sufficiently mix or penetrate with liquid to prevent the release of particulate. If visible emissions are observed coming from asbestos-containing material (ACM), then that material has not been adequately wetted. However, the absence of visible emissions is not sufficient evidence of being adequately wetted. - b. Aggressive Method: Removal or disturbance of building material by sanding, abrading, grinding, or other method that breaks, crumbles, or disintegrates intact asbestos-containing material (ACM). - c. Amended Water: Water containing a wetting agent or surfactant with a surface tension of at least 29 dynes per square centimeter when tested in accordance with ASTM D 1331. - d. Asbestos: Asbestos includes chrysotile, amosite, crocidolite, tremolite asbestos, anthophylite asbestos, actinolite asbestos, and any of these minerals that have been chemically treated and/or altered. - e. Asbestos-Containing Material (ACM): Any materials containing more than one percent asbestos. - f. Asbestos Fiber: A particulate form of asbestos, 5 micrometers or longer, with a length-to-width ratio of at least 3 to 1. - g. Authorized Person: Any person authorized by the Contractor and required by work duties to be present in the regulated areas. - h. Building Inspector: Individual who inspects buildings for asbestos and has EPA Model Accreditation Plan (MAP) "Building Inspector" training; accreditation required by 40 CFR 763, Subpart E, Appendix C. - i. Certified Industrial Hygienist (CIH): An Industrial Hygienist certified in the practice of industrial hygiene by the American Board of Industrial Hygiene. - j. Class I Asbestos Work: Activities defined by OSHA involving the removal of thermal system insulation (TSI) and surfacing ACM. - k. Class II Asbestos Work: Activities defined by OSHA involving the removal of ACM which is not thermal system insulation or surfacing material. This includes, but is not limited to, the removal of asbestos containing wallboard, floor tile and sheeting, roofing and siding shingles, and construction mastic. Certain "incidental" roofing materials such as mastic, flashing and cements when they are still intact are excluded from Class II asbestos work. Removal of small amounts of these materials which would fit into a glovebag may be classified as a Class III job. - 1. Class III Asbestos Work: Activities defined by OSHA that involve repair and maintenance operations, where ACM, including TSI and surfacing ACM, is likely to be disturbed. Operations may include drilling, abrading, cutting a hole, cable pulling, crawling through tunnels or attics and spaces above the ceiling, where asbestos is actively disturbed or asbestos-containing debris is actively disturbed. - m. Class IV Asbestos Work: Maintenance and custodial construction activities during which employees contact but do not disturb ACM and activities to clean-up dust, waste and debris resulting from Class I, II, and III activities. This may include dusting surfaces where ACM waste and debris and accompanying dust exists and cleaning up loose ACM debris from TSI or surfacing ACM following construction. - n. Clean room: An uncontaminated room
having facilities for the storage of employees' street clothing and uncontaminated materials and equipment. - o. Competent Person: In addition to the definition in 29 CFR 1926, Section .32(f), a person who is capable of identifying existing asbestos hazards as defined in 29 CFR 1926, Section .1101, selecting the appropriate control strategy, has the authority to take prompt corrective measures to eliminate them and has EPA Model Accreditation Plan (MAP) "Contractor/Supervisor" training; accreditation required by 40 CFR 763, Subpart E, Appendix C. - p. Contractor/Supervisor: Individual who supervises asbestos abatement work and has EPA Model Accreditation Plan "Contractor/Supervisor" training; accreditation required by 40 CFR 763, Subpart E, Appendix C. - q. Critical Barrier: One or more layers of plastic sealed over all openings into a regulated area or any other similarly placed physical barrier sufficient to prevent airborne asbestos in a regulated area from migrating to an adjacent area. - r. Decontamination Area: An enclosed area adjacent and connected to the regulated area and consisting of an equipment room, shower area, and clean room, which is used for the decontamination of workers, materials, and equipment that are contaminated with asbestos. - s. Demolition: The wrecking or taking out of any load-supporting structural member and any related razing, removing, or stripping of asbestos products. - t. Disposal Bag: A 6 mil thick, leak-tight plastic bag, pre-labeled in accordance with 29 CFR 1926, Section .1101, used for transporting asbestos waste from containment to disposal site. - u. Disturbance: Activities that disrupt the matrix of ACM, crumble or pulverize ACM, or generate visible debris from ACM. Disturbance includes cutting away small amounts of ACM, no greater than the amount which can be contained in 1 standard sized glovebag or waste bag, not larger than 60 inches in length and width in order to access a building component. - v. Equipment Room or Area: An area adjacent to the regulated area - used for the decontamination of employees and their equipment. - w. Employee Exposure: That exposure to airborne asbestos that would occur if the employee were not using respiratory protective equipment. - x. Fiber: A fibrous particulate, 5 micrometers or longer, with a length to width ratio of at least 3 to 1. - y. Friable ACM: A term defined in 40 CFR 61, Subpart M and EPA 340/1-90-018 meaning any material which contains more than 1 percent asbestos, as determined using the method specified in 40 CFR 763, Subpart E, Appendix A, Section 1, Polarized Light Microscopy (PLM), that when dry, can be crumbled, pulverized, or reduced to powder by hand pressure. If the asbestos content is less than 10 percent, as determined by a method other than point counting by PLM, the asbestos content is verified by point counting using PLM. - z. Glovebag: Not more than a 60 by 60 inch impervious plastic bag-like enclosure affixed around an asbestos-containing material, with glove-like appendages through which material and tools may be handled. - aa. High-Efficiency Particulate Air (HEPA) Filter: A filter capable of trapping and retaining at least 99.97 percent of all mono-dispersed particles of 0.3 micrometers in diameter. - bb. Homogeneous Area: An area of surfacing material or thermal system insulation that is uniform in color and texture. - cc. Industrial Hygienist: A professional qualified by education, training, and experience to anticipate, recognize, evaluate, and develop controls for occupational health hazards. - dd. Intact: ACM which has not crumbled, been pulverized, or otherwise deteriorated so that the asbestos is no longer likely to be bound with its matrix. Removal of "intact" asphaltic, resinous, cementitious products does not render the ACM non-intact simply by being separated into smaller pieces. - ee. Model Accreditation Plan (MAP): USEPA training accreditation requirements for persons who work with asbestos as specified in 40 CFR 763, Subpart E, Appendix C. - ff. Modification: A changed or altered procedure, material or component of a control system, which replaces a procedure, material or component of a required system. - gg. Negative Exposure Assessment: A demonstration by the Contractor to show that employee exposure during an operation is expected to be consistently below the OSHA Permissible Exposure Limits (PELs). - hh. NESHAP: National Emission Standards for Hazardous Air Pollutants. The USEPA NESHAP regulation for asbestos is at 40 CFR 61, Subpart M. - ii. Nonfriable ACM: A NESHAP term defined in 40 CFR 61, Subpart M and EPA 340/1-90-018 meaning any material containing more than 1 - percent asbestos, as determined using the method specified in 40 CFR 763, Subpart E, Appendix A, Section 1, Polarized Light Microscopy, that, when dry, cannot be crumbled, pulverized or reduced to powder by hand pressure. - jj. Nonfriable ACM (Category I): A NESHAP term defined in 40 CFR 61, Subpart E and EPA 340/1-90-018 meaning asbestos-containing packings, gaskets, resilient floor covering, and asphalt roofing products containing more than 1 percent asbestos as determined using the method specified in 40 CFR 763, Subpart F, Appendix A, Section 1, Polarized Light Microscopy. - kk. Nonfriable ACM (Category II): A NESHAP term defined in 40 CFR 61, Subpart E and EPA 340/1-90-018 meaning any material, excluding Category I nonfriable ACM, containing more than 1 percent asbestos, as determined using the methods specified in 40 CFR 763, Subpart F, Appendix A, Section 1, Polarized Light Microscopy, that when dry, cannot be crumbled, pulverized, or reduced to powder by hand pressure. - 11. Permissible Exposure Limits (PELs): - (1) PEL-Time weighted average (TWA): Concentration of asbestos not in excess of 0.1 fibers per cubic centimeter of air (f/cc) as an 8 hour time weighted average (TWA), as determined by the method prescribed in 29 CFR 1926, Section .1101, Appendix A, or the current version of NIOSH Pub No. 84-100 analytical method 7400. - (2) PEL-Excursion Limit: An airborne concentration of asbestos not in excess of 1.0 f/cc of air as averaged over a sampling period of 30 minutes as determined by the method prescribed in 29 CFR 1926, Section .1101, Appendix A, or the current version of NIOSH Pub No. 84-100 analytical method 7400. - mm. Regulated Area: An OSHA term defined in 29 CFR 1926, Section .1101 meaning an area established by the Contractor to demarcate areas where Class I, II, and III asbestos work is conducted; also any adjoining area where debris and waste from such asbestos work accumulate; and an area within which airborne concentrations of asbestos exceed, or there is a reasonable possibility they may exceed, the permissible exposure limit. - nn. Removal: All operations where ACM is taken out or stripped from structures or substrates, and includes demolition operations. - oo. Repair: Overhauling, rebuilding, reconstructing, or reconditioning of structures or substrates, including encapsulation or other repair of ACM attached to structures or substrates. If the amount of asbestos so "disturbed" cannot be contained in 1 standard glovebag or waste bag, Class I precautions are required. - pp. Spills/Emergency Cleanups: Cleanup of sizable amounts of asbestos waste and debris which has occurred, for example, when water damage occurs in a building, and sizable amounts of ACM are dislodged. A Competent Person evaluates the site and ACM to be handled, and based on the type, condition and extent of the dislodged material, classifies the cleanup as Class I, II, or III. Only if the material was intact and the cleanup involves mere contact of ACM, rather than disturbance, could there be a Class IV classification. - qq. Surfacing ACM: Asbestos-containing material which contains more than 1% asbestos and is sprayed-on, troweled-on, or otherwise applied to surfaces, such as acoustical plaster on ceilings and fireproofing materials on structural members, or other materials on surfaces for acoustical, fireproofing, or other purposes. - rr. Thermal system insulation (TSI) ACM: ACM which contains more than 1% asbestos and is applied to pipes, fittings, boilers, breeching, tanks, ducts, or other interior structural components to prevent heat loss or gain or water condensation. - ss. Transite: A generic name for asbestos cement wallboard and pipe. - tt. Worker: Individual (not designated as the Competent Person or a supervisor) who performs asbestos work and has completed asbestos worker training required by 29 CFR 1926, Section .1101, to include EPA Model Accreditation Plan (MAP) "Worker" training; accreditation required by 40 CFR 763, Subpart E, Appendix C, if required by the OSHA Class of work to be performed or by the state where the work is to be performed. ## 1.3 DESCRIPTION OF WORK The work covered by this section includes the removal of asbestos-containing materials (ACM) which are encountered during renovation activities associated with this project and describes procedures and equipment required to protect workers and occupants of the regulated area from contact with airborne asbestos fibers and ACM dust and debris. Activities include OSHA Class II and Class III work operations involving ACM. The work also includes containment, storage, transportation and disposal of the generated ACM wastes. More specific operational procedures shall be detailed in the required Accident Prevention Plan and its subcomponents, the Asbestos Hazard Abatement Plan and Activity Hazard Analyses required in paragraph SAFETY AND HEALTH PROGRAM AND PLANS. # 1.3.1 Abatement Work Tasks The specific ACM to be abated is identified on the detailed plans and project drawings. A summary of work task data elements for each individual ACM abatement work task to include the appropriate RESPONSE ACTION DETAIL SHEET (item to be abated and methods to be used) and SET-UP DETAIL SHEETS (containment techniques to include safety precautions and methods) is
included in Table 1, "Individual Work Task Data Elements" at the end of this section. # 1.3.2 Unexpected Discovery of Asbestos For any previously untested building components suspected to contain asbestos and located in areas impacted by the work, the Contractor shall notify the Contracting Officer (CO) who will have the option of ordering up to 3 bulk samples to be obtained at the Contractor's expense and delivered to a laboratory accredited under the National Institute of Standards and Technology (NIST) "National Voluntary Laboratory Accreditation Program (NVLAP)" and analyzed by PLM at no additional cost to the Government. Any additional components identified as ACM that have been approved by the Contracting Officer for removal shall be removed by the Contractor and will be paid for by an equitable adjustment to the contract price under the CONTRACT CLAUSE titled "changes". Sampling activities undertaken to determine the presence of additional ACM shall be conducted by personnel who have successfully completed the EPA Model Accreditation Plan (MAP) "Building Inspector" training course required by 40 CFR 763, Subpart E, Appendix C. ## 1.4 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: ## SD-03 Product Data Respiratory Protection Program; G AE Records of the respirator program. Cleanup and Disposal; G AE Waste shipment records. Weigh bills and delivery tickets shall be furnished for information only. - a. High Efficiency Filtered Air (HEPA) local exhaust equipment - b. Vacuum cleaning equipment - c. Pressure differential monitor for $\ensuremath{\mathtt{HEPA}}$ local exhaust equipment - d. Air monitoring equipment - e. Respirators - f. Personal protective clothing and equipment - (1) Coveralls - (2) Underclothing - (3) Other work clothing - (4) Foot coverings - (5) Hard hats - (6) Eye protection - (7) Other items required and approved by Contractors Designated IH and Competent Person - g. Glovebag - h. Duct Tape - i. Disposal Containers - (1) Disposal bags - (2) Fiberboard drums - j. Sheet Plastic - (1) Polyethylene Sheet General - k. Wetting Agent - (1) Amended Water - (2) Removal encapsulant - 1. Strippable Coating - m. Prefabricated Decontamination Unit - n. Other items - o. Chemical encapsulant - q. Material Safety Data Sheets (for all chemicals proposed) Qualifications; G AE A written report providing evidence of qualifications for personnel, facilities and equipment assigned to the work. Training Program; G AE A copy of the written project site-specific training material as indicated in 29 CFR 1926, Section .1101 that will be used to train onsite employees. The training document shall be signed by the Contractor's Designated IH and Competent Person. Medical Requirements; G AE Physician's written opinion. Encapsulants; G AE Certificates stating that encapsulants meet the applicable specified performance requirements. SD-06 Test Reports Exposure Assessment and Air Monitoring; G AE Initial exposure assessments, negative exposure assessments, air-monitoring results and documentation. Local Exhaust Ventilation; G AE Pressure differential recordings. Licenses, Permits and Notifications; G AE Licenses, permits, and notifications. SD-07 Certificates Manufacturer's certifications showing compliance with ANSI Z9.2 for: - a. Vacuums. - b. Water filtration equipment. - c. Ventilation equipment. - d. Other equipment required to contain airborne asbestos fibers. ## 1.5 QUALIFICATIONS # 1.5.1 Written Qualifications and Organization Report The Contractor shall furnish a written qualifications and organization report providing evidence of qualifications of the Contractor, Contractor's Project Supervisor, Designated Competent Person, supervisors and workers; Designated IH (person assigned to project and firm name); independent testing laboratory (including name of firm, principal, and analysts who will perform analyses); all subcontractors to be used including disposal transportation and disposal facility firms, subcontractor supervisors, subcontractor workers; and any others assigned to perform asbestos abatement and support activities. The report shall include an organization chart showing the Contractor's staff organization for this project by name and title, chain of command and reporting relationship with all subcontractors. The report shall be signed by the Contractor, the Contractor's onsite project manager, Designated Competent Person, Designated IH, designated testing laboratory and the principals of all subcontractors to be used. The Contractor shall include the following statement in the report: "By signing this report I certify that the personnel I am responsible for during the course of this project fully understand the contents of 29 CFR 1926, Section .1101, 40 CFR 61, Subpart ${\tt M},$ and the federal, state and local requirements specified in paragraph SAFETY AND HEALTH PROGRAM AND PLANS for those asbestos abatement activities that they will be involved in." # 1.5.2 Specific Requirements The Contractor shall designate in writing, personnel meeting the following qualifications: Designated Competent Person: The name, address, telephone number, and resume of the Contractor's Designated Competent Person shall be provided. Evidence that the full-time Designated Competent Person is qualified in accordance with 29 CFR 1926, Sections .32 and .1101, has EPA Model Accreditation Plan (MAP) "Contractor/Supervisor" training accreditation required by 40 CFR 763, Subpart E, Appendix C, and is experienced in the administration and supervision of asbestos abatement projects, including exposure assessment and monitoring, work practices, abatement methods, protective measures for personnel, setting up and inspecting asbestos abatement work areas, evaluating the integrity of containment barriers, placement and operation of local exhaust systems, ACM generated waste containment and disposal procedures, decontamination units installation and maintenance requirements, site safety and health requirements, notification of other employees onsite, etc. The duties of the Competent Person shall include the following: controlling entry to and exit from the regulated area; supervising any employee exposure monitoring required by 29 CFR 1926, Section .1101; ensuring that all employees working within a regulated area wear the appropriate personal protective equipment (PPE), are trained in the use of appropriate methods of exposure control, and use the hygiene facilities and decontamination procedures specified; and ensuring that engineering controls in use are in proper operating conditions and are functioning properly. The Designated Competent Person shall be responsible for compliance with applicable federal, state and local requirements, the Contractor's Accident Prevention Plan and Asbestos Hazard Abatement Plan. The Designated Competent Person shall provide, and the Contractor shall submit, the "Contractor/Supervisor" course completion certificate and the most recent certificate for required refresher training with the employee "Certificate of Worker Acknowledgment" required by this paragraph. The Contractor shall submit evidence that this person has a minimum of 2 years of on-the-job asbestos abatement experience relevant to OSHA competent person requirements. The Designated Competent Person shall be onsite at all times during the conduct of this project. - b. Project and Other Supervisors: The Contractor shall provide the name, address, telephone number, and resume of the Project Supervisor and other supervisors who have responsibility to implement the Accident Prevention Plan, including the Asbestos Hazard Abatement Plan and Activity Hazard Analyses, the authority to direct work performed under this contract and verify compliance, and have EPA Model Accreditation Plan (MAP) "Contractor/Supervisor" training accreditation required by 40 CFR 763, Subpart E, Appendix C. The Project Supervisor and other supervisors shall provide, and the Contractor shall submit, the "Contractor/Supervisor" course completion certificate and the most recent certificate for required refresher training with the employee "Certificate of Worker Acknowledgment" required by this paragraph. The Contractor shall submit evidence that the Project Supervisor has a minimum of 2 years of on-the-job asbestos abatement experience relevant to project supervisor responsibilities and the other supervisors have a minimum of 1 year on-the-job asbestos abatement experience commensurate with the responsibilities they will have on this project. - c. Designated Industrial Hygienist: The Contractor shall provide the name, address, telephone number, resume and other information specified below for the Industrial Hygienist (IH) selected to prepare the Contractor's Asbestos Hazard Abatement Plan, prepare and perform training, direct air monitoring and assist the Contractor's Competent Person in implementing and ensuring that safety and health requirements are complied with during the performance of all required work. The Designated IH shall be a person who is board certified in the practice of industrial hygiene as determined and documented by the American Board of Industrial Hygiene (ABIH), has EPA Model Accreditation Plan (MAP) "Contractor/Supervisor" training accreditation required by 40 CFR 763, Subpart E, Appendix C, and has a minimum of 2 years of comprehensive experience in planning and overseeing asbestos abatement activities. The Designated IH shall provide, and the Contractor shall submit, the "Contractor/Supervisor" course completion certificate and the most recent certificate for required refresher training with the employee "Certificate of Worker
Acknowledgment" required by this paragraph. The Designated IH shall be completely independent from the Contractor according to federal, state, or local regulations; that is, shall not be a Contractor's employee or be an employee or principal of a firm in a business relationship with the Contractor negating such independent status. A copy of the Designated IH's current valid ABIH certification shall be included. The Designated IH shall visit the site at least 3 per week for the duration of asbestos activities and shall be available for emergencies. In addition, the Designated IH shall prepare, and the Contractor shall submit, the name, address, telephone numbers and resumes of additional IH's and industrial hygiene technicians (IHT) who will be assisting the Designated IH in performing onsite tasks. IHs and IHTs supporting the Designated IH shall have a minimum of 2 years of practical onsite asbestos abatement experience. The formal reporting relationship between the Designated IH and the support IHs and IHTs, the Designated Competent Person, and the Contractor shall be indicated. - d. Asbestos Abatement Workers: Asbestos abatement workers shall meet the requirements contained in 29 CFR 1926, Section .1101, 40 CFR 61, Subpart M, and other applicable federal, state and local requirements. Worker training documentation shall be provided as required on the "Certificate of Workers Acknowledgment" in this paragraph. - e. Worker Training and Certification of Worker Acknowledgment: Training documentation will be required for each employee who will perform OSHA Class I, Class II, Class III, or Class IV asbestos abatement operations. Such documentation shall be submitted on a Contractor generated form titled "Certificate of Workers Acknowledgment", to be completed for each employee in the same format and containing the same information as the example certificate at the end of this section. Training course completion certificates (initial and most recent update refresher) required by the information checked on the form shall be attached. - f. Physician: The Contractor shall provide the name, medical qualifications, address, telephone number and resume of the physician who will or has performed the medical examinations and evaluations of the persons who will conduct the asbestos abatement work tasks. The physician shall be currently licensed by the state where the workers will be or have been examined, have expertise in pneumoconiosis and shall be responsible for the determination of medical surveillance protocols and for review of examination/test results performed in compliance with 29 CFR 1926, Section .1101 and paragraph MEDICAL REQUIREMENTS. The physician shall be familiar with the site's hazards and the scope of this project. - g. First Aid and CPR Trained Persons: The names of at least 2 persons who are currently trained in first aid and CPR by the American Red Cross or other approved agency shall be designated and shall be onsite at all times during site operations. They shall be trained in universal precautions and the use of PPE as described in the Bloodborne Pathogens Standard of 29 CFR 1910, Section .1030 and shall be included in the Contractor's Bloodborne Pathogen Program. These persons may perform other duties but shall be immediately available to render first aid when needed. A copy of each designated person's current valid First Aid and CPR certificate shall be provided. - h. Independent Testing Laboratory: The Contractor shall provide the name, address and telephone number of the independent testing laboratory selected to perform the sample analyses and report the results. The testing laboratory shall be completely independent from the Contractor as recognized by federal, state or local regulations. Written verification of the following criteria, signed by the testing laboratory principal and the Contractor, shall be submitted: - (1) Phase contrast microscopy (PCM): The laboratory is fully equipped and proficient in conducting PCM of airborne samples using the methods specified by 29 CFR 1926, Section .1101, OSHA method ID-160, the most current version of NIOSH Pub No. 84-100 Method 7400, and NIOSH Pub No. 84-100 Method 7402, transmission electron microscopy (TEM); the laboratory is currently judged proficient (classified as acceptable) in counting airborne asbestos samples by PCM by successful participation in each of the last 4 rounds in the American Industrial Hygiene Association (AIHA) Proficiency Analytical Testing (PAT) Program; the names of the selected microscopists who will analyze airborne samples by PCM with verified documentation of their proficiency to conduct PCM analyses by being judged proficient in counting samples as current participating analysts in the AIHA PAT Program, and having successfully completed the Asbestos Sampling and Analysis course (NIOSH 582 or equivalent) with a copy of course completion certificate provided; when the PCM analysis is to be conducted onsite, documentation shall be provided certifying that the onsite analyst meets the same requirements. - (2) Polarized light microscopy (PLM): The laboratory is fully equipped and proficient in conducting PLM analyses of suspect ACM bulk samples in accordance with 40 CFR 763, Subpart E, Appendix E; the laboratory is currently accredited by NIST under the NVLAP for bulk asbestos analysis and will use analysts (names shall be provided) with demonstrated proficiency to conduct PLM to include its application to the identification and quantification of asbestos content. - (3) Transmission electron microscopy (TEM): The laboratory is fully equipped and proficient in conducting TEM analysis of airborne samples using the mandatory method specified by 40 CFR 763, Subpart E, Appendix E; the laboratory is currently accredited by NIST under the NVLAP for airborne sample analysis of asbestos by TEM; the laboratory will use analysts (names shall be provided) that are currently evaluated as competent with demonstrated proficiency under the NIST NVLAP for airborne sample analysis of asbestos by TEM. - (4) PCM/TEM: The laboratory is fully equipped and each analyst (name shall be provided) possesses demonstrated proficiency in conducting PCM and TEM analysis of airborne samples using NIOSH Pub No. 84-100Method 7400 PCM and NIOSH Pub No. 84-100 Method 7402 (TEM confirmation of asbestos content of PCM results) from the same filter. - i. Disposal Facility, Transporter: The Contractor shall provide written evidence that the landfill to be used is approved for asbestos disposal by the USEPA, state and local regulatory agencies. Copies of signed agreements between the Contractor (including subcontractors and transporters) and the asbestos waste disposal facility to accept and dispose of all asbestos containing waste generated during the performance of this contract shall be provided. Qualifications shall be provided for each subcontractor or transporter to be used, indicating previous experience in transport and disposal of asbestos waste to include all required state and local waste hauler requirements for asbestos. The Contractor and transporters shall meet the DOT requirements of 49 CFR 171, 49 CFR 172, and 49 CFR 173 as well as registration requirements of 49 CFR 107 and other applicable state or local requirements. The disposal facility shall meet the requirements of 40 CFR 61, Sections .154 or .155, as required in 40 CFR 61, Section .150(b), and other applicable state or local requirements. ## 1.5.3 Federal, State or Local Citations on Previous Projects The Contractor and all subcontractors shall submit a statement, signed by an officer of the company, containing a record of any citations issued by Federal, State or local regulatory agencies relating to asbestos activities (including projects, dates, and resolutions); a list of penalties incurred through non-compliance with asbestos project specifications, including liquidated damages, overruns in scheduled time limitations and resolutions; and situations in which an asbestos-related contract has been terminated (including projects, dates, and reasons for terminations). If there are none, a negative declaration signed by an officer of the company shall be provided. # 1.6 REGULATORY REQUIREMENTS In addition to detailed requirements of this specification, work performed under this contract shall comply with EM 385-1-1, applicable federal, state, and local laws, ordinances, criteria, rules and regulations regarding handling, storing, transporting, and disposing of asbestos waste materials. This includes, but is not limited to, OSHA standards, 29 CFR 1926, especially Section .1101, 40 CFR 61, Subpart M and 40 CFR 763. Matters of interpretation of standards shall be submitted to the appropriate administrative agency for resolution before starting work. Where the requirements of this specification, applicable laws, criteria, ordinances, regulations, and referenced documents vary, the most stringent requirements shall apply. The following state and local laws, rules and regulations regarding removal, encapsulation, renovation, handling, storing, transporting and disposing of asbestos material apply: 49 CFR 171, 172, 173, 107 and 40CFR 61 SECTION 150, 154 155.. ## 1.7 SAFETY AND HEALTH PROGRAM AND PLANS The Contractor shall develop and submit a written comprehensive site-specific Accident Prevention Plan at least 30 days prior to the preconstruction conference. The Accident Prevention Plan shall address requirements of EM 385-1-1, Appendix A, covering onsite work to be performed by the Contractor and subcontractors. The Accident Prevention Plan shall incorporate an Asbestos Hazard Abatement Plan, and Activity Hazard Analyses as separate appendices into 1 site specific Accident Prevention Plan document. Any portions of the Contractor's overall Safety and Health Program that are referenced in the Accident Prevention Plan, e.g., respirator program, hazard communication program, confined space entry
program, etc., shall be included as appendices to the Accident Prevention Plan. The plan shall take into consideration all the individual asbestos abatement work tasks identified in Table 1. The plan shall be prepared, signed (and sealed, including certification number if required), and dated by the Contractor's Designated IH, Competent Person, and Project Supervisor. ## 1.7.1 Asbestos Hazard Abatement Plan Appendix The Asbestos Hazard Abatement Plan appendix to the Accident Prevention Plan shall include, but not be limited to, the following: - a. The personal protective equipment to be used; - b. The location and description of regulated areas including clean and dirty areas, access tunnels, and decontamination unit (clean room, shower room, equipment room, storage areas such as load-out unit); - c. Initial exposure assessment in accordance with 29 CFR 1926, Section .1101; - d. Level of supervision; - e. Method of notification of other employers at the worksite; - f. Abatement method to include containment and control procedures; - g. Interface of trades involved in the construction; - h. Sequencing of asbestos related work; - i. Storage and disposal procedures and plan; - j. Type of wetting agent and asbestos encapsulant to be used; - k. Location of local exhaust equipment; - 1. Air monitoring methods (personal, environmental and clearance); - m. Bulk sampling and analytical methods (if required); - n. A detailed description of the method to be employed in order to control the spread of ACM wastes and airborne fiber concentrations; - o. Fire and medical emergency response procedures; - p. The security procedures to be used for all regulated areas. # 1.7.2 Activity Hazard Analyses Appendix Activity Hazard Analyses, for each major phase of work, shall be submitted and updated during the project. The Activity Hazard Analyses format shall be in accordance with EM 385-1-1 (Figure 1-1). The analysis shall define the activities to be performed for a major phase of work, identify the sequence of work, the specific hazards anticipated, and the control measures to be implemented to eliminate or reduce each hazard to an acceptable level. Work shall not proceed on that phase until the Activity Hazard Analyses has been accepted and a preparatory meeting has been conducted by the Contractor to discuss its contents with everyone engaged in the activities, including the onsite Government representatives. The Activity Hazard Analyses shall be continuously reviewed and, when appropriate, modified to address changing site conditions or operations. ## 1.8 PRECONSTRUCTION CONFERENCE AND ONSITE SAFETY The Contractor and the Contractor's Designated Competent Person, Project Supervisor, and Designated IH shall meet with the Contracting Officer prior to beginning work at a safety preconstruction conference to discuss the details of the Contractor's submitted Accident Prevention Plan to include the Asbestos Hazard Abatement Plan and Activity Hazard Analyses appendices. Deficiencies in the Accident Prevention Plan will be discussed and the Accident Prevention Plan shall be revised to correct the deficiencies and resubmitted for acceptance. Any changes required in the specification as a result of the Accident Prevention Plan shall be identified specifically in the plan to allow for free discussion and acceptance by the Contracting Officer, prior to the start of work. Onsite work shall not begin until the Accident Prevention Plan has been accepted. A copy of the written Accident Prevention Plan shall be maintained onsite. Changes and modifications to the accepted Accident Prevention Plan shall be made with the knowledge and concurrence of the Designated IH, the Project Supervisor, Designated Competent Person, and the Contracting Officer. Should any unforeseen hazard become evident during the performance of the work, the Designated IH shall bring such hazard to the attention of the Project Supervisor, Designated Competent Person, and the Contracting Officer, both verbally and in writing, for resolution as soon as possible. In the interim, all necessary action shall be taken by the Contractor to restore and maintain safe working conditions in order to safeguard onsite personnel, visitors, the public, and the environment. Once accepted by the Contracting Officer, the Accident Prevention Plan, including the Asbestos Hazard Abatement Plan and Activity Hazard Analyses will be enforced as if an addition to the contract. Disregarding the provisions of this contract or the accepted Accident Prevention Plan will be cause for stopping of work, at the discretion of the Contracting Officer, until the matter has been rectified. #### 1.9 SECURITY Fenced and locked security area shall be provided for each regulated area. A log book shall be kept documenting entry into and out of the regulated area. Entry into regulated areas shall only be by personnel authorized by the Contractor and the Contracting Officer. Personnel authorized to enter regulated areas shall be trained, be medically evaluated, and wear the required personal protective equipment for the specific regulated area to be entered. ## 1.10 MEDICAL REQUIREMENTS Medical requirements shall conform to 29 CFR 1926, Section .1101. # 1.10.1 Medical Examinations Before being exposed to airborne asbestos fibers, workers shall be provided with a medical examination as required by 29 CFR 1926, Section .1101 and other pertinent state or local requirements. This requirement shall have been satisfied within the last 12 months. The same medical examination shall be given on an annual basis to employees engaged in an occupation involving asbestos and within 30 calendar days before or after the termination of employment in such occupation. X-ray films of asbestos workers shall be identified to the consulting radiologist and medical record jackets shall be marked with the word "asbestos." ## 1.10.1.1 Information Provided to the Physician The Contractor shall provide the following information in writing to the examining physician: - a. A copy of 29 CFR 1926, Section .1101 and Appendices D, E, G, and I; - b. A description of the affected employee's duties as they relate to the employee's exposure; - c. The employee's representative exposure level or anticipated exposure level; - d. A description of any personal protective and respiratory equipment used or to be used; - e. Information from previous medical examinations of the affected employee that is not otherwise available to the examining physician. ## 1.10.1.2 Written Medical Opinion For each worker, a written medical opinion prepared and signed by a licensed physician indicating the following: - a. Summary of the results of the examination. - b. The potential for an existing physiological condition that would place the employee at an increased risk of health impairment from exposure to asbestos. - c. The ability of the individual to wear personal protective equipment, including respirators, while performing strenuous work tasks under cold and/or heat stress conditions. - d. A statement that the employee has been informed of the results of the examination, provided with a copy of the results, informed of the increased risk of lung cancer attributable to the combined effect of smoking and asbestos exposure, and informed of any medical condition that may result from asbestos exposure. # 1.10.2 Medical and Exposure Records Complete and accurate records shall be maintained of each employee's medical examinations, medical records, and exposure data, as required by 29 CFR 1910, Section .1910.20 and 29 CFR 1926, Section .1101 for a period of 50 years after termination of employment. Records of the required medical examinations and exposure data shall be made available, for inspection and copying, to the Assistant Secretary of Labor for Occupational Safety and Health (OSHA) or authorized representatives of the employee and an employee's physician upon request of the employee or former employee. A copy of the required medical certification for each employee shall be maintained on file at the worksite for review, as requested by the Contracting Officer or the representatives. ## 1.11 TRAINING PROGRAM # 1.11.1 General Training Requirements The Contractor shall establish a training program as specified by EPA Model Accreditation Plan (MAP), training requirements at 40 CFR 763, Subpart E, Appendix C, the State of MD regulation no. COMAR 26.11.21, OSHA requirements at 29 CFR 1926, Section .1101(k)(9), and this specification. Contractor employees shall complete the required training for the type of work they are to perform and such training shall be documented and provided to the Contracting Officer as specified in paragraph QUALIFICATIONS. # 1.11.2 Project Specific Training Prior to commencement of work, each worker shall be instructed by the Contractor's Designated IH and Competent Person in the following project specific training: - The hazards and health effects of the specific types of ACM to be abated; - b. The content and requirements of the Contractor's Accident Prevention Plan to include the Asbestos Hazard Abatement Plan and Activity Hazard Analyses and site-specific safety and health precautions; - c. Hazard Communication Program; - d. Hands-on training for each asbestos abatement technique to be employed; - e. Heat and/or cold stress monitoring specific to this project; - f. Air monitoring program and procedures; - g. Medical surveillance to include medical and exposure record-keeping procedures; - h. The association of cigarette smoke and asbestos-related disease; - i. Security procedures; - j. Specific work practice controls and engineering controls required for each Class of work in accordance with 29 CFR 1926, Section 1101 #### 1.12 RESPIRATORY PROTECTION PROGRAM The Contractor's Designated IH shall establish in writing, and implement a respiratory protection program in accordance with 29 CFR 1926, Section .1101, 29 CFR 1910, Section .134, ANSI Z88.2, CGA
G-7, CGA G-7.1 and DETAIL SHEET 12. The Contractor's Designated IH shall establish minimum respiratory protection requirements based on measured or anticipated levels of airborne asbestos fiber concentrations encountered during the performance of the asbestos abatement work. The Contractor's respiratory protection program shall include, but not be limited to, the following elements: a. The company policy, used for the assignment of individual responsibility, accountability, and implementation of the respiratory protection program. - b. The standard operating procedures covering the selection and use of respirators. Respiratory selection shall be determined by the hazard to which the worker is exposed. - c. Medical evaluation of each user to verify that the worker may be assigned to an activity where respiratory protection is required. - d. Training in the proper use and limitations of respirators. - e. Respirator fit-testing, i.e., quantitative, qualitative and individual functional fit checks. - f. Regular cleaning and disinfection of respirators. - g. Routine inspection of respirators during cleaning and after each use when designated for emergency use. - h. Storage of respirators in convenient, clean, and sanitary locations. - i. Surveillance of regulated area conditions and degree of employee exposure (e.g., through air monitoring). - j. Regular evaluation of the continued effectiveness of the respiratory protection program. - k. Recognition and procedures for the resolution of special problems as they affect respirator use (e.g., no facial hair that comes between the respirator face piece and face or interferes with valve function; prescription eye wear usage; contact lenses usage; etc.). - 1. Proper training in putting on and removing respirators. ## 1.12.1 Respiratory Fit Testing A qualitative or quantitative fit test conforming to 29 CFR 1926, Section 1101, Appendix C shall be conducted by the Contractor's Designated IH for each Contractor worker required to wear a respirator, and for the Contracting Officer and authorized visitors who enter a regulated area where respirators are required to be worn. A respirator fit test shall be performed for each worker wearing a negative-pressure respirator prior to initially wearing a respirator on this project and every 6 months thereafter. The qualitative fit tests may be used only for testing the fit of half-mask respirators where they are permitted to be worn, or of full-facepiece air purifying respirators where they are worn at levels at which half-facepiece air purifying respirators are permitted. If physical changes develop that will affect the fit, a new fit test for the worker shall be performed. Functional fit checks shall be performed by employees each time a respirator is put on and in accordance with the manufacturer's recommendation. #### 1.12.2 Respirator Selection and Use Requirements The Contractor shall provide respirators, and ensure that they are used as required by 29 CFR 1926, Section .1101 and in accordance with the manufacturer's recommendations. Respirators shall be approved by the National Institute for Occupational Safety and Health (NIOSH) under the provisions of 42 CFR 84, for use in environments containing airborne asbestos fibers. Personnel who handle ACM, enter regulated areas that require the wearing of a respirator, or who are otherwise carrying out abatement activities that require the wearing of a respirator, shall be provided with approved respirators that are fully protective of the worker at the measured or anticipated airborne asbestos concentration level to be encountered. For air-purifying respirators, the particulate filter portion of the cartridges or canister approved for use in airborne asbestos environments shall be high-efficiency particulate air (HEPA). The initial respirator selection and the decisions regarding the upgrading or downgrading of respirator type shall be made by the Contractor's Designated IH based on the measured or anticipated airborne asbestos fiber concentrations to be encountered. Recommendations made by the Contractor's Designated IH to downgrade respirator type shall be submitted in writing to the Contracting Officer. The Contractor's Designated Competent Person in consultation with the Designated IH, shall have the authority to take immediate action to upgrade or downgrade respiratory type when there is an immediate danger to the health and safety of the wearer. Respirators shall be used in the following circumstances: - a. During all Class I asbestos jobs. - b. During all Class II work where the ACM is not removed in a substantially intact state. - c. During all Class II and III work which is not performed using wet methods. Respirators need not be worn during removal of ACM from sloped roofs when a negative exposure assessment has been made and ACM is removed in an intact state. - d. During all Class II and III asbestos jobs where the Contractor does not produce a negative exposure assessment. - e. During all Class III jobs where TSI or surfacing ACM is being disturbed. - f. OMITTED - g. During all work where employees are exposed above the PEL-TWA or PEL-Excursion Limit. - h. In emergencies # 1.12.3 Class II and III Work The Contractor shall provide an air purifying respirator, other than a disposable respirator, equipped with high-efficiency filters whenever the employee performs Class II and III asbestos jobs where the Contractor does not produce a negative exposure assessment; and Class III jobs where TSI or surfacing ACM is being disturbed. ## 1.12.4 Sanitation Employees who wear respirators shall be permitted to leave work areas to wash their faces and respirator facepieces whenever necessary to prevent skin irritation associated with respirator use. ## 1.13 HAZARD COMMUNICATION PROGRAM A hazard communication program shall be established and implemented in accordance with 29 CFR 1926, Section .59. Material safety data sheets (MSDSs) shall be provided for all hazardous materials brought onto the worksite. One copy shall be provided to the Contracting Officer and 1 copy shall be included in the Contractor's Hazard Communication Program. ## 1.14 LICENSES, PERMITS AND NOTIFICATIONS ## 1.14.1 General Legal Requirements Necessary licenses, permits and notifications shall be obtained in conjunction with the project's asbestos abatement, transportation and disposal actions and timely notification furnished of such actions as required by federal, state, regional, and local authorities. The Contractor shall notify the Regional Office of the USEPA state's environmental protection agency responsible for asbestos air emissions local air pollution control district/agencyand the Contracting Officer in writing, at least 10 days prior to the commencement of work, in accordance with 40 CFR 61, Subpart M, and state and local requirements to include the mandatory "Notification of Demolition and Renovation Record" form and other required notification documents. Notification shall be by Certified Mail, Return Receipt Requested. The Contractor shall furnish copies of the receipts to the Contracting Officer, in writing, prior to the commencement of work. Local fire department shall be notified 3 days before fire-proofing material is removed from a building and the notice shall specify whether or not the material contains asbestos. A copy of the rental company's written acknowledgment and agreement shall be provided as required by paragraph RENTAL EQUIPMENT. For licenses, permits, and notifications that the Contractor is responsible for obtaining, the Contractor shall pay any associated fees or other costs incurred. ## 1.14.2 Litigation and Notification The Contractor shall notify the Contracting Officer if any of the following occur: - a. The Contractor or any of the subcontractors are served with notice of violation of any law, regulation, permit or license which relates to this contract; - b. Proceedings are commenced which could lead to revocation of related permits or licenses; permits, licenses or other Government authorizations relating to this contract are revoked; - c. Litigation is commenced which would affect this contract; - d. The Contractor or any of the subcontractors become aware that their equipment or facilities are not in compliance or may fail to comply in the future with applicable laws or regulations. ## 1.15 PERSONAL PROTECTIVE EQUIPMENT Three complete sets of personal protective equipment shall be made available to the Contracting Officer and authorized visitors for entry to the regulated area. Contracting Officer and authorized visitors shall be provided with training equivalent to that provided to Contractor employees in the selection, fitting, and use of the required personal protective equipment and the site safety and health requirements. Contractor workers shall be provided with personal protective clothing and equipment and the Contractor shall ensure that it is worn properly. The Contractor's Designated IH and Designated Competent Person shall select and approve all the required personal protective clothing and equipment to be used. ## 1.15.1 Respirators Respirators shall be in accordance with paragraph RESPIRATORY PROTECTION PROGRAM. # 1.15.2 Whole Body Protection Personnel exposed to airborne concentrations of asbestos that exceed the PELs, or for all OSHA Classes of work for which a required negative exposure assessment is not produced, shall be provided with whole body protection and such protection shall be worn properly. The Contractor's Designated IH and Competent Person shall select and approve the whole body protection to be used. The Competent Person shall examine work suits worn by employees at least once per work shift for rips or tears that may occur during performance of work. When rips or tears are detected while an employee is working, rips and tears shall be immediately mended, or the work suit shall be immediately replaced. Disposable whole body protection
shall be disposed of as asbestos contaminated waste upon exiting from the regulated area. Reusable whole body protection worn shall be either disposed of as asbestos contaminated waste upon exiting from the regulated area or be properly laundered in accordance with 29 CFR 1926, Section .1101. Whole body protection used for asbestos abatement shall not be removed from the worksite by a worker to be cleaned. Recommendations made by the Contractor's Designated IH to downgrade whole body protection shall be submitted in writing to the Contracting Officer. The Contractor's Designated Competent Person, in consultation with the Designated IH, has the authority to take immediate action to upgrade or downgrade whole body protection when there is an immediate danger to the health and safety of the wearer. # 1.15.2.1 Coveralls Disposable-impermeable coveralls with a zipper front shall be provided. Sleeves shall be secured at the wrists, and foot coverings secured at the ankles. See DETAIL SHEET 13. # 1.15.2.2 Underwear Disposable underwear shall be provided. If reusable underwear are used, they shall be disposed of as asbestos contaminated waste or laundered in accordance with 29 CFR 1926, Section .1101. Asbestos abatement workers shall not remove contaminated reusable underwear worn during abatement of ACM from the site to be laundered. # 1.15.2.3 Work Clothing An additional coverall shall be provided when the abatement and control method employed does not provide for the exit from the regulated area directly into an attached decontamination unit. Cloth work clothes for wear under the protective coverall, and foot coverings, shall be provided when work is being conducted in low temperature conditions. Cloth work clothes shall be either disposed of as asbestos contaminated waste or properly laundered in accordance with 29 CFR 1926, Section .1101. ## 1.15.2.4 Gloves Gloves shall be provided to protect the hands. Where there is the potential for hand injuries (i.e., scrapes, punctures, cuts, etc.) a suitable glove shall be provided and used. ## 1.15.2.5 Foot Coverings Cloth socks shall be provided and worn next to the skin. Footwear, as required by OSHA and EM 385-1-1, that is appropriate for safety and health hazards in the area shall be worn. Rubber boots shall be used in moist or wet areas. Reusable footwear removed from the regulated area shall be thoroughly decontaminated or disposed of as ACM waste. Disposable protective foot covering shall be disposed of as ACM waste. If rubber boots are not used, disposable foot covering shall be provided. # 1.15.2.6 Head Covering Hood type disposable head covering shall be provided. In addition, protective head gear (hard hats) shall be provided as required. Hard hats shall only be removed from the regulated area after being thoroughly decontaminated. ## 1.15.2.7 Protective Eye Wear Eye protection provided shall be in accordance with ANSI Z87.1. #### 1.16 HYGIENE FACILITIES AND PRACTICES The Contractor shall establish a decontamination area for the decontamination of employees, material and equipment. The Contractor shall ensure that employees enter and exit the regulated area through the decontamination area. ## 1.16.1 Shower Facilities Shower facilities, when provided, shall comply with 29 CFR 1910, Section .141(d)(3). # 1.16.2 3-Stage Decontamination Area A temporary negative pressure decontamination unit that is adjacent and attached in a leak-tight manner to the regulated area shall be provided as described in SET-UP DETAIL SHEET Numbers 22 and 23. Utilization of prefabricated units shall have prior approval of the Contracting Officer. The decontamination unit shall have an equipment room and a clean room separated by a shower that complies with 29 CFR 1910, Section .141 (unless the Contractor can demonstrate that such facilities are not feasible). Equipment and surfaces of containers filled with ACM shall be cleaned prior to removing them from the equipment room or area. Surfaces of the equipment room shall be wet wiped 2 times after each shift. Materials used for wet wiping shall be disposed of as asbestos contaminated waste. Two separate lockers shall be provided for each asbestos worker, one in the equipment room and one in the clean room. Hot water service may be secured from the building hot water system provided backflow protection is installed by the Contractor at the point of connection. Should sufficient hot water be unavailable, the Contractor shall provide a minimum 40 gal. electric water heater with minimum recovery rate of 20 gal. per hour and a temperature controller for each showerhead. The Contractor shall provide a minimum of 1 shower. Instantaneous type in-line water heater may be incorporated at the shower head in lieu of hot water heater, upon approval by the Contracting Officer. Flow and temperature controls shall be located within the shower and shall be adjustable by the user. The wastewater pump shall be sized for 1.25 times the showerhead flow-rate at a pressure head sufficient to satisfy the filter head loss and discharge line losses. The pump shall supply a minimum 25 gpm flow with 35 ft. of pressure head. Used shower water shall be collected and filtered to remove asbestos contamination. Filters and residue shall be disposed of as asbestos contaminated material, per DETAIL SHEETS 9 and 14. Filtered water shall be discharged to the sanitary system. Wastewater filters shall be installed in series with the first stage pore size of 20 microns and the second stage pore size of 5 microns. The floor of the decontamination unit's clean room shall be kept dry and clean at all times. Water from the shower shall not be allowed to wet the floor in the clean room. Surfaces of the clean room and shower shall be wet-wiped 2 times after each shift change with a disinfectant solution. Proper housekeeping and hygiene requirements shall be maintained. Soap and towels shall be provided for showering, washing and drying. Any cloth towels provided shall be disposed of as ACM waste or shall be laundered in accordance with 29 CFR 1926, Section .1101. #### 1.16.3 Load-Out Unit A temporary load-out unit that is adjacent and connected to the regulated area and access tunnel shall be provided as described in DETAIL SHEET Number 20 and 25. Utilization of prefabricated units shall have prior approval of the Contracting Officer. The load-out unit shall be attached in a leak-tight manner to each regulated area. Surfaces of the load-out unit and access tunnel shall be adequately wet-wiped 2 times after each shift change. Materials used for wet wiping shall be disposed of as asbestos contaminated waste. # 1.16.4 Decontamination Area Entry Procedures The Contractor shall ensure that employees entering the decontamination area through the clean room or clean area: - a. Remove street clothing in the clean room or clean area and deposit it in lockers. - b. Put on protective clothing and respiratory protection before leaving the clean room or clean area. - c. Pass through the equipment room to enter the regulated area. ## 1.16.5 Decontamination Area Exit Procedures The Contractor shall ensure that the following procedures are followed: - a. Before leaving the regulated area, respirators shall be worn while employees remove all gross contamination and debris from their work clothing using a HEPA vacuum. - b. Employees shall remove their protective clothing in the equipment room and deposit the clothing in labeled impermeable bags or containers (see Detail Sheets 9 and 14) for disposal and/or laundering. - c. Employees shall not remove their respirators in the equipment room. - d. Employees shall shower prior to entering the clean room. If a shower has not been located between the equipment room and the clean room or the work is performed outdoors, the Contractor shall ensure that employees engaged in Class I asbestos jobs: a) Remove asbestos contamination from their work suits in the equipment room or decontamination area using a HEPA vacuum before proceeding to a shower that is not adjacent to the work area; or b) Remove their contaminated work suits in the equipment room, without cleaning worksuits, and proceed to a shower that is not adjacent to the work area. - e. After showering, employees shall enter the clean room before changing into street clothes. #### 1.16.6 Lunch Areas The Contractor shall provide lunch areas in which the airborne concentrations of asbestos are below $0.01~\mathrm{f/cc}$. ## 1.16.7 Smoking Smoking, if allowed by the Contractor, shall only be permitted in designated areas approved by the Contracting Officer. #### 1.17 REGULATED AREAS All Class II, and III asbestos work shall be conducted within regulated areas. The regulated area shall be demarcated to minimize the number of persons within the area and to protect persons outside the area from exposure to airborne asbestos. Where critical barriers or negative pressure enclosures are used, they shall demarcate the regulated area. Access to regulated areas shall be limited to authorized persons. The Contractor shall control access to regulated areas, ensure that only authorized personnel enter, and verify that Contractor required medical surveillance, training and respiratory protection program requirements are met prior to allowing entrance. #### 1.18 WARNING SIGNS AND TAPE Warning signs and tape printed bilingually in English and Spanish shall be provided at the regulated boundaries and entrances to regulated areas. The Contractor shall ensure that all personnel working in areas contiguous to regulated areas comprehend the warning signs. Signs shall be located to allow personnel to read the signs and take the necessary protective steps required before entering the area. Warning signs, as shown and described in DETAIL SHEET 11, shall be in vertical format conforming to 29 CFR 1910 and 29 CFR 1926, Section .1101, a minimum of 20 by 14 inches, and displaying the following legend in the lower panel: DANGER
ASBESTOS CANCER AND LUNG DISEASE HAZARD AUTHORIZED PERSONNEL ONLY RESPIRATORS AND PROTECTIVE CLOTHING ARE REQUIRED IN THIS AREA Spacing between lines shall be at least equal to the height of the upper of any two lines. Warning tape shall be provided as shown and described on DETAIL SHEET 11. Decontamination unit signage shall be as shown and described on DETAIL SHEET 15. #### 1.19 WARNING LABELS Warning labels shall be affixed to all asbestos disposal containers used to contain asbestos materials, scrap, waste debris, and other products contaminated with asbestos. Containers with preprinted warning labels conforming to requirements are acceptable. Warning labels shall be as described in DETAIL SHEET 14, shall conform to 29 CFR 1926, Section .1101 and shall be of sufficient size to be clearly legible displaying the following legend: # DANGER CONTAINS ASBESTOS FIBERS AVOID CREATING DUST CANCER AND LUNG DISEASE HAZARD ## 1.20 LOCAL EXHAUST VENTILATION Local exhaust ventilation units shall conform to ANSI Z9.2 and 29 CFR 1926, Section .1101. Filters on local exhaust system equipment shall conform to ANSI Z9.2 and UL 586. Filter shall be UL labeled. #### 1.21 TOOLS Vacuums shall be leak proof to the filter, equipped with HEPA filters, of sufficient capacity and necessary capture velocity at the nozzle or nozzle attachment to efficiently collect, transport and retain the ACM waste material. Power tools shall not be used to remove ACM unless the tool is equipped with effective, integral HEPA filtered exhaust ventilation capture and collection system, or has otherwise been approved for use by the Contracting Officer. Residual asbestos shall be removed from reusable tools prior to storage and reuse. Reusable tools shall be thoroughly decontaminated prior to being removed from regulated areas. # 1.22 RENTAL EQUIPMENT If rental equipment is to be used, written notification shall be provided to the rental agency, concerning the intended use of the equipment, the possibility of asbestos contamination of the equipment and the steps that will be taken to decontaminate such equipment. A written acceptance of the terms of the Contractor's notification shall be obtained from the rental agency. # 1.23 AIR MONITORING EQUIPMENT The Contractor's Designated IH shall approve air monitoring equipment to be used to collect samples. The equipment shall include, but shall not be limited to: - a. High-volume sampling pumps that can be calibrated and operated at a constant airflow up to 16 liters per minute when equipped with a sampling train of tubing and filter cassette. - b. Low-volume, battery powered, body-attachable, portable personal pumps that can be calibrated to a constant airflow up to approximately 3.5 liters per minute when equipped with a sampling train of tubing and filter cassette, and a self-contained rechargeable power pack capable of sustaining the calibrated flow rate for a minimum of 10 hours. The pumps shall also be equipped with an automatic flow control unit which shall maintain a constant flow, even as filter resistance increases due to accumulation of fiber and debris on the filter surface. - c. Single use standard 25 mm diameter cassette, open face, 0.8 micron pore size, mixed cellulose ester membrane filters and cassettes with 50 mm electrically conductive extension cowl, and shrink bands, to be used with low flow pumps in accordance with 29 CFR 1926, Section .1101 for personal air sampling. - d. Single use standard 25 mm diameter cassette, open face, 0.45 micron pore size, mixed cellulose ester membrane filters and cassettes with 50 mm electrically conductive cowl, and shrink bands, to be used with high flow pumps when conducting environmental area sampling using NIOSH Pub No. 84-100 Methods 7400 and 7402, (and the transmission electric microscopy method specified at 40 CFR 763 if required). - e. Appropriate plastic tubing to connect the air sampling pump to the selected filter cassette. - f. A flow calibrator capable of calibration to within plus or minus 2 percent of reading over a temperature range of minus 4 to plus 140 degrees F and traceable to a NIST primary standard. #### 1.24 EXPENDABLE SUPPLIES # 1.24.1 Glovebag Glovebags shall be provided as described in 29 CFR 1926, Section .1101 and SET-UP DETAIL SHEET 10. The glovebag assembly shall be 6 mil thick plastic, prefabricated and seamless at the bottom with preprinted OSHA warning label. # 1.24.2 Duct Tape Industrial grade duct tape of appropriate widths suitable for bonding sheet plastic and disposal container shall be provided. # 1.24.3 Disposal Containers Leak-tight (defined as solids, liquids, or dust that cannot escape or spill out) disposal containers shall be provided for ACM wastes as required by 29 CFR 1926 Section .1101 and DETAIL SHEETS 9A, 9B, 9C and 14. ## 1.24.4 Disposal Bags Leak-tight bags, 6 mil thick, shall be provided for placement of asbestos generated waste as described in DETAIL SHEET 9A. ## 1.24.5 Fiberboard Drums Fiberboard drums shall be 55 gallon sealed containers. # 1.24.6 Cardboard Boxes Heavy-duty corrugated cardboard boxes, coated with plastic or wax to retard deterioration from moisture, shall be provided as described in DETAIL SHEET 9C, if required by state and local requirements. Boxes shall fit into selected ACM disposal bags. Filled boxes shall be sealed leak-tight with duct tape. ## 1.24.7 Sheet Plastic Sheet plastic shall be polyethylene of 6 mil minimum thickness and shall be provided in the largest sheet size necessary to minimize seams ,as indicated on the project drawings. Film shall be clear and conform to ASTM D 4397, except as specified below: ## 1.24.8 Amended Water Amended water shall meet the requirements of ASTM D 1331. # 1.24.9 Leak-tight Wrapping Two layers of 6 mil minimum thick polyethylene sheet stock shall be used for the containment of removed asbestos-containing components or materials such as fire doors too large to be placed in disposal bags as described in DETAIL SHEET 9B. Upon placement of the ACM component or material, each layer shall be individually leak-tight sealed with duct tape. ## 1.24.10 Viewing Inspection Window Where feasible, a minimum of 1 clear, 1/8 inch thick, acrylic sheet, 18 by 24 inches, shall be installed as a viewing inspection window at eye level on a wall in each containment enclosure. The windows shall be sealed leak-tight with industrial grade duct tape. ## 1.24.11 Wetting Agents Removal encapsulant (a penetrating encapsulant) shall be provided when conducting removal abatement activities that require a longer removal time or are subject to rapid evaporation of amended water. The removal encapsulant shall be capable of wetting the ACM and retarding fiber release during disturbance of the ACM greater than or equal to that provided by amended water. Performance requirements for penetrating encapsulants are specified in paragraph ENCAPSULANTS. # 1.24.12 Strippable Coating Strippable coating in aerosol cans shall be used to adhere to surfaces and to be removed cleanly by stripping, at the completion of work. This work shall only be done in well ventilated areas. ## 1.25 MISCELLANEOUS ITEMS A sufficient quantity of other items, such as, but not limited to: scrapers, brushes, brooms, staple guns, tarpaulins, shovels, rubber squeegees, dust pans, other tools, scaffolding, staging, enclosed chutes, wooden ladders, lumber necessary for the construction of containments, UL approved temporary electrical equipment, material and cords, ground fault circuit interrupters, water hoses of sufficient length, fire extinguishers, first aid kits, portable toilets, logbooks, log forms, markers with indelible ink, spray paint in bright color to mark areas, project boundary fencing, etc., shall be provided. # PART 2 PRODUCTS #### 2.1 ENCAPSULANTS Encapsulants shall conform to USEPA requirements, shall contain no toxic or hazardous substances and no solvent and shall meet the following requirements: #### ALL ENCAPSULANTS Requirement Test Standard Flame Spread - 25, ASTM E 84 Smoke Emission - 50 Combustion Toxicity Univ. of Pittsburgh Protocol Zero Mortality Life Expectancy, 20 yrs ASTM C 732 Accelerated Aging Test Permeability, Minimum ASTM E 96 0.4 perms Additional Requirements for Bridging Encapsulant Requirement Test Standard Cohesion/Adhesion Test, ASTM E 736 50 pounds of force/foot Fire Resistance, Negligible ASTM E 119 affect on fire resistance rating over 3 hour test (Classified by UL for use over fibrous and $\,$ cementitious sprayed fireproofing) Impact Resistance, Minimum ASTM D 2794 43 in-lb (Gardner Impact Test) Flexibility, no rupture or ASTM D 522 cracking (Mandrel Bend Test) Additional Requirements for Penetrating Encapsulant Requirement Test Standard Cohesion/Adhesion Test, ASTM E 736 50 pounds of force/foot Fire Resistance, Negligible ASTM E 119 affect on fire resistance rating over 3 hour test(Classified by UL for use over fibrous and cementitious sprayed fireproofing) Impact Resistance, Minimum ASTM D 2794 43 in-lb (Gardner Impact Test) Flexibility, no rupture or ASTM D 522 cracking (Mandrel Bend Test) Additional Requirements for Lockdown Encapsulant Requirement Test Standard Fire Resistance, Negligible ASTM E 119 affect on fire resistance rating over 3 hour test(Tested with fireproofing over encapsulant #### ALL ENCAPSULANTS Requirement Test Standard applied directly to steel member) Bond Strength, 100 pounds of ASTM E 736 force/foot (Tests compatibility with cementitious and fibrous fireproofing) ## 2.2 RECYCLABLE MATERIALS Recyclable materials shall conform to EPA requirements in accordance with Section 01670 RECYCLED / RECOVERED MATERIALS. ## PART 3 EXECUTION #### 3.1 GENERAL REQUIREMENTS Asbestos abatement work tasks shall be performed as shown on the detailed plans and drawings, as summarized in paragraph DESCRIPTION OF WORK and including Table 1 and the Contractor's Accident Prevention Plan, Asbestos Hazard Abatement Plan, and the Activity Hazard Analyses. The
Contractor shall use the engineering controls and work practices required in 29 CFR 1926, Section .1101(q) in all operations regardless of the levels of exposure. Personnel shall wear and utilize protective clothing and equipment as specified. The Contractor shall not permit eating, smoking, drinking, chewing or applying cosmetics in the regulated area. All hot work (burning, cutting, welding, etc.) shall be conducted under controlled conditions in conformance with 29 CFR 1926, Section .352, Fire Prevention. Personnel of other trades, not engaged in asbestos abatement activities, shall not be exposed at any time to airborne concentrations of asbestos unless all the administrative and personal protective provisions of the Contractor's Accident Prevention Plan are complied with. Power to the regulated area shall be locked-out and tagged in accordance with 29 CFR 1910, and temporary electrical service with ground fault circuit interrupters shall be provided as needed. Temporary electrical service shall be disconnected when necessary for wet removal. The Contractor shall stop abatement work in the regulated area immediately when the airborne total fiber concentration: (1) equals or exceeds 0.01 f/cc, or the pre-abatement concentration, whichever is greater, outside the regulated area; or (2) equals or exceeds 1.0 f/cc inside the regulated area. The Contractor shall correct the condition to the satisfaction of the Contracting Officer, including visual inspection and air sampling. Work shall resume only upon notification by the Contracting Officer. Corrective actions shall be documented. # 3.2 PROTECTION OF ADJACENT WORK OR AREAS TO REMAIN Asbestos abatement shall be performed without damage to or contamination of adjacent work or area. Where such work or area is damaged or contaminated, as verified by the Contracting Officer using visual inspection or sample analysis, it shall be restored to its original condition or decontaminated by the Contractor at no expense to the Government, as deemed appropriate by the Contracting Officer. This includes inadvertent spill of dirt, dust or debris in which it is reasonable to conclude that asbestos may exist. When these spills occur, work shall stop in all effected areas immediately and the spill shall be cleaned. When satisfactory visual inspection and air sampling analysis results are obtained and have been evaluated by the Contractor's Designated IH and the Contracting Officer, work shall proceed. #### 3.3 OBJECTS # 3.3.1 Removal of Mobile Objects DETAIL SHEET 27, contains a summary of Contractor's required handling, cleaning and storage and reinstallation of mobile objects, furniture and equipment located in each abatement area. Mobile objects and furnishings identified in DETAIL SHEET 27 are considered contaminated with asbestos fibers. Mobile objects and furnishings shall be precleaned using HEPA filtered vacuum followed by wet wiping. These objects shall be removed to an area or site designated on DETAIL SHEET 27 and as identified by the Contracting Officer, and stored; or other appropriate action taken as identified on DETAIL SHEET 27. Carpets, draperies, and other items which may not be suitable for onsite wet cleaning methods shall be disposed of as asbestos contaminated material. # 3.3.2 Stationary Objects Stationary objects, furniture, and equipment as shown on DETAIL SHEET 27, shall remain in place and shall be precleaned using HEPA vacuum followed by adequate wet wiping. Stationary objects and furnishings shall be covered with 2 layers of polyethylene and edges sealed with duct tape. # 3.3.3 Reinstallation of Mobile Objects At the conclusion of the asbestos abatement work in each regulated area, and after meeting the final clearance requirements for each regulated area, objects previously removed shall be transferred back to the cleaned area from which they came in accordance with the storage code designation for that material as shown on DETAIL SHEET 27, and reinstalled. ## 3.4 BUILDING VENTILATION SYSTEM AND CRITICAL BARRIERS Building ventilating systems supplying air into or returning air out of a regulated area shall be shut down and isolated by lockable switch or other positive means in accordance with 29 CFR 1910, Section .147. Air-tight critical barriers shall be installed on building ventilating openings located inside the regulated area that supply or return air from the building ventilation system or serve to exhaust air from the building. The critical barriers shall consist of air-tight rigid covers for building ventilation supply and exhaust grills where the ventilation system is required to remain in service during abatement. Edges to wall, ceiling and floor surfaces shall be sealed with industrial grade duct tape. Critical barriers shall be installed as shown on drawings and appended SET-UP DETAIL SHEETS. #### 3.5 PRECLEANING Surfaces shall be cleaned by HEPA vacuum and adequately wet wiped prior to establishment of containment. # 3.6 METHODS OF COMPLIANCE #### 3.6.1 Mandated Practices The Contractor shall employ proper handling procedures in accordance with 29 CFR 1926 and 40 CFR 61, Subpart M, and the specified requirements. The specific abatement techniques and items identified shall be detailed in the Contractor's Asbestos Hazard Abatement Plan including, but not limited to, details of construction materials, equipment, and handling procedures. The Contractor shall use the following engineering controls and work practices in all operations, regardless of the levels of exposure: - a. Vacuum cleaners equipped with HEPA filters to collect debris and dust containing ACM. - b. Wet methods or wetting agents to control employee exposures during asbestos handling, mixing, removal, cutting, application, and cleanup; except where it can be demonstrated that the use of wet methods is unfeasible due to, for example, the creation of electrical hazards, equipment malfunction, and in roofing. - c. Prompt clean-up and disposalin leak-tight containers of wastes and debris contaminated with asbestos. - d. Inspection and repair of polyethylene in work and high traffic areas. - e. Cleaning of equipment and surfaces of containers filled with ACM prior to removing them from the equipment room or area. #### 3.6.2 Control Methods The Contractor shall use the following control methods to comply with the PELs: - a. Local exhaust ventilation equipped with HEPA filter dust collection systems; - b. Enclosure or isolation of processes producing asbestos dust; - c. Ventilation of the regulated area to move contaminated air away from the breathing zone of employees and toward a filtration or collection device equipped with a HEPA filter; - d. Use of other work practices and engineering controls; - e. Where the feasible engineering and work practice controls described above are not sufficient to reduce employee exposure to or below the PELs, the Contractor shall use them to reduce employee exposure to the lowest levels attainable by these controls and shall supplement them by the use of respiratory protection that complies with paragraph, RESPIRATORY PROTECTION PROGRAM. ## 3.6.3 Unacceptable Practices The following work practices and engineering controls shall not be used for work related to asbestos or for work which disturbs ACM, regardless of measured levels of asbestos exposure or the results of initial exposure assessments: - a. High-speed abrasive disc saws that are not equipped with point of cut ventilator or enclosures with HEPA filtered exhaust air. - b. Compressed air used to remove asbestos, or materials containing asbestos, unless the compressed air is used in conjunction with an enclosed ventilation system designed to capture the dust cloud created by the compressed air. - c. Dry sweeping, shoveling, or other dry clean-up of dust and debris containing ACM. - d. Employee rotation as a means of reducing employee exposure to asbestos. ## 3.6.4 Class I Work Procedures In addition to requirements of paragraphs Mandated Practices and Control Methods, the following engineering controls and work practices shall be used: - a. A Competent Person shall supervise the installation and operation of the control system. - b. For jobs involving the removal of more than 25 feet or 10 square feet of TSI or surfacing material, the Contractor shall place critical barriers over all openings to the regulated area. - c. HVAC systems shall be isolated in the regulated area by sealing with a double layer of plastic or air-tight rigid covers. - d. Impermeable dropcloths (6 mil or greater thickness) shall be placed on surfaces beneath all removal activity. - e. Objects within the regulated area shall be handled as specified in paragraph OBJECTS. - f. Where a negative exposure assessment has not been provided or where exposure monitoring shows the PEL was exceeded, the regulated area shall be ventilated to move contaminated air away from the employee's breathing zone toward a HEPA unit or collection device. # 3.6.5 Specific Control Methods for Class I Work In addition to requirements of paragraph Class I Work Procedures, Class I asbestos work shall be performed using the control methods identified in the subparagraphs below. # 3.6.5.1 Negative Pressure Enclosure (NPE) System The NPE system shall be as shown in SETUP DETAIL SHEET 2, 3, 4, 8. The system shall provide at least 4 air changes per hour inside the containment. The local exhaust unit equipment shall be operated 24 hours per day until the containment is removed, and shall be leak-proof to the filter and equipped with HEPA filters. Air movement shall be directed away from the employees and toward a HEPA filtration device. The NPE shall be smoke tested for leaks at the beginning of each shift. Local exhaust equipment shall be sufficient to maintain a minimum pressure differential of minus 0.02 inch of water column relative to adjacent, unsealed areas. Pressure differential shall be monitored continuously, 24 hours per day, with an
automatic manometric recording instrument. Pressure differential recordings shall be provided daily on the same day collected. Readings shall be reviewed by the Contractor's Designated Competent Person and IH prior to submittal. The Contracting Officer shall be notified immediately if the pressure differential falls below the prescribed minimum. The building ventilation system shall not be used as the local exhaust system for the regulated area. The local exhaust system shall terminate outdoors unless an alternate arrangement is allowed by the Contract Officer. All filters used shall be new at the beginning of the project and shall be periodically changed as necessary and disposed of as ACM waste. # 3.6.5.2 Glovebag Systems Glovebag systems shall be as shown in SETUP DETAIL SHEET 10. The glovebag system shall be used to remove ACM from straight runs of piping and elbows and other connections. Glovebags shall be used without modification and shall be smoke-tested for leaks and any leaks sealed prior to use. Glovebags shall be installed to completely cover the circumference of pipe or other structures where the work is to be done. Glovebags shall be used only once and shall not be moved. Glovebags shall not be used on surfaces that have temperatures exceeding 150 degrees F. Prior to disposal, glovebags shall be collapsed by removing air within them using a HEPA vacuum. Before beginning the operation, loose and friable material adjacent to the glovebag operation shall be wrapped and sealed in 2 layers of plastic or otherwise rendered intact. At least 2 persons shall perform Class I glovebag removal. Asbestos regulated work areas shall be established as specified and shown on detailed drawings and plans for glovebag abatement. Designated boundary limits for the asbestos work shall be established with rope or other continuous barriers and all other requirements for asbestos control areas shall be maintained, including area signage and boundary warning tape as specified in SET-UP DETAIL SHEET 11. - a. In addition to requirements for negative pressure glovebag systems above, the Contractor shall attach HEPA vacuum systems or other devices to the bag to prevent collapse during removal of ACM from straight runs of piping and elbows and other connections. - b. The negative pressure glove boxes used to remove ACM from pipe runs shall be fitted with gloved apertures and a bagging outlet and constructed with rigid sides from metal or other material which can withstand the weight of the ACM and water used during removal. A negative pressure shall be created in the system using a HEPA filtration system. The box shall be smoke tested for leaks prior to each use. ## 3.6.6 Class II Work In addition to the requirements of paragraphs Mandated Practices and Control Methods, the following engineering controls and work practices shall be used: - a. A Competent Person shall supervise the work. - b. For indoor work, critical barriers shall be placed over all openings to the regulated area. - c. Impermeable dropcloths shall be placed on surfaces beneath all removal activity. # 3.6.7 Specific Control Methods for Class II Work In addition to requirements of paragraph Class II Work, Class II work shall be performed using the following methods: # 3.6.7.1 Cementitious Siding and Shingles or Transite Panels When removing cementitious asbestos-containing siding, shingles or transite panels the Contractor shall use the following practices shown in RESPONSE ACTION DETAIL SHEET 81, 82 and 83. Intentionally cutting, abrading or breaking siding, shingles, or transite panels is prohibited. Each panel or shingle shall be sprayed with amended water prior to removal. Nails shall be cut with flat, sharp instruments. Unwrapped or unbagged panels or shingles shall be immediately lowered to the ground via covered dust-tight chute, crane or hoist, or placed in an impervious waste bag or wrapped in plastic sheeting and lowered to the ground no later than the end of the work shift. ## 3.6.7.2 Other Class II Jobs The Contractor shall use the following work practices when performing Class II removal of wall boards and door caulkingACM: The material shall be thoroughly wetted with amended water prior and during its removal. The material shall be removed in an intact state. The ACM removed shall be immediately bagged or wrapped. ## 3.6.8 Specific Control Methods for Class III Work Class III asbestos work shall be conducted using engineering and work practice controls which minimize the exposure to employees performing the asbestos work and to bystander employees. The work shall be performed using wet methods and, to the extent feasible, using local exhaust ventilation. The Contractor shall use impermeable dropcloths and shall isolate the operation, using mini-enclosures or glovebag systems, where the disturbance involves drilling, cutting, abrading, sanding, chipping, breaking, or sawing of TSI or surfacing material. # 3.6.9 Cleaning After Asbestos Removal After completion of all asbestos removal work, surfaces from which ACM has been removed shall be wet wiped or sponged clean, or cleaned by some equivalent method to remove all visible residue. Run-off water shall be collected and filtered through a dual filtration system. A first filter shall be provided to remove fibers 20 micrometers and larger, and a final filter provided that removes fibers 5 micrometers and larger. After the gross amounts of asbestos have been removed from every surface, remaining visible accumulations of asbestos on floors shall be collected using plastic shovels, rubber squeegees, rubber dustpans, and HEPA vacuum cleaners as appropriate to maintain the integrity of the regulated area. When TSI and surfacing material has been removed, workmen shall use HEPA vacuum cleaners to vacuum every surface. Surfaces or locations which could harbor accumulations or residual asbestos dust shall be checked after vacuuming to verify that no asbestos-containing material remains; and shall be re-vacuumed as necessary to remove the ACM. # 3.6.10 Class II Asbestos Work Response Action Detail Sheets The following Class II Asbestos Work Response Action Detail Sheet is specified on Table 1 for each individual work task to be performed: a. Interior Asbestos Cement, Fiberboard and Drywall Panels: See Sheet 48 ## 3.6.11 Encapsulation of ACM Prior to applying any encapsulant, the entire surface area shall be inspected for loose, or damaged asbestos material: a. Penetrating Encapsulation: Before penetrating encapsulation is applied, asbestos removal work in the area shall be complete and the surfaces to be encapsulated shall be free of loose or damaged material. Substrate shall be evaluated before application to ensure that the encapsulant will not cause the substrate to fail in any way. Acoustical wall and ceiling plaster surfaces shall be encapsulated in accordance with manufacturer's recommendations. Plug samples shall be taken to determine if full penetration has been achieved. If full penetration has not been achieved, surfaces shall be recoated while the matrix is still wet, until full penetration is achieved: See Detail Sheet 39. # 3.6.12 Sealing Contaminated Items Designated for Disposal Contaminated architectural, mechanical, and electrical appurtenances such as Venetian blinds, full height partitions, carpeting, duct work, pipes and fittings, radiators, light fixtures, conduit panels, and other contaminated items designated for removal shall be coated with an asbestos lockdown encapsulant at the demolition site before being removed from the asbestos control area. These items shall be vacuumed prior to application of the lockdown encapsulant. The asbestos lockdown encapsulant shall be tinted a contrasting color and shall be spray applied by airless method. Thoroughness of sealing operation shall be visually gauged by the extent of colored coating on exposed surfaces. # 3.7 FINAL CLEANING AND VISUAL INSPECTION Upon completion of abatement, the regulated area shall be cleaned by collecting, packing, and storing all gross contamination; see SET-UP DETAIL SHEETS 9, 14 and 20. A final cleaning shall be performed using HEPA vacuum and wet cleaning of all exposed surfaces and objects in the regulated area. Upon completion of the cleaning, the Contractor shall conduct a visual pre-inspection of the cleaned area in preparation for a final inspection before final air clearance monitoring and recleaning, as necessary. Upon completion of the final cleaning, the Contractor and the Contracting Officer shall conduct a final visual inspection of the cleaned regulated area in accordance with ASTM E 1368 and document the results on the Final Cleaning and Visual Inspection as specified on the SET-UP DETAIL SHEET 19. If the Contracting Officer rejects the clean regulated area as not meeting final cleaning requirements, the Contractor shall reclean as necessary and have a follow-on inspection conducted with the Contracting Officer. Recleaning and follow-up reinspection shall be at the Contractor's expense. # 3.8 LOCKDOWN Prior to removal of plastic barriers and after clean-up of gross contamination and final visual inspection, a post removal (lockdown) encapsulant shall be spray applied to ceiling, walls, floors, and other surfaces in the regulated area. # 3.9 EXPOSURE ASSESSMENT AND AIR MONITORING #### 3.9.1 General Requirements For Exposure Exposure assessment, air monitoring and analysis of airborne concentration of asbestos fibers shall be performed in accordance with 29 CFR 1926, Section .1101, the Contractor's air monitoring plan, and as specified. Personal exposure air monitoring (collected at the breathing zone) that is representative of the exposure of each employee who is assigned to work within a regulated area shall be performed by the Contractor's Designated IH. Breathing zone samples shall be taken for at least 25 percent of the workers in each shift, or a minimum of 2, whichever is greater. Air monitoring
results at the 95 percent confidence level shall be calculated as shown in Table 2 at the end of this section. The Contractor shall provide an onsite independent testing laboratory with qualified analysts and appropriate equipment to conduct sample analyses of air samples using the methods prescribed in 29 CFR 1926, Section .1101, to include NIOSH Pub No. 84-100 Method 7400. Preabatement and abatement environmental air monitoring shall be performed by the Contracting Officer's IH. Final clearance environmental air monitoring, shall be performed by the Contracting Officer's IH. Environmental and final clearance air monitoring shall be performed using NIOSH Pub No. 84-100 Method 7400 (PCM) with optional confirmation of results by the EPA TEM Method specified in 40 CFR 763. For environmental and final clearance, air monitoring shall be conducted at a sufficient velocity and duration to establish the limit of detection of the method used at 0.005 f/cc. Confirmation of asbestos fiber concentrations (asbestos f/cc) from environmental and final clearance samples collected and analyzed by NIOSH Pub No. 84-100 Method 7400 (total f/cc) may be conducted using TEM in accordance with NIOSH Pub No. 84-100 Method 7402. When such confirmation is conducted, it shall be from the same sample filter used for the NIOSH Pub No. 84-100 Method 7400 PCM analysis. For all Contractor required environmental or final clearance air monitoring, confirmation of asbestos fiber concentrations, using NIOSH Pub No. 84-100 Method 7402, shall be at the Contractor's expense. Monitoring may be duplicated by the Government at the discretion of the Contracting Officer. Results of breathing zone samples shall be posted at the job site and made available to the Contracting Officer. The Contractor shall maintain a fiber concentration inside a regulated area less than or equal to 0.1 f/cc expressed as an 8 hour, time-weighted average (TWA) during the conduct of the asbestos abatement. If fiber concentration rises above 0.1 f/cc, work procedures shall be investigated with the Contracting Officer to determine the cause. At the discretion of the Contracting Officer, fiber concentration may exceed 0.1 f/cc but shall not exceed 1.0 f/cc expressed as an 8-hour TWA. The Contractor's workers shall not be exposed to an airborne fiber concentration in excess of 1.0 f/cc, as averaged over a sampling period of 30 minutes. Should either an environmental concentration of 1.0 f/cc expressed as an 8-hour TWA or a personal excursion concentration of 1.0 f/cc expressed as a 30-minute sample occur inside a regulated work area, the Contractor shall stop work immediately, notify the Contracting Officer, and implement additional engineering controls and work practice controls to reduce airborne fiber levels below prescribed limits in the work area. Work shall not restart until authorized by the Contracting Officer. # 3.9.2 Initial Exposure Assessment The Contractor's Designated IH shall conduct an exposure assessment immediately before or at the initiation of an asbestos abatement operation to ascertain expected exposures during that operation. The assessment shall be completed in time to comply with the requirements which are triggered by exposure data or the lack of a negative exposure assessment, and to provide information necessary to assure that all control systems planned are appropriate for that operation. The assessment shall take into consideration both the monitoring results and all observations, information or calculations which indicate employee exposure to asbestos, including any previous monitoring conducted in the workplace, or of the operations of the Contractor which indicate the levels of airborne asbestos likely to be encountered on the job. # 3.9.3 Negative Exposure Assessment The Contractor shall provide a negative exposure assessment for the specific asbestos job which will be performed. The negative exposure assessment shall be provided within 2 days of the initiation of the project and conform to the following criteria: - a. Objective Data: Objective data demonstrating that the product or material containing asbestos minerals or the activity involving such product or material cannot release airborne fibers in concentrations exceeding the PEL-TWA and PEL-Excursion Limit under those work conditions having the greatest potential for releasing asbestos. - b. Prior Asbestos Jobs: Where the Contractor has monitored prior asbestos jobs for the PEL and the PEL-Excursion Limit within 12 months of the current job, the monitoring and analysis were performed in compliance with asbestos standard in effect; the data were obtained during work operations conducted under workplace conditions closely resembling the processes, type of material, control methods, work practices, and environmental conditions used and prevailing in the Contractor's current operations; the operations were conducted by employees whose training and experience are no more extensive than that of employees performing the current job; and these data show that under the conditions prevailing and which will prevail in the current workplace, there is a high degree of certainty that the monitoring covered exposure from employee exposures will not exceed the PEL-TWA and PEL-Excursion Limit. - c. Initial Exposure Monitoring: The results of initial exposure monitoring of the current job, made from breathing zone air samples that are representative of the 8-hour PEL-TWA and 30-minute short-term exposures of each employee. The monitoring covered exposure from operations which are most likely during the performance of the entire asbestos job to result in exposures over the PELs. ## 3.9.4 Independent Environmental Monitoring The Government has retained an independent air monitoring firm to perform pre-abatement during abatement final clearance air monitoring. The air monitoring contractor has been provided a copy of the contract that includes this abatement work. The abatement contractor will provide the air monitoring contractor with an up-to-date copy of the accepted Asbestos Hazard Abatement Plan, Accident Prevention Plan and pertinent detailed drawings. The air monitoring contractor is required to comply with the abatement contractor's safety and health requirements. The abatement contractor will coordinate all onsite activities with the air monitoring contractor, the COR, and other affected parties as directed by the COR. The abatement contractor will provide the air monitoring contractor with an up-to-date schedule of abatement contractor work activities. The air monitoring contractor will coordinate with the abatement contractor and the COR during the performance Government required air monitoring. The abatement contractor is responsible for performing exposure assessment and personal air monitoring of abatement contractor's work. The air monitoring contractor is responsible for performing these tasks for its employee. ## 3.9.5 Preabatement Environmental Air Monitoring Preabatement environmental air monitoring shall be established 1 day prior to the masking and sealing operations for each regulated area to determine background concentrations before abatement work begins. As a minimum, preabatement air samples shall be collected using NIOSH Pub No. 84-100 Method 7400, PCM at these locations: outside the building; inside the building, but outside the regulated area perimeter; and inside each regulated work area. One sample shall be collected for every 2000 square feet of floor space. At least 2 samples shall be collected outside the building: at the exhaust of the HEPA unit; and downwind from the abatement site. The PCM samples shall be analyzed within 24 hours; and if any result in fiber concentration greater than 0.01 f/cc, asbestos fiber concentration shall be confirmed using NIOSH Pub No. 84-100 Method 7402 (TEM). ## 3.9.6 Environmental Air Monitoring During Abatement Until an exposure assessment is provided to the Contracting Officer, environmental air monitoring shall be conducted at locations and frequencies that will accurately characterize any evolving airborne asbestos fiber concentrations. The assessment shall demonstrate that the product or material containing asbestos minerals, or the abatement involving such product or material, cannot release airborne asbestos fibers in concentrations exceeding 0.01 f/cc as a TWA under those work conditions having the greatest potential for releasing asbestos. The monitoring shall be at least once per shift at locations including, but not limited to, close to the work inside a regulated area; preabatement sampling locations; outside entrances to a regulated area; close to glovebag operations; representative locations outside of the perimeter of a regulated area; inside clean room; and at the exhaust discharge point of local exhaust system ducted to the outside of a containment (if used). If the sampling outside regulated area shows airborne fiber levels have exceeded background or 0.01 f/cc, whichever is greater, work shall be stopped immediately, and the Contracting Officer notified. The condition causing the increase shall be corrected. Work shall not restart until authorized by the Contracting Officer. # 3.9.7 Final Clearance Air Monitoring Prior to conducting final clearance air monitoring, the Contractor and the Contracting Officer shall conduct a final visual inspection of the regulated area where asbestos abatement has been completed. The final visual inspection shall be as specified in SET-UP DETAIL SHEET 19. Final clearance air monitoring shall not begin until acceptance of the Contractor's final cleaning by the Contracting Officer. The Contracting Officer's IH will conduct final clearance air monitoring using aggressive air sampling techniques as defined in EPA 560/5-85-024 or as otherwise required by federal or state requirements. The sampling and analytical method used will be NIOSH Pub No. 84-100Method 7400 (PCM) and Table 3 with confirmation
of results by NIOSH Pub No. 84-100 Method 7402 (TEM). # 3.9.7.1 Final Clearance Requirements, NIOSH PCM Method For PCM sampling and analysis using NIOSH Pub No. 84-100 Method 7400, the fiber concentration inside the abated regulated area, for each airborne sample, shall be less than 0.01~f/cc. The abatement inside the regulated area is considered complete when every PCM final clearance sample is below the clearance limit. If any sample result is greater than 0.01~total f/cc, the asbestos fiber concentration (asbestos f/cc) shall be confirmed from that same filter using NIOSH Pub No. 84-100~Method 7402~(TEM) at Contractor's expense. If any confirmation sample result is greater than 0.01~asbestos f/cc, abatement is incomplete and cleaning shall be repeated. Upon completion of any required recleaning, resampling with results to meet the above clearance criteria shall be done. ## 3.9.7.2 Final Clearance Requirements, EPA TEM Method For EPA TEM sampling and analysis, using the EPA Method specified in 40 CFR 763, abatement inside the regulated area is considered complete when the arithmetic mean asbestos concentration of the 5 inside samples is less than or equal to 70 structures per square millimeter (70 S/mm). When the arithmetic mean is greater than 70 S/mm, the 3 blank samples shall be analyzed. If the 3 blank samples are greater than 70 S/mm, resampling shall be done. If less than 70 S/mm, the 5 outside samples shall be analyzed and a Z-test analysis performed. When the Z-test results are less than 1.65, the decontamination shall be considered complete. If the Z-test results are more than 1.65, the abatement is incomplete and cleaning shall be repeated. Upon completion of any required recleaning, resampling with results to meet the above clearance criteria shall be done. ## 3.9.7.3 Air Clearance Failure If clearance sampling results fail to meet the final clearance requirements, the Contractor shall pay all costs associated with the required recleaning, resampling, and analysis, until final clearance requirements are met. # 3.9.8 Air-Monitoring Results and Documentation Air sample fiber counting shall be completed and results provided within 24 hours (breathing zone samples), and 24 hours (environmental/clearance monitoring) after completion of a sampling period. The Contracting Officer shall be notified immediately of any airborne levels of asbestos fibers in excess of established requirements. Written sampling results shall be provided within 5 working days of the date of collection. The written results shall be signed by testing laboratory analyst, testing laboratory principal and the Contractor's Designated IH Contracting Officer's IH. The air sampling results shall be documented on a Contractor's daily air monitoring log. The daily air monitoring log shall contain the following information for each sample: - a. Sampling and analytical method used; - b. Date sample collected; - c. Sample number; - e. Location/activity/name where sample collected; - f. Sampling pump manufacturer, model and serial number, beginning flow rate, end flow rate, average flow rate (L/min); - g. Calibration date, time, method, location, name of calibrator, signature; - h. Sample period (start time, stop time, elapsed time (minutes); - i. Total air volume sampled (liters); - j. Sample results (f/cc and S/mm square) if EPA methods are required for final clearance; - k. Laboratory name, location, analytical method, analyst, confidence level. In addition, the printed name and a signature and date block for the Industrial Hygienist who conducted the sampling and for the Industrial Hygienist who reviewed the daily air monitoring log verifying the accuracy of the information. ## 3.10 CLEARANCE CERTIFICATION When asbestos abatement is complete, ACM waste is removed from the regulated areas, and final clean-up is completed, the Contracting Officer will certify the areas as safe before allowing the warning signs and boundary warning tape to be removed. After final clean-up and acceptable airborne concentrations are attained, but before the HEPA unit is turned off and the containment removed, the Contractor shall remove all pre-filters on the building HVAC system and provide new pre-filters. The Contractor shall dispose of such filters as asbestos contaminated materials. HVAC, mechanical, and electrical systems shall be re-established in proper working order. The Contractor and the Contracting Officer shall visually inspect all surfaces within the containment for residual material or accumulated debris. The Contractor shall reclean all areas showing dust or residual materials. The Contracting Officer will certify in writing that the area is safe before unrestricted entry is permitted. The Government will have the option to perform monitoring to certify the areas are safe before entry is permitted. # 3.11 CLEANUP AND DISPOSAL ## 3.11.1 Title to ACM Materials ACM material resulting from abatement work, except as specified otherwise, shall become the property of the Contractor and shall be disposed of as specified and in accordance with applicable federal, state and local regulations. ## 3.11.2 Collection and Disposal of Asbestos All ACM waste shall be collected and including contaminated wastewater filters, scrap, debris, bags, containers, equipment, and asbestos contaminated clothing, shall be collected and placed in leak-tight containers such as double plastic bags (see DETAIL SHEET 9A); sealed double wrapped polyethylene sheet (see DETAIL 9B); sealed fiberboard boxes (see DETAIL SHEET 9C); or other approved containers. Waste within the containers shall be wetted in case the container is breeched. Asbestos-containing waste shall be disposed of at an EPA, state and local approved asbestos landfill. For temporary storage, sealed impermeable containers shall be stored in an asbestos waste load-out unit or in a storage/transportation conveyance (i.e., dumpster, roll-off waste boxes, etc.) in a manner acceptable to and in an area assigned by the Contracting Officer. Procedure for hauling and disposal shall comply with 40 CFR 61, Subpart M, state, regional, and local standards. #### 3.11.3 Scale Weight Measurement Scales used for measurement shall be public scales. Weighing shall be at a point nearest the work at which a public scale is available. Scales shall be standard truck scales of the beam type; scales shall be equipped with the type registering beam and an "over and under" indicator; and shall be capable of accommodating the entire vehicle. Scales shall be tested, approved and sealed by an inspector of the State of MD. Scales shall be calibrated and resealed as often as necessary and at least once every three months to ensure continuous accuracy. Vehicles used for hauling ACM shall be weighed empty daily at such time as directed and each vehicle shall bear a plainly legible identification mark. # 3.11.4 Weigh Bill and Delivery Tickets Copies of weigh bills and delivery tickets shall be submitted to the Contracting Officer during the progress of the work. The Contractor shall furnish the Contracting Officer scale tickets for each load of ACM weighed and certified. These tickets shall include tare weight; identification mark for each vehicle weighed; and date, time and location of loading and unloading. Tickets shall be furnished at the point and time individual trucks arrive at the worksite. A master log of all vehicle loading shall be furnished for each day of loading operations. Before the final statement is allowed, the Contractor shall file with the Contracting Officer certified weigh bills and/or certified tickets and manifests of all ACM actually disposed by the Contractor for this contract. # 3.11.5 Asbestos Waste Shipment Record The Contractor shall complete and provide the Contracting Officer final completed copies of the Waste Shipment Record for all shipments of waste material as specified in 40 CFR 61, Subpart M and other required state waste manifest shipment records, within 3 days of delivery to the landfill. Each Waste Shipment Record shall be signed and dated by the Contractor, the waste transporter and disposal facility operator. #### TABLE 1 ## INDIVIDUAL WORK TASK DATA ELEMENTS | | Sheet of | | | | | | | | |-------|---|--|--|--|--|--|--|--| | There | is a separate data sheet for each individual work task. | | | | | | | | | 1 | WORK TASK DESIGNATION NUMBER | | | | | | | | | | LOCATION OF WORK TASK | | | | | | | | | | | | | | | | | | | 3. | BRIEF DESCRIPTION OF MATERIAL TO BE ABATED: | a Time of Ashestos | | | | | | | | | | a. Type of Asbestos | | | | | | | | | | b. Fercenc aspestos content | | | | | | | | | 4. | ABATEMENT TECHNIQUE TO BE USED | | | | | | | | | 5. | OSHA ASBESTOS CLASS DESIGNATION FOR WORK TASK | | | | | | | | | 6. | EPA NESHAP FRIABILITY DESIGNATION FOR WORK TASK | | | | | | | | | | Friable Non-friable Category I | | | | | | | | | | Non-friable Category II | | | | | | | | | 7. | | | | | | | | | | 8. | QUANTITY: METERS , SQUARE METERS | | | | | | | | | 8a. | QUANTITY: LINEAR FT, SQUARE FT | | | | | | | | | | RESPONSE ACTION DETAIL SHEET NUMBER FOR WORK TASK | | | | | | | | | 10. | SET-UP DETAIL SHEET NUMBERS | | | | | | | | | | FOR WORK TASK,,,, | ## NOTES: - (1) Numeric sequence of individual work tasks (1,2,3,4, etc.) for each regulated area. Each category of EPA friability/OSHA class has a separate task. - (2) Specific location of work (building, floor, area, e.g., Building 1421, 2nd Floor, Rm 201) - (3) A description of material to be abated (example: horizontal pipe, cement wall panels, tile, stucco, etc.) type of asbestos (chrysotile, amosite, crocidolite, etc.); and % asbestos content. - (4) Technique to be used: Removal = REM; Encapsulation = ENCAP; Encasement = ENCAS; Enclosure = ENCL; Repair = REP. - (5) Class designation: Class I, II, III, or IV (OSHA
designation). - (6) Friability of materials: Check the applicable EPA NESHAP friability designation. - (7) Form: Interior or Exterior Architectural = IA or EA; Mechanical/Electrical = ME. Condition: Good = G; Fair = F; Poor = P. - (8) Quantity of ACM for each work task in meters or square meters. - (8a) Quantity of ACM for each work task in linear feet or square feet. - (9) Response Action Detail Sheet specifies the material to be abated and the methods to be used. There is only one Response Action Detail Sheet for each abatement task. - (10) Set-up Detail Sheets indicate containment and control methods used in support of the response action (referenced in the selected Response Action Detail Sheet). #### TABLE 2 FORMULA FOR CALCULATION OF THE 95 PERCENT CONFIDENCE LEVEL (Reference: NIOSH 7400) Fibers/cc(01.95 percent CL) = X + (X) * (1.645) * (CV) Where: X = ((E)(AC))/((V)(1000)) E = ((F/Nf) - (B/Nb))/Af CV = The precision value; 0.45 shall be used unless the analytical laboratory provides the Contracting Officer with documentation (Round Robin Program participation and results) that the laboratory's precision is better. AC = Effective collection area of the filter in square millimeters V = Air volume sampled in liters ${\tt E}$ = Fiber density on the filter in fibers per square millimeter F/Nf = Total fiber count per graticule field B/Nb = Mean field blank count per graticule field Af = Graticule field area in square millimeters TWA = C1/T1 + C2/T2 = Cn/Tn Where: C = Concentration of contaminant T = Time sampled. TABLE 3 NIOSH METHOD 7400 PCM ENVIRONMENTAL AIR SAMPLING PROTOCOL (NON-PERSONAL) | Sample
Location | Minimum
No. of
Samples | 111001 1010 | Min. Vol.
(Note 2)
(Liters) | Sampling
Rate
(liters/min.) | |---|---|--------------|-----------------------------------|-----------------------------------| | Inside
Abatement
Area | 0.5/140
Square
Meters
(Notes
3 & 4) | 0.45 microns | 3850 | 2-16 | | Each Room in
1 Abatement
Area Less
than 140
Square meters | | 0.45 microns | 3850 | 2-16 | | Field Blank | 2 | 0.45 microns | 0 | 0 | | Laboratory
Blank | 1 | 0.45 microns | 0 | 0 | # Notes: - 1. Type of filter is Mixed Cellulose Ester. - 2. Ensure detection limit for PCM analysis is established at 0.005 fibers/cc. - 3. One sample shall be added for each additional 140 square meters. (The corresponding I-P units are 5/1500 square feet). - 4. A minimum of 5 samples are to be taken per abatement area, plus 2 field blanks. TABLE 4 EPA AHERA METHOD: TEM AIR SAMPLING PROTOCOL | Location
Sampled | Minimum
No. of
Samples | Filter Pore
Size | Min.
Vol.
(Liters) | Sampling
Rate
(liters/min.) | |------------------------------|------------------------------|---------------------|--------------------------|-----------------------------------| | Inside
Abatement
Area | 5 | 0.45 microns | 1500 | 2-16 | | Outside
Abatement
Area | 5 | 0.45 microns | 1500 | 2-16 | | Field Blank | 2 | 0.45 microns | 0 | 0 | | Laboratory
Blank | 1 | 0.45 microns | 0 | 0 | # Notes: - 1. Type of filter is Mixed Cellulose Ester. - 2. The detection limit for TEM analysis is 70 structures/square mm. # CERTIFICATE OF WORKER'S ACKNOWLEDGMENT | PROJECT NAMI | | CONTRACT NO. | | | | | |--|--|---|--|---|--|--| | CONTRACTOR I | | | | | | | | EMPLOYEE'S 1 | NAME | | , | , , | | | | (Print) | | (Last) | (First) | (MI) | | | | Social Secur | rity Number: | | | | | | | BEEN LINI
INHALE AS | KED WITH TYPE
SBESTOS FIBER | CAN BE DANGEROUS S OF LUNG DISEASE S, THE CHANCE THA OF THE NONSMOKING | AND CANCER. IF T YOU WILL DEVEL | STOS FIBERS HAS
YOU SMOKE AND
OP LUNG CANCER | | | | and you comp
will perform
personal pro-
its use; and
capacity to
conditions e
equipment.
certification
obligations
check the bi | plete formal m and project otective equi d that you re perform your expected, whi These things on, you are a to you. The lock(s) for t | asbestos training specific training pment including a ceive a medical er assigned work tale wearing the reare to be done acknowledging that | specific to the g; that you be s respirator, tha xamination to ev sks, under the e quired personal t no cost to you your employer h ignated Industri training you ha | protective . By signing this as met these al Hygienist will ve completed. | | | | Model Accred | or Competent
ditation Prog | Persons and Super
ram (MAP) trainin
requirements. | | completed EPA's
actor/Supervisor", | | | | (2
(2
(2
(2
(3
(3
(3
(4) | ourse, "Worke
2) For OSHA
han one type
ile, etc.):
hat meets thi
3) For OSHA
ype of Class
(a) I ha | er", that meets the Class II work (who of Class II mater I have completed as State's require Class II work (the II material): The completed an 8 | is State's requiere there will bials, i.e., roof EPA's MAP trainiments. ere will only be-hour training c | e abatement of more ing, siding, floor ng course, "Worker", abatement of one lass on the elements | | | | | nd engineerir | .1101(k)(9)(viii) ag controls of 29 | | the specific work
n .1101(g) and | | | | | (b) I ha
this State's | ve completed EPA' requirements. | | | | | | course constagency maint
the elements
specific wor | istent with E
tenance and o
s of 29 CFR 1 | PA requirements for sustodial staff at 1926, Section .110 and engineering c | or training of 1
40 CFR 763, Sec
1(k)(9)(viii), i | tion .92(a)(2) and
n addition to the | | | ## CERTIFICATE OF WORKER'S ACKNOWLEDGMENT | (5) For OSHA Class IV work: I have completed at least a 2-hr course consistent with EPA requirements for training of local education agency maintenance and custodial staff at 40 CFR 763, (a)(1), and the elements of 29 CFR 1926, Section .1101(k)(9)(viii), in addition to the specific work practices and engineering controls at 29 CFR 1926, Section .1101(g) and hands-on training. | |---| | c. Workers, Supervisors and the Designated Competent Person: I have completed annual refresher training as required by EPA's MAP that meets this State's requirements. | | PROJECT SPECIFIC TRAINING: I have been provided and have completed the project specific training required by this Contract. My employer's Designated Industrial Hygienist and Designated Competent Person conducted the training. | | RESPIRATORY PROTECTION: I have been trained in accordance with the criteria in the Contractor's Respiratory Protection program. I have been trained in the dangers of handling and breathing asbestos dust and in the proper work procedures and use and limitations of the respirator(s) I will wear. I have been trained in and will abide by the facial hair and contact lens use policy of my employer. | | RESPIRATOR FIT-TEST TRAINING: I have been trained in the proper selection, fit, use, care, cleaning, maintenance, and storage of the respirator(s) that I will wear. I have been fit-tested in accordance with the criteria in the Contractor's Respiratory Program and have received a satisfactory fit. I have been assigned my individual respirator. I have been taught how to properly perform positive and negative pressure fit-check upon donning negative pressure respirators each time. | | MEDICAL EXAMINATION: I have had a medical examination within the last twelve months which was paid for by my employer. The examination included: health history, pulmonary function tests, and may have included an evaluation of a chest x-ray. A physician made a determination regarding my physical capacity to perform work tasks on the project while wearing personal protective equipment including a respirator. I was personally provided a copy and informed of the results of that examination. My employer's Industrial Hygienist evaluated the medical certification provided by the physician and checked the appropriate blank below. The physician determined that there: | | were no limitations to performing the required work tasks. were identified physical limitations to performing the required work tasks. | -- End of Section -- Date of the medical examination _____ Employee Signature _____ date _____ Contractor's Industrial Hygienist Signature _____ date _____ # SECTION 13851A # FIRE DETECTION AND ALARM SYSTEM, ADDRESSABLE 08/98 # PART 1 GENERAL ## 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI)
ANSI S3.41 (1990; R 1996) Audible Emergency Evacuation Signals # INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE) IEEE C62.41 (1991; R 1995) Surge Voltages in Low-Voltage AC Power Circuits ## NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) | NFPA 70 | (2002) National Electrical Code | |----------|---| | NFPA 72 | (1999) National Fire Alarm Code | | NFPA 90A | (1999) Installation of Air Conditioning and Ventilating Systems | # UNDERWRITERS LABORATORIES (UL) | UL 6 | (1997) Rigid Metal Conduit | |--------------------|---| | UL 38 | (1994; Rev Nov 1994) Manually Actuated
Signaling Boxes for Use with
Fire-Protective Signaling Systems | | UL 228 | (1997) Door Closers-Holders, With or
Without Integral Smoke Detectors | | UL 268 | (1996; Rev thru Jun 1998) Smoke Detectors
for Fire Protective Signaling Systems | | UL 268A | (1998) Smoke Detectors for Duct Application | | UL 464 | (1996; Rev May 1997) Audible Signal Appliances | | UL 521 | (1993; Rev Oct 1994) Heat Detectors for Fire Protective Signaling Systems | | UL 632/ANSI C33.41 | (1994; Rev Sep 1994) Electrically-Actuated | | | Transmitters | |---------|--| | UL 797 | (1993; Rev thru Mar 1997) Electrical
Metallic Tubing | | UL 864 | (1996) Control Units for Fire-Protective
Signaling Systems | | UL 1242 | (1996; Rev Mar 1998) Intermediate Metal
Conduit | | UL 1971 | (1995; Rev thru May 1997) Signaling Devices for the Hearing Impaired | #### 1.2 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: #### SD-02 Shop Drawings Fire Alarm Reporting System; G, ED Detail drawings, prepared and signed by a Registered Professional Engineer or a NICET Level 4 Fire Alarm Technician, consisting of a complete list of equipment and material, including manufacturer's descriptive and technical literature, catalog cuts, and installation instructions. Note that the contract drawings show layouts based on typical detectors. The Contractor shall check the layout based on the actual detectors to be installed and make any necessary revisions in the detail drawings. The detail drawings shall also contain complete wiring and schematic diagrams for the equipment furnished, equipment layout, and any other details required to demonstrate that the system has been coordinated and will properly function as a unit. Detailed point-to-point wiring diagram shall be prepared and signed by a Registered Professional Engineer or a NICET Level 4 Fire Alarm Technician showing points of connection. Diagram shall include connections between system devices, appliances, control panels, supervised devices, and equipment that is activated or controlled by the panel. #### SD-03 Product Data Storage Batteries; G, ED Substantiating battery calculations for supervisory and alarm power requirements. Ampere-hour requirements for each system component and each panel component, and the battery recharging period shall be included. Special Tools and Spare Parts Spare parts data for each different item of material and equipment specified, not later than 3 months prior to the date of beneficial occupancy. Data shall include a complete list of parts and supplies with the current unit prices and source of supply and a list of the parts recommended by the manufacturer to be replaced after 1 year of service. Technical Data and Computer Software; G, ED Technical data which relates to computer software. #### Training Lesson plans, operating instructions, maintenance procedures, and training data, furnished in manual format, for the training courses. The operations training shall familiarize designated government personnel with proper operation of the fire alarm system. The maintenance training course shall provide the designated government personnel adequate knowledge required to diagnose, repair, maintain, and expand functions inherent to the system. ## Testing Detailed test procedures, prepared and signed by a Registered Professional Engineer or a NICET Level 4 Fire Alarm Technician, for the fire detection and alarm system 60 days prior to performing system tests. ## SD-06 Test Reports Testing; G, ED Test reports, in booklet form, showing field tests performed to prove compliance with the specified performance criteria, upon completion and testing of the installed system. Each test report shall document readings, test results and indicate the final position of controls. The Contractor shall include the NFPA 72 Certificate of Completion and NFPA 72 Inspection and Testing Form, with the appropriate test reports. #### SD-07 Certificates #### Oualifications Proof of qualifications for required personnel. The installer shall submit proof of experience for the Professional Engineer, fire alarm technician, and the installing company. # SD-10 Operation and Maintenance Data Technical Data and Computer Software; G, ED Six copies of operating manual outlining step-by-step procedures required for system startup, operation, and shutdown. The manual shall include the manufacturer's name, model number, service manual, parts list, and complete description of equipment and their basic operating features. Six copies of maintenance manual listing routine maintenance procedures, possible breakdowns and repairs, and troubleshooting guide. The manuals shall include conduit layout, equipment layout and simplified wiring, and control diagrams of the system as installed. The manuals shall include complete procedures for system revision and expansion, detailing both equipment and software requirements. Original and backup copies of all software delivered for this project shall be provided, on each type of media utilized. Manuals shall be approved prior to training. #### 1.3 GENERAL REQUIREMENTS #### 1.3.1 Standard Products Material and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products for at least 2 years prior to bid opening. Equipment shall be supported by a service organization that can provide service within 24 hours of notification. #### 1.3.2 Nameplates Major components of equipment shall have the manufacturer's name, address, type or style, voltage and current rating, and catalog number on a noncorrosive and nonheat-sensitive plate which is securely attached to the equipment. #### 1.3.3 Keys and Locks Locks shall be keyed alike. Four keys for the system shall be provided. ## 1.3.4 Tags Tags with stamped identification number shall be furnished for keys and locks. ## 1.3.5 Verification of Dimensions After becoming familiar with details of the work, the Contractor shall verify dimensions in the field and shall advise the Contracting Officer of any discrepancy before performing the work. # 1.3.6 Compliance The fire detection and alarm system and the central reporting system shall be configured in accordance with NFPA 72; exceptions are acceptable as directed by the Contracting Officer. The equipment furnished shall be compatible and be UL listed, FM approved, or approved or listed by a nationally recognized testing laboratory in accordance with the applicable NFPA standards. #### 1.3.7 Qualifications # 1.3.7.1 Engineer and Technician - a. Registered Professional Engineer with verification of experience and at least 4 years of current experience in the design of the fire protection and detection systems. - b. National Institute for Certification in Engineering Technologies (NICET) qualifications as an engineering technician in fire alarm systems program with verification of experience and current NICET certificate. c. The Registered Professional Engineer may perform all required items under this specification. The NICET Fire Alarm Technician shall perform only the items allowed by the specific category of certification held. #### 1.3.7.2 Installer The installing Contractor shall provide the following: Fire Alarm Technicians to perform the installation of the system. A Fire Alarm Technician with a minimum of 4 years of experience shall perform/supervise the installation of the fire alarm system. Fire Alarm Technicians with a minimum of 2 years of experience shall be utilized to assist in the installation and terminate fire alarm devices, cabinets and panels. An electrician shall be allowed to install wire or cable and to install conduit for the fire alarm system. The Fire Alarm technicians installing the equipment shall be factory trained in the installation, adjustment, testing, and operation of the equipment specified herein and on the drawings. # 1.3.7.3 Design Services Installations requiring designs or modifications of fire detection, fire alarm, or fire suppression systems shall require the services and review of a qualified fire protection engineer. For the purposes of meeting this requirement, a qualified fire protection engineer is defined as an individual meeting one of the following conditions: - a. An engineer having a Bachelor of Science or Masters of Science Degree in Fire Protection Engineering from an accredited university engineering program, plus a minimum of 2 years' work experience in fire protection engineering. - b. A registered professional engineer (P.E.) in fire protection engineering. - c. A registered PE in a related engineering discipline and member grade status in the National Society of Fire Protection Engineers. - d. An engineer with a minimum of 10 years' experience in fire protection engineering and member grade status in the National Society of Fire Protection Engineers. #### 1.4 SYSTEM
DESIGN ## 1.4.1 Operation The fire alarm and detection system shall be a complete, supervised fire alarm reporting system. The system shall be activated into the alarm mode by actuation of any alarm initiating device. The system shall remain in the alarm mode until the initiating device is reset and the fire alarm control panel is reset and restored to normal. Alarm initiating devices shall be connected to initiating device circuits (IDC), Style D, to signal line circuits (SLC), Style 6, in accordance with NFPA 72. Alarm notification appliances shall be connected to notification appliance circuits (NAC), Style Z in accordance with NFPA 72. A looped conduit system shall be provided so that if the conduit and all conductors within are severed at any point, all IDC, NAC and SLC will remain functional. The conduit loop requirement is not applicable to the signal transmission link from the local panels (at the protected premises) to the Supervising Station (fire station, fire alarm central communication center). Textual, audible, and visual appliances and systems shall comply with NFPA 72. Fire alarm system components requiring power, except for the control panel power supply, shall operate on 24 Volts dc. Addressable system shall be microcomputer (microprocessor or microcontroller) based with a minimum word size of eight bits and shall provide the following features: - a. Sufficient memory to perform as specified and as shown for addressable system. - b. Individual identity of each addressable device for the following conditions: alarm; trouble; open; short; and appliances missing/failed remote detector - sensitivity adjustment from the panel for smoke detectors - c. Capability of each addressable device being individually disabled or enabled from the panel. - d. Each SLC shall be sized to provide 40 percent addressable expansion without hardware modifications to the panel. ## 1.4.2 Operational Features The system shall have the following operating features: - a. Monitor electrical supervision of IDC, SLC, and NAC. - b. Monitor electrical supervision of the primary power (ac) supply, battery voltage, placement of alarm zone module (card, PC board) within the control panel, and transmitter tripping circuit integrity. - c. A trouble buzzer and trouble LED/LCD (light emitting diode/liquid crystal diode) to activate upon a single break, open, or ground fault condition which prevents the required normal operation of the system. The trouble signal shall also operate upon loss of primary power (ac) supply, low battery voltage, removal of alarm zone module (card, PC board), and disconnection of the circuit used for transmitting alarm signals off-premises. A trouble alarm silence switch shall be provided which will silence the trouble buzzer, but will not extinguish the trouble indicator LED/LCD. Subsequent trouble and supervisory alarms shall sound the trouble signal until silenced. After the system returns to normal operating conditions, the trouble buzzer shall again sound until the silencing switch returns to normal position, unless automatic trouble reset is provided. - d. A one person test mode. Activating an initiating device in this mode will activate an alarm for a short period of time, then automatically reset the alarm, without activating the transmitter during the entire process. - e. A transmitter disconnect switch to allow testing and maintenance of the system without activating the transmitter but providing a trouble signal when disconnected and a restoration signal when reconnected. - f. Evacuation alarm silencing switch which, when activated, will silence alarm devices, but will not affect the zone indicating LED/LCD nor the operation of the transmitter. This switch shall be over-ridden upon activation of a subsequent alarm from an unalarmed device and the NAC devices will be activated. - g. Electrical supervision for circuits used for supervisory signal services (i.e., sprinkler systems, valves, etc.). Supervision shall detect any open, short, or ground. - h. Confirmation or verification of all smoke detectors. The control panel shall interrupt the transmission of an alarm signal to the system control panel for a factory preset period. This interruption period shall be adjustable from 1 to 60 seconds and be factory set at 20 seconds. Immediately following the interruption period, a confirmation period shall be in effect during which time an alarm signal, if present, will be sent immediately to the control panel. Fire alarm devices other than smoke detectors shall be programmed without confirmation or verification. - i. The fire alarm control panel shall provide supervised addressable relays for HVAC shutdown. An override at the HVAC panel shall not be provided. - j. The fire alarm control panel shall provide the required monitoring and supervised control outputs needed to accomplish elevator recall. - k. The fire alarm control panel shall monitor the fire sprinkler system, or other fire protection extinguishing system. - 1. The control panel and field panels shall be software reprogrammable to enable expansion or modification of the system without replacement of hardware or firmware. Examples of required changes are: adding or deleting devices or zones; changing system responses to particular input signals; programming certain input signals to activate auxiliary devices. - m. Zones for IDC and NAC shall be arranged as indicated on the contract drawings. #### 1.4.3 Alarm Functions An alarm condition on a circuit shall automatically initiate the following functions: - a. Transmission of signals over the station telephonic fire reporting system. - b. Visual indications of the alarmed devices on the fire alarm control panel display . - c. Continuous sounding or operation of alarm notification appliances throughout the building as required by ANSI S3.41. - d. Closure of doors held open by electromagnetic devices. - e. Deactivation of the air handling units serving the alarmed area. f. Shutdown of power to the data processing equipment in the alarmed area. # 1.4.4 Primary Power Operating power shall be provided as required by paragraph Power Supply for the System. Transfer from normal to emergency power or restoration from emergency to normal power shall be fully automatic and not cause transmission of a false alarm. Loss of ac power shall not prevent transmission of a signal via the fire reporting system upon operation of any initiating circuit. ## 1.4.5 Battery Backup Power Battery backup power shall be through use of rechargeable, sealed-type storage batteries and battery charger. # 1.4.6 Interface With other Equipment Interfacing components shall be furnished as required to connect to subsystems or devices which interact with the fire alarm system, such as supervisory or alarm contacts in suppression systems, operating interfaces for smoke control systems, door releases, etc. #### 1.5 TECHNICAL DATA AND COMPUTER SOFTWARE Technical data and computer software (meaning technical data which relates to computer software) which is specifically identified in this project, and which may be defined/required in other specifications, shall be delivered, strictly in accordance with the CONTRACT CLAUSES, and in accordance with the Contract Data Requirements List, DD Form 1423. Data delivered shall be identified by reference to the particular specification paragraph against which it is furnished. Data to be submitted shall include complete system, equipment, and software descriptions. Descriptions shall show how the equipment will operate as a system to meet the performance requirements of this contract. The data package shall also include the following: - (1) Identification of programmable portions of system equipment and capabilities. - (2) Description of system revision and expansion capabilities and methods of implementation detailing both equipment and software requirements. - (3) Provision of operational software data on all modes of programmable portions of the fire alarm and detection system. - (4) Description of Fire Alarm Control Panel equipment operation. - (5) Description of auxiliary and remote equipment operations. - (6) Library of application software. - (7) Operation and maintenance manuals as specified in SD-19 of the Submittals paragraph. ## 1.6 DELIVERY AND STORAGE Equipment delivered and placed in storage shall be stored with protection from the weather, humidity and temperature variation, dirt, dust, and any other contaminants. # PART 2 PRODUCTS #### 2.1 CONTROL PANEL Control Panel shall comply with the applicable requirements of UL 864. Panel shall be modular, installed in a surface mounted steel cabinet with hinged door and cylinder lock. Control panel shall be a clean, uncluttered, and orderly assembled panel containing components and equipment required to provide the specified operating and supervisory functions of the system. The panel shall have prominent rigid plastic, phenolic or metal identification plates for LED/LCDs, zones, SLC, controls, meters, fuses, and switches. Nameplates for fuses shall also include ampere rating. The LED/LCD displays shall be located on the exterior of the cabinet door or be visible through the cabinet door. Control panel switches shall be within the locked cabinet. A suitable means (single operation) shall be provided for testing the control panel visual indicating devices (meters or LEDs/LCDs). Meters and LEDs shall be plainly visible when the cabinet door is closed. Signals and LEDs/LCDs shall be provided to indicate by zone any alarm, supervisory or trouble condition on the system. Each IDC shall be powered and supervised so that a signal on one zone does not prevent the receipt of signals from other devices. Loss of power, including batteries, shall not require the manual reloading of a program. Upon restoration of power, startup shall be automatic, and shall not require any manual operation. The loss of primary power or the sequence of applying primary or
emergency power shall not affect the transmission of alarm, supervisory or trouble signals. Visual annunciation shall be provided for LED/LCD visual display as an integral part of the control panel and shall identify with a word description and id number each device. Cabinets shall be provided with ample gutter space to allow proper clearance between the cabinet and live parts of the panel equipment. If more than one modular unit is required to form a control panel, the units shall be installed in a single cabinet large enough to accommodate units. Cabinets shall be painted red. # 2.1.1 Remote System Audible/Visual Display Audible appliance shall have a minimum sound level output rating of 85 dBA at 10 feet and operate in conjunction with the panel integral display. The audible device shall be silenced by a system silence switch on the remote system. The audible device shall be silenced by the system silence switch located at the remote location, but shall not extinguish the visual indication. The remote LED/LCD visual display shall provide identification, consisting of the word description and id number for each device as displayed on the control panel. A rigid plastic, phenolic or metal identification sign which reads "Fire Alarm System Remote Display" shall be provided at the remote audible/visual display. The remote visual appliance located with the audible appliance shall not be extinguished until the trouble or alarm has been cleared. ## 2.1.2 Circuit Connections Circuit conductors entering or leaving the panel shall be connected to screw-type terminals with each conductor and terminal marked for identification. ## 2.1.3 System Expansion and Modification Capabilities Any equipment and software needed by qualified technicians to implement future changes to the fire alarm system shall be provided as part of this contract. #### 2.1.4 Addressable Control Module The control module shall be capable of operating as a relay (dry contact form C) for interfacing the control panel with other systems, and to control door holders. The module shall be UL listed as compatible with the control panel. The indicating device or the external load being controlled shall be configured as a Style Y notification appliance circuits. The system shall be capable of supervising, audible, visual and dry contact circuits. The control module shall have both an input and output address. The supervision shall detect a short on the supervised circuit and shall prevent power from being applied to the circuit. The control model shall provide address setting means compatible with the control panel's SLC supervision and store an internal identifying code. The control module shall contain an integral LED that flashes each time the control module is polled. ## 2.1.5 Addressable Initiating Device Circuits Module The initiating device being monitored shall be configured as a Style D initiating device circuits. The system shell be capable of defining any module as an alarm module and report alarm trouble, loss of polling, or as a supervisory module, and reporting supervisory short, supervisory open or loss of polling. The module shall be UL listed as compatible with the control panel. The monitor module shall provide address setting means compatible with the control panel's SLC supervision and store an internal identifying code. Monitor module shall contain an integral LED that flashes each time the monitor module is polled. Pull stations with a monitor module in a common backbox are not required to have an LED. #### 2.2 STORAGE BATTERIES Storage batteries shall be provided and shall be 24 Vdc sealed, lead-calcium type requiring no additional water. The batteries shall have ample capacity, with primary power disconnected, to operate the fire alarm system for a period of 72 hours. Following this period of battery operation, the batteries shall have ample capacity to operate all components of the system, including all alarm signaling devices in the total alarm mode for a minimum period of 30 minutes. Batteries shall be located in a separate battery cabinet. Batteries shall be provided with overcurrent protection in accordance with NFPA 72. Separate battery cabinets shall have a lockable, hinged cover similar to the fire alarm panel. The lock shall be keyed the same as the fire alarm control panel. Cabinets shall be painted to match the fire alarm control panel. ## 2.3 BATTERY CHARGER Battery charger shall be completely automatic, 24 Vdc with high/low charging rate, capable of restoring the batteries from full discharge (18 Volts dc) to full charge within 48 hours. A pilot light indicating when batteries are manually placed on a high rate of charge shall be provided as part of the unit assembly, if a high rate switch is provided. Charger shall be located in control panel cabinet or in a separate battery cabinet. #### 2.4 ADDRESSABLE MANUAL FIRE ALARM STATIONS Addressable manual fire alarm stations shall conform to the applicable requirements of UL 38. Manual stations shall be connected into signal line circuits. Stations shall be installed on flush mounted outlet boxes. Manual stations shall be mounted at 48 inches. Stations shall be single action type. Stations shall be finished in red, with raised letter operating instructions of contrasting color. Stations requiring the breaking of glass or plastic panels for operation are not acceptable. Stations employing glass rods are not acceptable. The use of a key or wrench shall be required to reset the station. Gravity or mercury switches are not acceptable. Switches and contacts shall be rated for the voltage and current upon which they operate. Addressable pull stations shall be capable of being field programmed, shall latch upon operation and remain latched until manually reset. Stations shall have a separate screw terminal for each conductor. #### 2.5 FIRE DETECTING DEVICES Fire detecting devices shall comply with the applicable requirements of NFPA 72, NFPA 90A, UL 268, UL 268A, and UL 521. The detectors shall be provided as indicated. Detector base shall have screw terminals for making connections. No solder connections will be allowed. Detectors located in concealed locations (above ceiling, raised floors, etc.) shall have a remote visible indicator LED/LCD. Addressable fire detecting devices, except flame detectors, shall be dynamically supervised and uniquely identified in the control panel. All fire alarm initiating devices shall be individually addressable, except where indicated. Installed devices shall conform to NFPA 70 hazard classification of the area where devices are to be installed. # 2.5.1 Heat Detectors Heat detectors shall be designed for detection of fire by fixed temperature. Heat detector spacing shall be rated in accordance with UL 521. Detectors located in areas subject to moisture, exterior atmospheric conditions, shall be types approved for such locations. Heat detectors located in attic spaces or similar concealed spaces below the roof shall be intermediate temperature rated. ## 2.5.1.1 Fixed Temperature Detectors Detectors shall be designed for semi-flush outlet box mounting and supported independently of wiring connections. Detectors shall be designed to detect high heat. The detectors shall have a specific temperature setting of 135 degrees F. The UL 521 test rating for the fixed temperature detectors shall be rated for 15 by 15 ft. #### 2.5.2 Smoke Detectors Smoke detectors shall be designed for detection of abnormal smoke densities. Smoke detectors shall be ionization photoelectric type. Detectors shall contain a visible indicator LED/LCD that shows when the unit is in alarm condition. Detectors shall not be adversely affected by vibration or pressure. Detectors shall be the plug-in type in which the detector base contains terminals for making wiring connections. Detectors that are to be installed in concealed (above false ceilings, etc.) locations shall be provided with a remote indicator LED/LCD suitable for mounting in a finished, visible location. #### 2.5.2.1 Ionization Detectors Ionization detectors with a dual chamber shall be responsive to both invisible and visible particles of combustion. One chamber shall be a reference chamber and the second a sampling chamber. Detectors containing radium shall not be provided. Detectors shall not cause an alarm condition due to anticipated fluctuations in relative humidity. The sensitivity of the detector shall be field adjustable to compensate for operating conditions. Detector shall require no replacement or readjustment to restore it to normal operation after an alarm condition. Each detector shall be capable of withstanding ambient air velocity up to 300 fpm in accordance with UL 268. Addressable smoke detectors shall be capable of having the sensitivity being remotely adjusted by the control panel. ## 2.5.2.2 Photoelectric Detectors Detectors shall operate on a light scattering concept using an LED light source. Failure of the LED shall not cause an alarm condition. Detectors shall be factory set for sensitivity and shall require no field adjustments of any kind. Detectors shall have an obscuration rating in accordance with UL 268. Addressable smoke detectors shall be capable of having the sensitivity being remotely adjusted by the control panel. #### 2.5.2.3 Duct Detectors Duct-mounted photoelectric smoke detectors shall be furnished and installed where indicated and in accordance with NFPA 90A. Units shall consist of a smoke detector as specified in paragraph Photoelectric Detectors, mounted in a special housing fitted with duct sampling tubes. Detector circuitry shall be mounted in a metallic enclosure exterior to the duct. Detectors shall have a manual reset. Detectors shall be rated for air velocities that include air flows between 500 and 4000 fpm. Detectors shall be powered from the fire alarm panel. Sampling tubes shall run the full width of the duct. The duct detector package shall conform to the
requirements of NFPA 90A, UL 268A, and shall be UL listed for use in air-handling systems. The control functions, operation, reset, and bypass shall be controlled from the fire alarm control panel. Lights to indicate the operation and alarm condition; and the test and reset buttons shall be visible and accessible with the unit installed and the cover in place. Detectors mounted above 6 feet and those mounted below 6 feet that cannot be easily accessed while standing on the floor, shall be provided with a remote detector indicator panel containing test and reset switches. Remote lamps and switches as well as the affected fan units shall be properly identified in etched plastic placards. Detectors shall have auxiliary contacts to provide control, interlock, and shutdown functions. The detectors shall be supplied by the fire alarm system manufacturer to ensure complete system compatibility. # 2.6 NOTIFICATION APPLIANCES Audible appliances shall conform to the applicable requirements of UL 464. Devices shall be connected into notification appliance circuits. Devices shall have a separate screw terminal for each conductor. Audible appliances shall generate a unique audible sound from other devices provided in the building and surrounding area. Surface mounted audible appliances shall be painted red. Recessed audible appliances shall be installed with a grill that is painted red. #### 2.6.1 Alarm Horns Horns shall be surface mounted, with the matching mounting back box recessed grille and vibrating type suitable for use in an electrically supervised circuit. Horns shall produce a sound rating of at least 85 dBA at 10 feet. Horns used in exterior locations shall be specifically listed or approved for outdoor use and be provided with metal housing and protective grilles. # 2.6.2 Visual Notification Appliances Visual notification appliances shall conform to the applicable requirements of UL 1971 and the contract drawings. Appliances shall have clear high intensity optic lens, xenon flash tubes, and output white light. Strobe flash rate shall be between 1 to 3 flashes per second and a minimum of 75 candela. Strobe shall be semi-flush mounted. ## 2.6.3 Combination Audible/Visual Notification Appliances Combination audible/visual notification appliances shall provide the same requirements as individual units except they shall mount as a unit in standard backboxes. Units shall be factory assembled. Any other audible notification appliance employed in the fire alarm systems shall be approved by the Contracting Officer. #### 2.7 FIRE DETECTION AND ALARM SYSTEM PERIPHERAL EQUIPMENT # 2.7.1 Electromagnetic Door Hold-Open Devices Devices shall be attached to the walls unless otherwise indicated. Devices shall comply with the appropriate requirements of UL 228. Devices shall operate on 24 Volt dc power. Compatible magnetic component shall be attached to the door. Under normal conditions, the magnets shall attract and hold the doors open. When magnets are de-energized, they shall release the doors. Magnets shall have a holding force of 25 pounds. Devices shall be UL or FM approved. Housing for devices shall be brushed aluminum or stainless steel. Operation shall be fail safe with no moving parts. Electromagnetic door hold-open devices shall not be required to be held open during building power failure. ## 2.7.2 Conduit Conduit and fittings shall comply with NFPA 70, UL 6, UL 1242, and UL 797. # 2.7.3 Wiring Wiring shall conform to NFPA 70. Wiring for 120 Vac power shall be No. 12 AWG minimum. The SLC wiring shall be copper cable in accordance with the manufacturers requirements. Wiring for fire alarm dc circuits shall be No. 16 AWG minimum. Voltages shall not be mixed in any junction box, housing, or device, except those containing power supplies and control relays. Wiring shall conform to NFPA 70. System field wiring shall be solid copper and installed in metallic conduit or electrical metallic tubing, except that rigid plastic conduit may be used under slab-on-grade. Conductors shall be color coded. Conductors used for the same functions shall be similarly color coded. Wiring code color shall remain uniform throughout the circuit. Pigtail or T-tap connections to initiating device circuits, supervisory alarm circuits, and notification appliance circuits are prohibited. T-tapping using screw terminal blocks is allowed for style 5 addressable systems. # 2.7.4 Special Tools and Spare Parts Software, connecting cables and proprietary equipment, necessary for the maintenance, testing, and reprogramming of the equipment shall be furnished to the Contracting Officer. Two spare fuses of each type and size required shall be furnished. Two percent of the total number of each different type of detector, but no less than two each, shall be furnished. Spare fuses shall be mounted in the fire alarm panel. #### 2.8 TRANSMITTERS ## 2.8.1 Telephonic Reporting System Transmitters shall be compatible with existing receiving equipment, "SECUTRON" at the Supervising Station and shall comply with applicable requirements of UL 632/ANSI C33.41. Transmitter shall respond to the actuation of the fire alarm control panel and shall be of the electric motor-driven or prewound spring mechanism type; it shall transmit not less than four rounds of code. When motor-driven transmitters are provided, the motor shall be connected to a supervised circuit in a control panel. Metallic or rigid plastic code number plates on the exterior face of transmitters shall be provided. Transmitters shall be designed to provide the same features as the fire alarm boxes for electrically-supervised, coded positive noninterfering type and shall have the ability to transmit signals on grounded or open circuits. Activation of box when a single open fault is present on exterior fire alarm circuit shall have box to idle for one complete round only, then immediately transmit four complete code rounds via the box earth ground connection. Transmitter shall have a local energy type auxiliary tripping device. Code wheel shall be metallic and box code shall be as directed. Wiring shall be extended to the indicated telephone terminating location and connected to specific twisted pair cable identified by the COR in the field. # PART 3 EXECUTION # 3.1 INSTALLATION All work shall be installed as shown and in accordance with the manufacturer's diagrams and recommendations, unless otherwise specified. Smoke detectors shall not be installed until construction is essentially complete and the building has been thoroughly cleaned. # 3.1.1 Power Supply for the System A single dedicated circuit connection for supplying power from a branch circuit to each building fire alarm system shall be provided. The power shall be supplied as shown on the drawings. The power supply shall be equipped with a locking mechanism and marked in red with the words "FIRE ALARM CIRCUIT CONTROL". ## 3.1.2 Wiring Conduit size for wiring shall be in accordance with NFPA 70. Wiring for the fire alarm system shall not be installed in conduits, junction boxes, or outlet boxes with conductors of lighting and power systems. Not more than two conductors shall be installed under any device screw terminal. The wires under the screw terminal shall be straight when placed under the terminal then clamped in place under the screw terminal. The wires shall be broken and not twisted around the terminal. Circuit conductors entering or leaving any mounting box, outlet box enclosure, or cabinet shall be connected to screw terminals with each terminal and conductor marked in accordance with the wiring diagram. Connections and splices shall be made using screw terminal blocks. The use of wire nut type connectors in the system is prohibited. Wiring within any control equipment shall be readily accessible without removing any component parts. The fire alarm equipment manufacturer's representative shall be present for the connection of wiring to the control panel. ## 3.1.3 Control Panel The control panel and its assorted components shall be mounted so that no part of the enclosing cabinet is less than 12 inches nor more than 78 inches above the finished floor. Manually operable controls shall be between 36 and 42 inches above the finished floor. Panel shall be installed to comply with the requirements of UL 864. #### 3.1.4 Detectors Detectors shall be located and installed in accordance with NFPA 72. Detectors shall be connected into signal line circuits or initiating device circuits as indicated on the drawings. Detectors shall be at least 12 inches from any part of any lighting fixture. Detectors shall be located at least 3 feet from diffusers of air handling systems. Each detector shall be provided with appropriate mounting hardware as required by its mounting location. Detectors which mount in open space shall be mounted directly to the end of the stubbed down rigid conduit drop. Conduit drops shall be firmly secured to minimize detector sway. Where length of conduit drop from ceiling or wall surface exceeds 3 feet, sway bracing shall be provided. Detectors installed in concealed locations (above ceiling, raised floors, etc.) shall have a remote visible indicator LED/LCD in a finished, visible location as indicated. # 3.1.5 Notification Appliances Notification appliances shall be mounted 80 inches above the finished floor or 6 inches below the ceiling, whichever is lower. # 3.1.6 Annunciator Equipment Annunciator equipment shall be mounted where indicated on the drawings. # 3.1.7 Addressable Initiating Device Circuits Module The initiating device circuits module shall be used to connect supervised conventional initiating devices (water flow switches, water pressure switches, manual fire alarm stations, high/low air pressure switches, and tamper switches). The module shall mount in an electrical box adjacent to or connected to the device it is monitoring and shall be capable of Style B supervised wiring to the initiating device. In order to
maintain proper supervision, there shall be no T-taps allowed on style B lines. Addressable initiating device circuits modules shall monitor only one initiating device each. Contacts in suppression systems and other fire protection subsystems shall be connected to the fire alarm system to perform supervisory and alarm functions as specified in Section 13930A WET PIPE SPRINKLER SYSTEM, FIRE PROTECTION NFPA 72, as indicated on the drawings and as specified herein. #### 3.1.8 Addressable Control Module Addressable and control modules shall be installed in the outlet box or adjacent to the device they are controlling. If a supplementary suppression releasing panel is provided, then the monitor modules shall he mounted in a common enclosure adjacent to the suppression releasing panel and both this enclosure and the suppression releasing panel shall be in the same room as the releasing devices. All interconnecting wires shall be supervised unless an open circuit or short circuit abnormal condition does not affect the required operation of the fire alarm system. If control modules are used as interfaces to other systems, such as HVAC or elevator control, they shall be within the control panel or immediately adjacent to it. Control modules that control a group of notification appliances shall be adjacent to the first notification appliance in the notification appliance circuits. Control modules that connect to devices shall supervise the notification appliance circuits. Control modules that connect to auxiliary systems or interface with other systems (non-life safety systems) and where not required by NFPA 72, shall not require the secondary circuits to be supervised. Contacts in suppression systems and other fire protection subsystems shall be connected to the fire alarm system to perform required alarm functions as specified in Section 13930A WET PIPE SPRINKLER SYSTEM, FIRE PROTECTION NFPA 72, as indicated on the drawings and as specified herein. #### 3.2 OVERVOLTAGE AND SURGE PROTECTION # 3.2.1 Power Line Surge Protection All equipment connected to alternating current circuits shall be protected from surges per IEEE C62.41 B3 combination waveform and NFPA 70. Fuses shall not be used for surge protection. The surge protector shall be rated for a maximum let thru voltage of 350 Volts ac (line-to-neutral) and 350 Volt ac (neutral-to-ground). # 3.2.2 Low Voltage DC Circuits Surge Protection All IDC, NAC, and communication cables/conductors, except fiber optics, shall have surge protection installed at each point where it exits or enters a building. Equipment shall be protected from surges per IEEE C62.41 B3 combination waveform and NFPA 70. The surge protector shall be rated to protect the 24 Volt dc equipment. The maximum dc clamping voltages shall be 36 V (line-to-ground) and 72 Volt dc (line-to-line). # 3.2.3 Signal Line Circuit Surge Protection All SLC cables/conductors, except fiber optics, shall have surge protection/isolation circuits installed at each point where it exits or enters a building. The circuit shall be protected from surges per IEEE C62.41 B3 combination waveform and NFPA 70. The surge protector/isolator shall be rated to protect the equipment. ## 3.3 GROUNDING Grounding shall be provided by connecting to building ground system. #### 3.4 TESTING The Contractor shall notify the Contracting Officer at least 10 days before the preliminary and acceptance tests are to be conducted. The tests shall be performed in accordance with the approved test procedures in the presence of the Contracting Officer. The control panel manufacturer's representative shall be present to supervise tests. The Contractor shall furnish instruments and personnel required for the tests. ## 3.4.1 Preliminary Tests Upon completion of the installation, the system shall be subjected to functional and operational performance tests including tests of each installed initiating and notification appliance, when required. Tests shall include the meggering of system conductors to determine that the system is free from grounded, shorted, or open circuits. The megger test shall be conducted prior to the installation of fire alarm equipment. If deficiencies are found, corrections shall be made and the system shall be retested to assure that it is functional. After completing the preliminary testing the Contractor shall complete and submit the NFPA 72, Certificate of Completion. ## 3.4.2 Acceptance Test Acceptance testing shall not be performed until the Contractor has completed and submitted the Certificate of Completion. Testing shall be in accordance with NFPA 72. The recommended tests in NFPA 72 shall be considered mandatory and shall verify that previous deficiencies have been corrected. The Contractor shall complete and submit the NFPA 72, Inspection and Testing Form. The test shall include all requirements of NFPA 72 and the following: - a. Test of each function of the control panel. - b. Test of each circuit in both trouble and normal modes. - c. Tests of each alarm initiating devices in both normal and trouble conditions. - d. Tests of each control circuit and device. - e. Tests of each alarm notification appliance. - f. Tests of the battery charger and batteries. - g. Complete operational tests under emergency power supply. - h. Visual inspection of wiring connections. - i. Opening the circuit at each alarm initiating device and notification appliance to test the wiring supervisory feature. - i. Ground fault - k. Short circuit faults - 1. Stray voltage - m. Loop resistance # 3.5 TRAINING Training course shall be provided for the operations and maintenance staff. The course shall be conducted in the building where the system is installed or as designated by the Contracting Officer. The training period for systems operation shall consist of two sessions (4 hours per session) each session to be separated by at least one week and shall start after the system is functionally completed but prior to final acceptance tests. The training period for systems maintenance shall consist of 2 training days (8 hours per day) each day separated by at least one week and shall start after the system is functionally completed but prior to final acceptance tests. The instructions shall cover items contained in the operating and maintenance instructions. In addition, training shall be provided on performance of expansions or modifications to the fire detection and alarm system. The training period for system expansions and modifications shall consist of at least 1 training day (8 hours per day) and shall start after the system is functionally completed but prior to final acceptance tests. -- End of Section -- # SECTION 13930A # WET PIPE SPRINKLER SYSTEM, FIRE PROTECTION 11/99 # PART 1 GENERAL # 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM A 47/A 47M | (1999) Ferritic Malleable Iron Castings | |-----------------|---| | ASTM A 53/A 53M | (1999b) Pipe, Steel, Black and Hot-Dipped,
Zinc-Coated, Welded and Seamless | | ASTM A 135 | (1997c) Electric-Resistance-Welded Steel
Pipe | | ASTM A 183 | (1983; R 1998) Carbon Steel Track Bolts and Nuts | | ASTM A 536 | (1984; R 1999el) Ductile Iron Castings | | ASTM A 795 | (1997) Black and Hot-Dipped Zinc-Coated
(Galvanized) Welded and Seamless Steel
Pipe for Fire Protection Use | # ASME INTERNATIONAL (ASME) | ASME B16.1 | (1998) Cast Iron Pipe Flanges and Flanged
Fittings | |--------------|---| | ASME B16.3 | (1998) Malleable Iron Threaded Fittings | | ASME B16.4 | (1998) Gray Iron Threaded Fittings | | ASME B16.9 | (1993) Factory-Made Wrought Steel
Buttwelding Fittings | | ASME B16.11 | (1996) Forged Fittings, Socket-Welding and
Threaded | | ASME B16.21 | (1992) Nonmetallic Flat Gaskets for Pipe
Flanges | | ASME B18.2.1 | (1996) Square and Hex Bolts and Screws (Inch Series) | | ASME B18.2.2 | (1987; R 1993) Square and Hex Nuts (Inch | Series) ## AMERICAN SOCIETY OF SANITARY ENGINEERING (ASSE) ASSE 1015 (1993) Double Check Backflow Prevention Assembly AMERICAN WATER WORKS ASSOCIATION (AWWA) AWWA EWW (1999) Standard Methods for the Examination of Water and Wastewater AWWA B300 (1999) Hypochlorites AWWA B301 (1992; addenda B301a - 1999) Liquid Chlorine AWWA C110 (1998) Ductile-Iron and Gray-Iron Fittings, 3 In. Through 48 In. (75 mm through 1200 mm), for Water and Other Liquids AWWA C111 (1995) Rubber-Gasket Joints for Ductile-Iron Pressure Pipe and Fittings AWWA M20 (1973) Manual: Water Chlorination Principles and Practices FACTORY MUTUAL ENGINEERING AND RESEARCH (FM) FM P7825a (1998) Approval Guide Fire Protection FM P7825b (1998) Approval Guide Electrical Equipment MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS) INDOSIKI (MSS) MSS SP-71 (1997) Cast Iron Swing Check Valves, Flanges and Threaded Ends NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) NFPA 13 (1999) Installation of Sprinkler Systems NFPA 24 (1995) Installation of Private Fire Service Mains and Their Appurtenances NFPA 230 (1999) Fire Protection of Storage NATIONAL INSTITUTE FOR CERTIFICATION IN ENGINEERING TECHNOLOGIES (NICET) NICET 1014-7 (1995) Program Detail Manual for Certification in the Field of Fire Protection Engineering Technology (Field Code 003) Subfield of Automatic Sprinkler System Layout #### UNDERWRITERS LABORATORIES (UL) UL Bld Mat Dir (1999) Building Materials Directory UL Fire Prot Dir (1999) Fire Protection Equipment Directory #### 1.2 GENERAL REQUIREMENTS Wet pipe sprinkler system shall be provided in all areas of the building. The sprinkler system shall provide fire sprinkler protection for the entire area. The system shall be
designed and installed in accordance with NFPA 13. Rack sprinklers shall be in accordance with NFPA 230. Pipe sizes which are not indicated on drawings shall be determined by hydraulic calculation. The Contractor shall design any portions of the sprinkler system that are not indicated on the drawings including locating sprinklers, piping and equipment, and size piping and equipment when this information is not indicated on the drawings or is not specified herein. The design of the sprinkler system shall be based on hydraulic calculations, and the other provisions specified herein. ## 1.2.1 Hydraulic Design The system shall be hydraulically designed to discharge a minimum density of 0.15 gpm per square foot over the hydraulically most demanding 3,000 square feet of floor area. The minimum pipe size for branch lines in gridded systems shall be 1-1/4 inch. Hydraulic calculations shall be in accordance with the Area/Density Method of NFPA 13. Water velocity in the piping shall not exceed 20 ft/s. #### 1.2.1.1 Hose Demand An allowance for exterior hose streams of 500 gpm shall be added to the sprinkler system demand. # 1.2.1.2 Basis for Calculations Water supply shall be presumed available at the point of connection to existing at the base of the riser. Hydraulic calculations shall be based upon the Hazen-Williams formula with a "C" value of 120 for steel piping, and 100 for existing underground piping. ## 1.2.2 Sprinkler Spacing Sprinklers shall be uniformly spaced on branch lines. Maximum spacing per sprinkler shall not exceed 130 square feet limits specified in NFPA 13 for light, ordinary. ## 1.3 COORDINATION OF TRADES Piping offsets, fittings, and any other accessories required shall be furnished as required to provide a complete installation and to eliminate interference with other construction. Sprinkler shall be installed over and under ducts, piping and platforms when such equipment can negatively effect or disrupt the sprinkler discharge pattern and coverage. #### 1.4 DELIVERY AND STORAGE All equipment delivered and placed in storage shall be housed in a manner to preclude any damage from the weather, humidity and temperature variations, dirt and dust, or other contaminants. Additionally, all pipes shall either be capped or plugged until installed. #### 1.5 FIELD MEASUREMENTS The Contractor shall become familiar with all details of the work, verify all dimensions in the field, and shall advise the Contracting Officer of any discrepancy before performing the work. #### 1.6 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES:: #### SD-03 Product Data Fire Protection Related Submittals; Piping, Piping Specialities. A list of the Fire Protection Related Submittals, no later than 7 days after the approval of the Fire Protection Specialist. Hydraulic Calculations; G, ED. Hydraulic calculations, including a drawing showing hydraulic reference points and pipe segments. Proposed On-site Training schedule, at least 14 days prior to the start of related training. Preliminary Tests. Proposed date and time to begin Preliminary Tests, submitted with the Preliminary Tests Procedures. Sprinkler System Installer Qualifications. The name and documentation of certification of the proposed Sprinkler System Installer, concurrent with submittal of the Fire Protection Specialist Qualifications. # 1.7 HYDRAULIC CALCULATIONS Hydraulic calculations shall be as outlined in NFPA 13 except that calculations shall be performed by computer using software intended specifically for fire protection system design using the design data shown on the drawings. Software that uses k-factors for typical branch lines is not acceptable. Calculations shall be based on the water supply data shown on the drawings. Calculations shall substantiate that the design area used in the calculations is the most demanding hydraulically. Water supply curves and system requirements shall be plotted on semi-logarithmic graph paper so as to present a summary of the complete hydraulic calculation. A summary sheet listing sprinklers in the design area and their respective hydraulic reference points, elevations, actual discharge pressures and actual flows shall be provided. Elevations of hydraulic reference points (nodes) shall be indicated. Documentation shall identify each pipe individually and the nodes connected thereto. The diameter, length, flow, velocity, friction loss, number and type fittings, total friction loss in the pipe, equivalent pipe length and Hazen-Williams coefficient shall be indicated for each pipe. For gridded systems, calculations shall show peaking of demand area friction loss to verify that the hydraulically most demanding area is being used. Also for gridded systems, a flow diagram indicating the quantity and direction of flows shall be included. A drawing showing hydraulic reference points (nodes) and pipe designations used in the calculations shall be included and shall be independent of shop drawings. ## 1.8 FIRE PROTECTION SPECIALIST Work specified in this section shall be performed under the supervision of and certified by the Fire Protection Specialist. The Fire Protection Specialist shall be an individual who is a registered professional engineer and a Full Member of the Society of Fire Protection Engineers or who is certified as a Level IV Technician by National Institute for Certification in Engineering Technologies (NICET) in the Automatic Sprinkler System Layout subfield of Fire Protection Engineering Technology in accordance with NICET 1014-7. The Fire Protection Specialist shall be regularly engaged in the design and installation of the type and complexity of system specified in the Contract documents, and shall have served in a similar capacity for at least three systems that have performed in the manner intended for a period of not less than 6 months. # 1.9 SPRINKLER SYSTEM INSTALLER QUALIFICATIONS Work specified in this section shall be performed by the Sprinkler System Installer. The Sprinkler System Installer shall be regularly engaged in the installation of the type and complexity of system specified in the Contract documents, and shall have served in a similar capacity for at least three systems that have performed in the manner intended for a period of not less than 6 months. ## 1.10 REGULATORY REQUIREMENTS Compliance with referenced NFPA standards is mandatory. This includes advisory provisions listed in the appendices of such standards, as though the word "shall" had been substituted for the word "should" wherever it appears. In the event of a conflict between specific provisions of this specification and applicable NFPA standards, this specification shall govern. Reference to "authority having jurisdiction" shall be interpreted to mean the Contracting Officer. # PART 2 PRODUCTS # 2.1 STANDARD PRODUCTS Materials and equipment shall be standard products of a manufacturer regularly engaged in the manufacture of such products and shall essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening. #### 2.2 NAMEPLATES All equipment shall have a nameplate that identifies the manufacturer's name, address, type or style, model or serial number, and catalog number. ## 2.3 REQUIREMENTS FOR FIRE PROTECTION SERVICE Materials and Equipment shall have been tested by Underwriters Laboratories, Inc. and listed in UL Fire Prot Dir or approved by Factory Mutual and listed in FM P7825a and FM P7825b. Where the terms "listed" or "approved" appear in this specification, such shall mean listed in UL Fire Prot Dir or FM P7825a and FM P7825b #### 2.4 UNDERGROUND PIPING COMPONENTS ## 2.4.1 Fittings and Gaskets Fittings shall be ductile iron conforming to AWWA C110. Gaskets shall be suitable in design and size for the pipe with which such gaskets are to be used. Gaskets for ductile iron pipe joints shall conform to AWWA C111. #### 2.5 ABOVEGROUND PIPING COMPONENTS Aboveground piping shall be steel. ## 2.5.1 Steel Piping Components #### 2.5.1.1 Steel Pipe Except as modified herein, steel pipe shall be black as permitted by NFPA 13 and shall conform to applicable provisions of ASTM A 795, ASTM A 53/A 53M, or ASTM A 135. Pipe in which threads or grooves are cut shall be Schedule 40 or shall be listed by Underwriters' Laboratories to have a corrosion resistance ratio (CRR) of 1.0 or greater after threads or grooves are cut. Pipe shall be marked with the name of the manufacturer, kind of pipe, and ASTM designation. # 2.5.1.2 Fittings for Non-Grooved Steel Pipe Fittings shall be cast iron conforming to ASME B16.4, steel conforming to ASME B16.9 or ASME B16.11, or malleable iron conforming to ASME B16.3. Galvanized fittings shall be used for piping systems or portions of piping systems utilizing galvanized piping. Fittings into which sprinklers, drop nipples or riser nipples (sprigs) are screwed shall be threaded type. Plain-end fittings with mechanical couplings, fittings that use steel gripping devices to bite into the pipe and segmented welded fittings shall not be used. # 2.5.1.3 Grooved Mechanical Joints and Fittings Joints and fittings shall be designed for not less than 175 psi service and shall be the product of the same manufacturer. Fitting and coupling houses shall be malleable iron conforming to ASTM A 47/A 47M, Grade 32510; ductile iron conforming to ASTM A 536, Grade 65-45-12. Gasket shall be the flush type that fills the entire cavity between the fitting and the pipe. Nuts and bolts shall be heat-treated steel conforming to ASTM A 183 and shall be cadmium plated or zinc electroplated. #### 2.5.1.4 Flanges Flanges shall conform to NFPA 13 and ASME B16.1. Gaskets shall be non-asbestos
compressed material in accordance with ASME B16.21, 1/16 inch thick, and full face or self-centering flat ring type. Bolts shall be squarehead conforming to ASME B18.2.1 and nuts shall be hexagon type conforming to ASME B18.2.2. # 2.5.2 Pipe Hangers Hangers shall be listed in UL Fire Prot Dir or FM P7825a and FM P7825b and of the type suitable for the application, construction, and pipe type and sized to be supported. ## 2.5.3 Valves ## 2.5.3.1 Control Valve and Gate Valve Manually operated sprinkler control valve and gate valve shall be outside stem and yoke (OS&Y) type and shall be listed in UL Bld Mat Dir or FM P7825a and FM P7825b. #### 2.5.3.2 Check Valve Check valve 2 inches and larger shall be listed in UL Bld Mat Dir or FM P7825a and FM P7825b. Check valves 4 inches and larger shall be of the swing type with flanged cast iron body and flanged inspection plate, shall have a clear waterway and shall meet the requirements of MSS SP-71, for Type 3 or 4. #### 2.6 ALARM CHECK VALVE ASSEMBLY Assembly shall include an alarm check valve, standard trim piping, pressure gauges, bypass, retarding chamber, testing valves, main drain, and other components as required for a fully operational system. #### 2.7 WATERFLOW ALARM Electrically operated, exterior-mounted, waterflow alarm bell shall be provided and installed in accordance with NFPA 13. Waterflow alarm bell shall be rated 24 VDC and shall be connected to the Fire Alarm Control Panel(FACP) in accordance with Section 13851A FIRE DETECTION AND ALARM SYSTEM, ADDRESSABLE. #### 2.8 ALARM INITIATING AND SUPERVISORY DEVICES ## 2.8.1 Sprinkler Waterflow Indicator Switch, Vane Type Switch shall be vane type with a pipe saddle and cast aluminum housing. The electro-mechanical device shall include a flexible, low-density polyethylene paddle conforming to the inside diameter of the fire protection pipe. The device shall sense water movements and be capable of detecting a sustained flow of 10 gpm or greater. The device shall contain a retard device adjustable from 0 to 90 seconds to reduce the possibility of false alarms caused by transient flow surges. The switch shall be tamper resistant and contain two SPDT (Form C) contacts arranged to transfer upon removal of the housing cover, and shall be equipped with a silicone rubber gasket to assure positive water seal and a dustproof cover and gasket to seal the mechanism from dirt and moisture. # 2.8.2 Sprinkler Pressure (Waterflow) Alarm Switch Pressure switch shall include a metal housing with a neoprene diaphragm, SPDT snap action switches and a 1/2 inch NPT male pipe thread. The switch shall have a maximum service pressure rating of 175 psi. There shall be two SPDT (Form C) contacts factory adjusted to operate at 4 to 8 psi. The switch shall be capable of being mounted in any position in the alarm line trim piping of the alarm check valve. ## 2.8.3 Valve Supervisory (Tamper) Switch Switch shall be suitable for mounting to the type of control valve to be supervised open. The switch shall be tamper resistant and contain one set of SPDT (Form C) contacts arranged to transfer upon removal of the housing cover or closure of the valve of more than two rotations of the valve stem. #### 2.9 SPRINKLERS Sprinklers with internal O-rings shall not be used. Sprinklers shall be used in accordance with their listed spacing limitations. Temperature classification shall be ordinary. Sprinklers in high heat areas including attic spaces or in close proximity to unit heaters shall have temperature classification in accordance with NFPA 13. Orifice of extended coverage sprinklers shall not exceed 17/32 inch. # 2.9.1 Pendent Sprinkler Pendent sprinkler shall be of the fusible strut or glass bulb type, recessed quick-response type with nominal 1/2 inch orifice. Pendent sprinklers shall have a polished chrome finish. ## 2.9.2 Upright Sprinkler Upright sprinkler shall be brass quick-response type and shall have a nominal 1/2 inch orifice. #### 2.10 DISINFECTING MATERIALS ## 2.10.1 Liquid Chlorine Liquid chlorine shall conform to AWWA B301. ## 2.10.2 Hypochlorites Calcium hypochlorite and sodium hypochlorite shall conform to AWWA B300. #### 2.11 ACCESSORIES #### 2.11.1 Sprinkler Cabinet Spare sprinklers shall be provided in accordance with NFPA 13 and shall be packed in a suitable metal or plastic cabinet. Spare sprinklers shall be representative of, and in proportion to, the number of each type and temperature rating of the sprinklers installed. At least one wrench of each type required shall be provided. ## 2.11.2 Identification Sign Valve identification sign shall be minimum 6 inches wide x 2 inches high with enamel baked finish on minimum 18 gauge steel or 0.024 inch aluminum with red letters on a white background or white letters on red background. Wording of sign shall include, but not be limited to "main drain," "auxiliary drain," "inspector's test," "alarm test," "alarm line," and similar wording as required to identify operational components. # 2.12 DOUBLE-CHECK VALVE BACKFLOW PREVENTION ASSEMBLY Double-check backflow prevention assembly shall comply with ASSE 1015. The assembly shall have a bronze, cast-iron or stainless steel body with flanged ends. The assembly shall include pressure gauge test ports and OS&Y shutoff valves on the inlet and outlet, 2-positive-seating check valve for continuous pressure application, and four test cocks. Assemblies shall be rated for working pressure of 150 psi The maximum pressure loss shall be 6 psi at a flow rate equal to the sprinkler water demand, at the location of the assembly. A test port for a pressure gauge shall be provided both upstream and downstream of the double check backflow prevention assembly valves. #### PART 3 EXECUTION #### 3.1 FIRE PROTECTION RELATED SUBMITTALS The Fire Protection Specialist shall prepare a list of the submittals from the Contract Submittal Register that relate to the successful installation of the sprinkler systems(s). The submittals identified on this list shall be accompanied by a letter of approval signed and dated by the Fire Protection Specialist when submitted to the Government. # 3.2 INSTALLATION REQUIREMENTS The installation shall be in accordance with the applicable provisions of NFPA 13, NFPA 24 and publications referenced therein. Installation of in-rack sprinklers shall comply with applicable provisions of NFPA 230. # 3.3 INSPECTION BY FIRE PROTECTION SPECIALIST The Fire Protection Specialist shall inspect the sprinkler system periodically during the installation to assure that the sprinkler system is being provided and installed in accordance with the contract requirements. The Fire Protection Specialist shall witness the preliminary and final tests, and shall sign the test results. The Fire Protection Specialist, after completion of the system inspections and a successful final test, shall certify in writing that the system has been installed in accordance with the contract requirements. Any discrepancy shall be brought to the attention of the Contracting Officer in writing, no later than three working days after the discrepancy is discovered. #### 3.4 ABOVEGROUND PIPING INSTALLATION # 3.4.1 Protection of Piping Against Earthquake Damage The system piping shall be protected against damage from earthquakes. Seismic protection shall include flexible and rigid couplings, sway bracing, seismic separation assemblies where piping crosses building seismic separation joints, and other features as required by NFPA 13 for protection of piping against damage from earthquakes. # 3.4.2 Piping in Exposed Areas Exposed piping shall be installed so as not to diminish exit access widths, corridors or equipment access. Exposed horizontal piping, including drain piping, shall be installed to provide maximum headroom. ## 3.4.3 Piping in Finished Areas In areas with suspended or dropped ceilings and in areas with concealed spaces above the ceiling, piping shall be concealed above ceilings. Piping shall be inspected, tested and approved before being concealed. Risers and similar vertical runs of piping in finished areas shall be concealed. #### 3.4.4 Pendent Sprinklers Drop nipples to pendent sprinklers shall consist of minimum 1 inch pipe with a reducing coupling into which the sprinkler shall be threaded. Hangers shall be provided on arm-overs to drop nipples supplying pendent sprinklers when the arm-over exceeds 12 inches. Where sprinklers are installed below suspended or dropped ceilings, drop nipples shall be cut such that sprinkler ceiling plates or escutcheons are of a uniform depth throughout the finished space. The outlet of the reducing coupling shall not extend more than 1 inch below the underside of the ceiling. On pendent sprinklers installed below suspended or dropped ceilings, the distance from the sprinkler deflector to the underside of the ceiling shall not exceed 4 inches. Recessed pendent sprinklers shall be installed such that the distance from the sprinkler deflector to the underside of the ceiling shall not exceed the manufacturer's listed range and shall be of uniform depth throughout the finished area. ## 3.4.4.1 Pendent Sprinkler Locations Pendent sprinklers in suspended ceilings shall be a minimum of 6 inches from ceiling grid. # 3.4.5 Upright Sprinklers Riser nipples or "sprigs" to upright sprinklers shall contain no fittings between the branch line tee and the reducing coupling at the sprinkler. Riser nipples exceeding 30 inches in length shall be individually supported. # 3.4.6 Pipe Joints Pipe joints shall conform to NFPA 13, except as modified herein. Not more than four threads shall show after joint is made up. Welded joints will be permitted, only if welding operations are performed as required by NFPA 13 at the Contractor's fabrication shop, not at the project construction site. Flanged joints shall be provided where indicated or required by NFPA 13. Grooved pipe and fittings shall be prepared in accordance with the manufacturer's latest
published specification according to pipe material, wall thickness and size. Grooved couplings and fittings shall be from the same manufacturer. ## 3.4.7 Reducers Reductions in pipe sizes shall be made with one-piece tapered reducing fittings. The use of grooved-end or rubber-gasketed reducing couplings will not be permitted. When standard fittings of the required size are not manufactured, single bushings of the face type will be permitted. Where used, face bushings shall be installed with the outer face flush with the face of the fitting opening being reduced. Bushings shall not be used in elbow fittings, in more than one outlet of a tee, in more than two outlets of a cross, or where the reduction in size is less than 1/2 inch. ## 3.4.8 Pipe Penetrations Cutting structural members for passage of pipes or for pipe-hanger fastenings will not be permitted. Pipes that must penetrate concrete or masonry walls or concrete floors shall be core-drilled and provided with pipe sleeves. Each sleeve shall be Schedule 40 galvanized steel, ductile iron or cast iron pipe and shall extend through its respective wall or floor and be cut flush with each wall surface. Sleeves shall provide required clearance between the pipe and the sleeve per NFPA 13. The space between the sleeve and the pipe shall be firmly packed with mineral wool insulation. #### 3.4.9 Escutcheons Escutcheons shall be provided for pipe penetration of ceilings and walls. Escutcheons shall be securely fastened to the pipe at surfaces through which piping passes. ## 3.4.10 Inspector's Test Connection Unless otherwise indicated, test connection shall consist of 1 inch pipe connected to the remote branch line; a test valve located approximately 7 feet above the floor; a smooth bore brass outlet equivalent to the smallest orifice sprinkler used in the system; and a painted metal identification sign affixed to the valve with the words "Inspector's Test." The discharge orifice shall be located outside the building wall directed so as not to cause damage to adjacent construction or landscaping during full flow discharge. #### 3.4.11 Drains Main drain piping shall be provided to discharge at a safe point outside the building. Auxiliary drains shall be provided as indicated and as required by NFPA 13. When the capacity of trapped sections of pipe is less than 3 gallons, the auxiliary drain shall consist of a valve not smaller than 1/2 inch and a plug or nipple and cap. When the capacity of trapped sections of piping is more than 3 gallons, the auxiliary drain shall consist of two 1 inch valves and one 2 x 12 inch condensate nipple or equivalent, located in an accessible location. Tie-in drains shall be provided for multiple adjacent trapped branch pipes and shall be a minimum of 1 inch in diameter. Tie-in drain lines shall be pitched a minimum of 1/2 inch per 10 feet. ## 3.4.12 Identification Signs Signs shall be affixed to each control valve, inspector test valve, main drain, auxiliary drain, test valve, and similar valves as appropriate or as required by NFPA 13. Hydraulic design data nameplates shall be permanently affixed to each sprinkler riser as specified in NFPA 13. ## 3.5 ELECTRICAL WORK Except as modified herein, electric equipment and wiring shall be in accordance with Section 16415A ELECTRICAL WORK, INTERIOR. Alarm signal wiring connected to the building fire alarm control system shall be in accordance with Section 13851A Fire Alarm Reporting System, Radio Type. All wiring for supervisory and alarm circuits shall be #14 AWG solid copper installed in metallic tubing or conduit. Wiring color code shall remain uniform throughout the system. ## 3.6 DISINFECTION After all system components are installed and hydrostatic test(s) are successfully completed, each portion of the sprinkler system to be disinfected shall be thoroughly flushed with potable water until all entrained dirt and other foreign materials have been removed before introducing chlorinating material. Flushing shall be conducted by removing the flushing fitting of the cross mains and of the grid branch lines, and then back-flushing through the sprinkler main drains. The chlorinating material shall be hypochlorites or liquid chlorine. Water chlorination procedure shall be in accordance with AWWA M20. The chlorinating material shall be fed into the sprinkler piping at a constant rate of 50 parts per million (ppm). A properly adjusted hypochlorite solution injected into the system with a hypochlorinator, or liquid chlorine injected into the system through a solution-fed chlorinator and booster pump shall be used. Chlorination application shall continue until the entire system if filled. The water shall remain in the system for a minimum of 24 hours. Each valve in the system shall be opened and closed several times to ensure its proper disinfection. Following the 24-hour period, no less than 25 ppm chlorine residual shall remain in the system. The system shall then be flushed with clean water until the residual chlorine is reduced to less than one part per million. Samples of water in disinfected containers for bacterial examination will be taken from several system locations which are approved by the Contracting Officer. Samples shall be tested for total coliform organisms (coliform bacteria, fecal coliform, streptococcal, and other bacteria) in accordance with AWWA EWW. The testing method shall be either the multiple-tube fermentation technique or the membrane-filter technique. The disinfection shall be repeated until tests indicate the absence of coliform organisms (zero mean coliform density per 100 milliliters) in the samples for at least 2 full days. The system will not be accepted until satisfactory bacteriological results have been obtained. After successful completion, verify installation of all sprinklers and plugs and pressure test the system. # 3.7 PIPE COLOR CODE MARKING Color code marking of piping shall be as specified in Section 09900 PAINTING, GENERAL. # 3.8 PRELIMINARY TESTS The system, including the underground water mains, and the aboveground piping and system components, shall be tested to assure that equipment and components function as intended. The underground and aboveground interior piping systems and attached appurtenances subjected to system working pressure shall be tested in accordance with NFPA 13 and NFPA 24. Upon completion of specified tests, the Contractor shall complete certificates as specified in paragraph SUBMITTALS. #### 3.8.1 Aboveground Piping ## 3.8.1.1 Hydrostatic Testing Aboveground piping shall be hydrostatically tested in accordance with NFPA 13 at not less than 200 psi in excess of maximum system operating pressure and shall maintain that pressure without loss for 2 hours. There shall be no drop in gauge pressure or visible leakage when the system is subjected to the hydrostatic test. The test pressure shall be read from a gauge located at the low elevation point of the system or portion being tested. ## 3.8.1.2 Backflow Prevention Assembly Forward Flow Test Each backflow prevention assembly shall be tested at system flow demand, including all applicable hose streams, as specified in NFPA 13. The Contractor shall provide all equipment and instruments necessary to conduct a complete forward flow test, including 2.5 inch diameter hoses, playpipe nozzles, calibrated pressure gauges, and pitot tube gauge. The Contractor shall provide all necessary supports to safely secure hoses and nozzles during the test. At the system demand flow, the pressure readings and pressure drop (friction) across the assembly shall be recorded. A metal placard shall be provided on the backflow prevention assembly that lists the pressure readings both upstream and downstream of the assembly, total pressure drop, and the system test flow rate. The pressure drop shall be compared to the manufacturer's data. # 3.8.2 Testing of Alarm Devices Each alarm switch shall be tested by flowing water through the inspector's test connection. Each water-operated alarm devices shall be tested to verify proper operation. #### 3.8.3 Main Drain Flow Test Following flushing of the underground piping, a main drain test shall be made to verify the adequacy of the water supply. Static and residual pressures shall be recorded on the certificate specified in paragraph SUBMITTALS. In addition, a main drain test shall be conducted each time after a main control valve is shut and opened. # 3.9 FINAL ACCEPTANCE TEST Final Acceptance Test shall begin only when the Preliminary Test Report has been approved. The Fire Protection Specialist shall conduct the Final Acceptance Test and shall provide a complete demonstration of the operation of the system. This shall include operation of control valves and flowing of inspector's test connections to verify operation of associated waterflow alarm switches. After operation of control valves has been completed, the main drain test shall be repeated to assure that control valves are in the open position. In addition, the representative shall have available copies of as-built drawings and certificates of tests previously conducted. The installation shall not be considered accepted until identified discrepancies have been corrected and test documentation is properly completed and received. # 3.10 ON-SITE TRAINING The Fire Protection Specialist shall conduct a training course for operating and maintenance personnel as designated by the Contracting Officer. The On-Site Training shall cover all of the items contained in the approved Operating and Maintenance Instructions. -- End of Section -- ## SECTION 15080A # THERMAL INSULATION FOR MECHANICAL SYSTEMS 04/01 # PART 1 GENERAL ## 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. At the discretion of the Government, the manufacturer of any material supplied will be required to furnish test reports
pertaining to any of the tests necessary to assure compliance with the standard or standards referenced in this specification. ## AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM A 167 | (1999) Stainless and Heat-Resisting
Chromium-Nickel Steel Plate, Sheet, and
Strip | |-------------------|---| | ASTM A 580/A 580M | (1998) Stainless Steel Wire | | ASTM B 209 | (1996) Aluminum and Aluminum-Alloy Sheet and Plate | | ASTM C 195 | (1995) Mineral Fiber Thermal Insulating
Cement | | ASTM C 449/C 449M | (1995) Mineral Fiber Hydraulic-Setting
Thermal Insulating and Finishing Cement | | ASTM C 534 | (1999) Preformed Flexible Elastomeric
Cellular Thermal Insulation in Sheet and
Tubular Form | | ASTM C 547 | (1995) Mineral Fiber Pipe Insulation | | ASTM C 552 | (2000) Cellular Glass Thermal Insulation | | ASTM C 553 | (1999) Mineral Fiber Blanket Thermal
Insulation for Commercial and Industrial
Applications | | ASTM C 591 | (1994) Unfaced Preformed Rigid Cellular
Polyisocyanurate Thermal Insulation | | ASTM C 610 | (1999) Molded Expanded Perlite Block and
Pipe Thermal Insulation | | ASTM C 612 | (2000) Mineral Fiber Block and Board
Thermal Insulation | | ASTM C 647 | (1995) Properties and Tests of Mastics and | | | Coating Finishes for Thermal Insulation | |-------------|---| | ASTM C 665 | (1998) Mineral-Fiber Blanket Thermal
Insulation for Light Frame Construction
and Manufactured Housing | | ASTM C 795 | (1992; R 1998el) Thermal Insulation for
Use in Contact With Austenitic Stainless
Steel | | ASTM C 916 | (1985; R 1996e1) Adhesives for Duct
Thermal Insulation | | ASTM C 920 | (1998) Elastomeric Joint Sealants | | ASTM C 921 | (1989; R 1996) Determining the Properties
of Jacketing Materials for Thermal
Insulation | | ASTM C 1126 | (1998) Faced or Unfaced Rigid Cellular
Phenolic Thermal Insulation | | ASTM C 1136 | (1995) Flexible, Low Permeance Vapor
Retarders for Thermal Insulation | | ASTM C 1290 | (1995) Flexible Fibrous Glass Blanket
Insulation Used to Externally Insulate
HVAC Ducts | | ASTM E 84 | (2000a) Surface Burning Characteristics of Building Materials | | ASTM E 96 | (2000) Water Vapor Transmission of
Materials | MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS) MSS SP-69 (1996) Pipe Hangers and Supports - Selection and Application MIDWEST INSULATION CONTRACTORS ASSOCIATION (MICA) MICA Insulation Stds (1993) National Commercial & Industrial Insulation Standards ## 1.2 SYSTEM DESCRIPTION Field-applied insulation and accessories on mechanical systems shall be as specified herein; factory-applied insulation is specified under the piping, duct or equipment to be insulated. Field applied insulation materials required for use on Government-furnished items as listed in the SPECIAL CONTRACT REQUIREMENTS shall be furnished and installed by the Contractor. # 1.3 GENERAL QUALITY CONTROL # 1.3.1 Standard Products Materials shall be the standard products of manufacturers regularly engaged in the manufacture of such products and shall essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening. #### 1.3.2 Installer's Qualifications Qualified installers shall have successfully completed three or more similar type jobs within the last 5 years. # 1.3.3 Surface Burning Characteristics Unless otherwise specified, insulation not covered with a jacket shall have a flame spread index no higher than 75 and a smoke developed index no higher than 150. Insulation systems which are located in air plenums, in ceiling spaces, and in attic spaces shall have a flame spread index no higher than 25 and a smoke developed index no higher than 50. Insulation materials located exterior to the building perimeter are not required to be fire-rated. Flame spread and smoke developed indexes shall be determined by ASTM E 84. Insulation shall be tested in the same density and installed thickness as the material to be used in the actual construction. Material supplied by a manufacturer with a jacket shall be tested as a composite material. Jackets , facings, and adhesives shall have a flame spread index no higher than 25 and a smoke developed index no higher than 50 when tested in accordance with ASTM E 84. #### 1.3.4 Identification of Materials Packages or standard containers of insulation, jacket material, cements, adhesives, and coatings delivered for use, and samples required for approval shall have manufacturer's stamp or label attached giving the name of the manufacturer and brand, and a description of the material. #### 1.4 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: ## SD-04 Samples Pipe Insulation Display Sections: Display sample sections shall include as a minimum an elbow or tee, a valve, dielectric unions and flanges, a hanger with protection shield and insulation insert, or dowel as required, at support point, method of fastening and sealing insulation at longitudinal lap, circumferential lap, butt joints at fittings and on pipe runs, and terminating points for each type of pipe insulation used on the job, and for hot pipelines and cold pipelines, both interior and exterior, even when the same type of insulation is used for these services. Duct Insulation Display Sections: Display sample sections for rigid and flexible duct insulation used on the job. A display section for duct insulation exposed to weather shall be protected by enclosing with a temporary covering. #### 1.5 STORAGE Materials shall be delivered in the manufacturer's unopened containers. Materials delivered and placed in storage shall be provided with protection from weather, humidity, dirt, dust and other contaminants. Insulation material and supplies that become dirty, dusty, wet, or otherwise contaminated may be rejected by the Contracting Officer. #### PART 2 PRODUCTS #### 2.1 GENERAL MATERIALS Materials shall be compatible and shall not contribute to corrosion, soften, or otherwise attack surfaces to which applied in either the wet or dry state. Materials to be used on stainless steel surfaces shall meet ASTM C 795 requirements. Materials shall be asbestos free and conform to the following: #### 2.1.1 Adhesives ## 2.1.1.1 Acoustical Lining Insulation Adhesive Adhesive shall be a nonflammable, fire-resistant adhesive conforming to ASTM C 916, Type I. #### 2.1.1.2 Mineral Fiber Insulation Cement Cement shall be in accordance with ASTM C 195. #### 2.1.1.3 Lagging Adhesive Lagging is the material used for thermal insulation, especially around a cylindrical object. This may include the insulation as well as the cloth/material covering the insulation. Lagging adhesives shall be nonflammable and fire-resistant and shall have a flame spread rating no higher than 25 and a smoke developed rating no higher than 50 when tested in accordance with ASTM E 84. Adhesive shall be pigmented white and be suitable for bonding fibrous glass cloth to faced and unfaced fibrous glass insulation board; for bonding cotton brattice cloth to faced and unfaced fibrous glass insulation board; for sealing edges of and bounding fibrous glass tape to joints of fibrous glass board; for bonding lagging cloth to thermal insulation; or for attaching fibrous glass insulation to metal surfaces. Lagging adhesives shall be applied in strict accordance with the manufacturer's recommendations. # 2.1.2 Contact Adhesive Adhesive may be dispersed in a nonhalogenated organic solvent or, dispersed in a nonflammable organic solvent which shall not have a fire point below 200 degrees F. The adhesive shall not adversely affect, initially or in service, the insulation to which it is applied, nor shall it cause any corrosive effect on metal to which it is applied. Any solvent dispersing medium or volatile component of the adhesive shall have no objectionable odor and shall not contain any benzene or carbon tetrachloride. The dried adhesive shall not emit nauseous, irritating, or toxic volatile matters or aerosols when the adhesive is heated to any temperature up to 212 degrees F. The adhesive shall be nonflammable and fire resistant. ## 2.1.3 Caulking ASTM C 920, Type S, Grade NS, Class 25, Use A. ### 2.1.4 Corner Angles Nominal 0.016 inch aluminum 1 x 1 inch with factory applied kraft backing. Aluminum shall be ASTM B 209, Alloy 3003, 3105, or 5005. # 2.1.5 Finishing Cement Mineral fiber hydraulic-setting thermal insulating cement ASTM C 449/C 449M. All cements that may come in contact with Austenitic stainless steel must include testing per ASTM C 795. # 2.1.6 Fibrous Glass Cloth and Glass Tape Fibrous glass cloth and glass tape shall have flame spread and smoke developed ratings of no greater than 25/50 when measured in accordance with ASTM E 84. Tape shall be 4 inch wide rolls. ### 2.1.7 Staples Outward clinching type ASTM A 167, Type 304 or 316 stainless steel. Monel is a nickel rich alloy which has high strength, high ductility, and excellent resistance to corrosion. ### 2.1.8 Jackets ASTM C 921, Type I, maximum moisture vapor transmission 0.02 perms, (measured before factory application or installation), minimum puncture resistance 50 Beach units on all surfaces except concealed ductwork, where a minimum puncture resistance of 25 Beach units is acceptable. Minimum tensile strength, 35 pound/inch width. ASTM C 921, Type II, minimum puncture resistance 25 Beach units, tensile strength minimum 20 pound/inch width. Jackets used on insulation exposed in
finished areas shall have white finish suitable for painting without sizing. Based on the application, insulation materials which require factory applied jackets are mineral fiber, cellular glass, and phenolic foam. All non-metallic jackets shall have a maximum flame spread index of 25 and a maximum smoke developed index of 50 when tested in accordance with ASTM E 84. # 2.1.8.1 White Vapor Retarder All Service Jacket (ASJ) For use on hot/cold pipes, ducts, or equipment vapor retarder jackets used on insulation exposed in finished areas shall have white finish suitable for painting without sizing. #### 2.1.8.2 Aluminum Jackets Aluminum jackets shall be corrugated, embossed or smooth sheet, 0.016 inch nominal thickness; ASTM B 209, Temper H14, Temper H16, Alloy 3003, 5005, or 3105 with factory applied moisture retarder. Corrugated aluminum jacket shall not be used outdoors. Aluminum jacket securing bands shall be Type 304 stainless steel, 0.015 inch thick, 1/2 inch wide for pipe under 12 inch diameter and 3/4 inch wide for pipe over 12 inch and larger diameter. Aluminum jacket circumferential seam bands shall be 2 x 0.016 inch aluminum matching jacket material. Bands for insulation below ground shall be 3/4 x 0.020 inch) thick stainless steel, or fiberglass reinforced tape. The jacket may, at the option of the Contractor, be provided with a factory fabricated Pittsburg or "Z" type longitudinal joint. When the "Z" joint is used, the bands at the circumferential joints shall be designed by the manufacturer to seal the joints and hold the jacket in place. # 2.1.8.3 Polyvinyl Chloride (PVC) Jackets Polyvinyl chloride (PVC) jacket and fitting covers shall have high impact strength, UV resistant rating or treatment and moderate chemical resistance with minimum thickness 0.030 inch. ### 2.1.9 Vapor Retarder Coating The vapor retarder coating shall be fire and water resistant and appropriately selected for either outdoor or indoor service. Color shall be white. The water vapor permeance of the compound shall be determined according to procedure B of ASTM E 96 utilizing apparatus described in ASTM E 96. The coating shall be a nonflammable, fire resistant type. All other application and service properties shall be in accordance with ASTM C 647. # 2.1.9.1 Vapor Retarder Required ASTM C 1136, Type I, maximum moisture vapor transmission 0.02 perms, minimum puncture resistance 50 Beach units on all surfaces except concealed ductwork, where Type II, maximum moisture vapor transmission 0.02 perms, a minimum puncture resistance of 25 Beach units is acceptable. # 2.1.9.2 Vapor Retarder Not Required ASTM C 1136, Type III, maximum moisture vapor transmission 0.10 perms, minimum puncture resistance 50 Beach units on all surfaces except ductwork, where Type IV, maximum moisture vapor transmission 0.10, a minimum puncture resistance of 25 Beach units is acceptable. #### 2.1.10 Wire Soft annealed ASTM A 580/A 580M Type 302, 304 or 316 stainless steel, 16 or 18 gauge. # 2.2 PIPE INSULATION MATERIALS Insulation materials shall conform to EPA requirements in accordance with Section 01670 RECYCLED / RECOVERED MATERIALS. Pipe insulation materials shall be limited to those listed herein and shall meet the following requirements: ### 2.2.1 Aboveground Cold Pipeline Insulation for minus 30 degrees to plus 60 degrees F for outdoor, indoor, exposed or concealed applications, shall be as follows: - a. Cellular Glass: ASTM C 552, Type II, and Type III. Supply the insulation with manufacturer's recommended factory applied jacket. - b. Flexible Elastomeric Cellular Insulation: ASTM C 534, Type I or II. Type II shall have vapor retarder skin on both sides of the insulation. - c. Phenolic Insulation: ASTM C 1126, Type III. Phenolic insulations shall comply with ASTM C 795 and with the ASTM C 665 paragraph Corrosiveness. Supply the insulation with manufacturer's recommended factory applied jacket. - d. Mineral Fiber: ASTM C 547 - e. Polyisocyanurate Insulation: ASTM C 591, type I. Supply the insulation with manufacturer's recommended factory applied jacket. # 2.2.2 Aboveground Hot Pipeline Insulation for above 60 degrees F, for outdoor, indoor, exposed or concealed applications shall meet the following requirements. Supply the insulation with manufacturers recommended factory applied jacket. - a. Mineral Fiber: ASTM C 547, Types I, II or III, supply the insulation with manufacturers recommended factory applied jacket. - b. Cellular Glass: ASTM C 552, Type II and Type III. Supply the insulation with manufacturers recommended factory applied jacket. - c. Flexible Elastomeric Cellular Insulation: ASTM C 534, Type I or II to 200 degrees F service. - d. Phenolic Insulation: ASTM C 1126 Type III to 250 F service shall comply with ASTM C 795. Supply the insulation with manufacturers recommended factory applied jacket. - e. Perlite Insulation: ASTM C 610 # 2.3 DUCT INSULATION MATERIALS Duct insulation materials shall be limited to those listed herein and shall meet the following requirements: 2.3.1 Rigid Mineral Fiber ASTM C 612, Type IA, IB, II, III, & IV. 2.3.2 Flexible Mineral Fiber ASTM C 553, Type I,or Type II up to 250 F. ASTM C 1290 Type III. 2.3.3 Cellular Glass ASTM C 552, Type I. 2.3.4 Phenolic Foam ASTM C 1126 Type II, shall comply with ASTM C 795. 2.3.5 Flexible Elastomeric Cellular ASTM C 534 Type II. 2.3.6 Polyisocyanurate ASTM C 591, Type 1. Supply the insulation with manufacturer's recommended factory applied jacket. #### PART 3 EXECUTION # 3.1 APPLICATION - GENERAL Insulation shall only be applied to unheated and uncooled piping and equipment. Flexible elastomeric cellular insulation shall not be compressed at joists, studs, columns, ducts, hangers, etc. The insulation shall not pull apart after one hour period; any insulation found to pull apart after one hour shall be replaced. #### 3.1.1 Installation Except as otherwise specified, material shall be installed in accordance with the manufacturer's written instructions. Insulation materials shall not be applied until tests specified in other sections of this specification are completed. Material such as rust, scale, dirt and moisture shall be removed from surfaces to receive insulation. Insulation shall be kept clean and dry. Insulation shall not be removed from its shipping containers until the day it is ready to use and shall be returned to like containers or equally protected from dirt and moisture at the end of each workday. Insulation that becomes dirty shall be thoroughly cleaned prior to use. If insulation becomes wet or if cleaning does not restore the surfaces to like new condition, the insulation will be rejected, and shall be immediately removed from the jobsite. Joints shall be staggered on multi layer insulation. Mineral fiber thermal insulating cement shall be mixed with demineralized water when used on stainless steel surfaces. Insulation, jacketing and accessories shall be installed in accordance with MICA Insulation Stds standard plates except where modified herein or on the drawings. # 3.1.2 Firestopping Where pipes and ducts pass through fire walls, fire partitions, above grade floors, and fire rated chase walls, the penetration shall be sealed with fire stopping materials. # 3.1.3 Painting and Finishing Painting shall be as specified in Section 09900 PAINTING, GENERAL. #### 3.1.4 Installation of Flexible Elastomeric Cellular Insulation Flexible elastomeric cellular insulation shall be installed with seams and joints sealed with rubberized contact adhesive. Insulation with pre-applied adhesive is not permitted. Flexible elastomeric cellular insulation shall not be used on surfaces greater than 200 degrees F. Seams shall be staggered when applying multiple layers of insulation. Insulation exposed to weather and not shown to have jacketing shall be protected with two coats of UV resistant finish as recommended by the manufacturer after the adhesive is dry. A brush coating of adhesive shall be applied to both butt ends to be joined and to both slit surfaces to be sealed. The adhesive shall be allowed to set until dry to touch but tacky under slight pressure before joining the surfaces. Insulation seals at seams and joints shall not be capable of being pulled apart one hour after application. Insulation that can be pulled apart one hour after installation shall be replaced. # 3.1.5 Welding No welding shall be done on piping, duct or equipment without written approval of the Contracting Officer. The capacitor discharge welding process may be used for securing metal fasteners to duct. # 3.1.6 Pipes/Ducts/Equipment which Require Insulation Insulation is required on all pipes, ducts, or equipment, except for omitted items, as specified. #### 3.2 PIPE INSULATION INSTALLATION ### 3.2.1 Pipe Insulation ### 3.2.1.1 General Pipe insulation shall be installed on aboveground hot and cold pipeline systems as specified below to form a continuous thermal retarder, including straight runs, fittings and appurtenances unless specified otherwise. Installation shall be with full length units of insulation and using a single cut piece to complete a run. Cut pieces or scraps abutting each other shall not be used. Pipe insulation shall be omitted on the following: - a. Pipe used solely for fire protection. - b. Chromium plated pipe to plumbing fixtures. However, fixtures for use by the physically handicapped shall have the hot water supply and drain, including the trap, insulated where exposed. - c. Sanitary drain lines. - d. Air chambers. - 3.2.1.2 Pipes Passing Through Walls, Roofs, and Floors - a. Pipe insulation shall be continuous through the sleeve. - b. An aluminum jacket with factory applied moisture retarder shall be provided over the insulation wherever penetrations require sealing. - c. Where penetrating interior walls, the aluminum jacket shall extend 2 inches beyond either side of the wall and shall be secured on each end with a band. - d. Where penetrating floors, the aluminum jacket
shall extend from a point below the backup material to a point 10 inches above the floor with one band at the floor and one not more than 1 inch from the end of the aluminum jacket. - e. Where penetrating waterproofed floors, the aluminum jacket shall extend from below the backup material to a point 2 inchesabove the flashing with a band 1 inch from the end of the aluminum jacket. - f. Where penetrating exterior walls, the aluminum jacket required for pipe exposed to weather shall continue through the sleeve to a point 2 inches beyond the interior surface of the wall. - g. Where penetrating roofs, pipe shall be insulated as required for interior service to a point flush with the top of the flashing and sealed with vapor retarder coating. The insulation for exterior application shall butt tightly to the top of flashing and interior insulation. The exterior aluminum jacket shall extend 2 inches down beyond the end of the insulation to form a counter flashing. The flashing and counter flashing shall be sealed underneath with caulking. - h. For hot water pipes supplying lavatories or other similar heated service which requires insulation, the insulation shall be terminated on the backside of the finished wall. The insulation termination shall be protected with two coats of vapor barrier coating with a minimum total thickness of 1/16 inch applied with glass tape embedded between coats (if applicable). The coating shall extend out onto the insulation 2 inches and shall seal the end of the insulation. Glass tape seams shall overlap 1 inch. Caulk the annular space between the pipe and wall penetration with approved fire stop material. Cover the pipe and wall penetration with a properly sized (well fitting) escutcheon plate. The escutcheon plate shall overlap the wall penetration at least 3/8 inch. - i. For domestic cold water pipes supplying lavatories or other similar cooling service which requires insulation, the insulation shall be terminated on the finished side of the wall (i.e., insulation must cover the pipe throughout the wall penetration). The insulation shall be protected with two coats of vapor barrier coating with a minimum total thickness of 1/16 inch. The coating shall extend out onto the insulation 2 inches and shall seal the end of the insulation. Caulk the annular space between the outer surface of the pipe insulation and the wall penetration with an approved fire stop material having vapor retarder properties. Cover the pipe and wall penetration with a properly sized (well fitting) escutcheon plate. The escutcheon plate shall overlap the wall penetration by at least 3/8 inch. # 3.2.1.3 Pipes Passing Through Hangers - a. Insulation, whether hot or cold application, shall be continuous through hangers. All horizontal pipes 2 inchesand smaller shall be supported on hangers with the addition of a Type 40 protection shield to protect the insulation in accordance with MSS SP-69. Whenever insulation shows signs of being compressed, or when the insulation or jacket shows visible signs of distortion at or near the support shield, insulation inserts as specified below for piping larger than 2 inches shall be installed. - b. Horizontal pipes larger than 2 inches at 60 degrees F and above shall be supported on hangers in accordance with MSS SP-69, and Section 15400A PLUMBING, GENERAL PURPOSE. - c. Horizontal pipes larger than 2 inches and below 60 degrees F shall be supported on hangers with the addition of a Type 40 protection shield in accordance with MSS SP-69. An insulation insert of cellular glass or calcium silicate shall be installed above each shield. The insert shall cover not less than the bottom 180 degree arc of the pipe. Inserts shall be the same thickness as the insulation, and shall extend 2 inches on each end beyond the protection shield. When insulation inserts are required per the above, and the insulation thickness is less than 1 inch, wooden or cork dowels or blocks may be installed between the pipe and the shield to prevent the weight of the pipe from crushing the insulation, as an option to installing insulation inserts. The insulation jacket shall be continuous over the wooden dowel, wooden block, or insulation insert. - d. Vertical pipes shall be supported with either Type 8 or Type 42 riser clamps with the addition of two Type 40 protection shields in accordance with MSS SP-69 covering the 360 degree arc of the insulation. An insulation insert of cellular glass or calcium silicate shall be installed between each shield and the pipe. The insert shall cover the 360 degree arc of the pipe. Inserts shall be the same thickness as the insulation, and shall extend 2 inches on each end beyond the protection shield. When insulation inserts are required per the above, and the insulation thickness is less than 1 inch, wooden or cork dowels or blocks may be installed between the pipe and the shield to prevent the hanger from crushing the insulation, as an option instead of installing insulation inserts. The insulation jacket shall be continuous over the wooden dowel, wooden block, or insulation insert. The vertical weight of the pipe shall be supported with hangers located in a horizontal section of the pipe. When the pipe riser is longer than 30 feet, the weight of the pipe shall be additionally supported with hangers in the vertical run of the pipe which are directly clamped to the pipe, penetrating the pipe insulation. These hangers shall be insulated and the insulation jacket sealed as indicated herein for anchors in a similar service. - e. Inserts shall be covered with a jacket material of the same appearance and quality as the adjoining pipe insulation jacket, shall overlap the adjoining pipe jacket 1-1/2 inches, and shall be sealed as required for the pipe jacket. The jacket material used to cover inserts in flexible elastomeric cellular insulation shall conform to ASTM C 1136, Type 1, and is allowed to be of a different material than the adjoining insulation material. # 3.2.1.4 Flexible Elastomeric Cellular Pipe Insulation Flexible elastomeric cellular pipe insulation shall be tubular form for pipe sizes 6 inches and less. Seams shall be staggered when applying multiple layers of insulation. Sweat fittings shall be insulated with miter-cut pieces the same size as on adjacent piping. Screwed fittings shall be insulated with sleeved fitting covers fabricated from miter-cut pieces and shall be overlapped and sealed to the adjacent pipe insulation. 3.2.1.5 Pipes in high abuse areas. In high abuse areas such as janitor closets and traffic areas in equipment rooms, kitchens, and mechanical rooms, aluminum jackets shall be utilized. Pipe insulation to the 6 foot level shall be protected. # 3.2.2 Aboveground Cold Pipelines The following cold pipelines shall be insulated per Table I minus 30 degrees to plus 60 degrees F: a. Domestic cold and chilled drinking water. - b. Make-up water. - c. Horizontal and vertical portions of interior roof drains. - d. Refrigerant suction lines. - e. Air conditioner condensate drains. - fi. Exposed lavatory drains and domestic water lines serving plumbing fixtures for handicap persons. ### 3.2.2.1 Insulation Thickness Insulation thickness for cold pipelines shall be determined using Table I. Table I - Cold Piping Insulation Thickness Pipe Size (inches) | Type of
Service | Material | Runouts
up to
2 in* | s 1 in
&
less | 1.25 -
2 in | 2.5 -
4 in | 5 -
6 in | 8 in
&
larger | |--|----------------------|---------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------| | Refrigerant
suction
piping | CG
FC
PF
PC | | 1.5
1.0
1.0 | 1.5
1.0
1.0
1.0 | 1.5
1.0
1.0
1.0 | 1.5
1.0
1.0 | 1.5
1.0
1.0 | | Cold domestic
water, above
and below
ceilings
& makeup
water | CG
FC
PF
PC | 1.5
3/8
1.0
1.0 | 1.5
3/8
1.0
1.0 | 1.5
3/8
1.0
1.0 | 1.5
3/8
1.0
1.0 | 1.5
3/8
1.0
1.0 | 1.5
3/8
1.0
1.0 | | Exposed lavatory drains and domestic wate lines serving plumbing fixt for handicap personnel | & | 0.5 | 0.5 | 0.5 | 0.5
1.5 | 3/4
1.5 | 3/4
1.5 | | Horizontal & vertical roof drain leaders (including underside of roof drain fitting) | FC
PF
CG
PC | | 0.5
1.0
1.5
1.0 | 0.5
1.0
1.5
1.0 | 0.5
1.0
1.5
1.0 | 0.5
1.0
1.5
1.0 | 0.5
1.0
1.5
1.0 | | Air
conditioning | FC
PF | | 3/8
1.0 | 0.5 | 0.5 | N/A
N/A | N/A
N/A | Table I - Cold Piping Insulation Thickness Pipe Size (inches) | | | Runouts | 1 in | 1.25 - | 2.5 - | 5 - | 8 in | |--------------|----------|---------|------|--------|-------|------|--------| | Type of | | up to | & | 2 in | 4 in | 6 in | & | | Service | Material | 2 in* | less | | | | larger | | condensate | PC | | 1.0 | 1.0 | 1.0 | N/A | N/A | | drain locate | d | | | | | | | | inside build | ing | | | | | | | *When runouts to terminal units exceed 12 feet, the entire length of runout shall be insulated like main feed pipe. #### LEGEND: PF - Phenolic Foam CG - Cellular Glass MF - Mineral Fiber FC - Flexible Elastomeric Cellular PC - Polyisocyanurate Foam 3.2.2.2 Jacket for Mineral Fiber, Cellular Glass, Phenolic Foam, and Polyisocyanurate Foam Insulated Pipe Insulation shall be covered with a factory applied vapor retarder jacket or field applied seal welded PVC jacket. Insulation inside the building shown to be protected with an aluminum jacket shall have the insulation and vapor retarder jacket installed as specified herein. The aluminum jacket shall be installed as specified for piping exposed to weather, except sealing of the laps of the aluminum jacket is not required. In high abuse areas such as janitor closets and traffic areas in equipment rooms, kitchens, and
mechanical rooms, aluminum jackets shall be utilized. Pipe insulation to the 6 ft level will be protected. - 3.2.2.3 Insulation for Straight Runs (Mineral Fiber, Cellular Glass, Phenolic Foam and Polyisocyanurate Foam) - a. Insulation shall be applied to the pipe with joints tightly butted. All butted joints and ends shall be sealed with a vapor retarder coating. - b. Longitudinal laps of the jacket material shall overlap not less than 1-1/2 inches. Butt strips 3 inches wide shall be provided for circumferential joints. - c. Laps and butt strips shall be secured with adhesive and stapled on 4 inch centers if not factory self-sealing. If staples are used, they shall be sealed per paragraph 3.2.2.3 e. - d. Factory self-sealing lap systems may be used when the ambient temperature is between 40 degrees and 120 degrees F during installation. The lap system shall be installed in accordance with manufacturer's recommendations. Stapler shall be used only if specifically recommended by the manufacturer. Where gaps occur, the section shall be replaced or the gap repaired by applying adhesive under the lap and then stapling. - e. All Staples, including those used to repair factory self-seal lap systems, shall be coated with a vapor retarder coating. All seams, except those on factory self-seal systems shall be coated with vapor retarder coating. - f. Breaks and punctures in the jacket material shall be patched by wrapping a strip of jacket material around the pipe and securing it with adhesive, stapling, and coating with vapor retarder coating. The patch shall extend not less than 1-1/2 inches past the break. - g. At penetrations such as thermometers, the voids in the insulation shall be filled and sealed with vapor retarder coating. # 3.2.2.4 Insulation for Fittings and Accessories - a. Pipe insulation shall be tightly butted to the insulation of the fittings and accessories. The butted joints and ends shall be coated with vapor retarder coating. - b. Precut or preformed insulation shall be placed around all fittings and accessories and shall conform to MICA plates except as modified herein: 5 for anchors; 10, 11, and 13 for fittings; 14 for valves; and 17 for flanges and unions. Insulation shall be the same insulation as the pipe insulation, including same density, thickness, and thermal conductivity. Where precut/preformed is unavailable, rigid preformed pipe insulation sections may be segmented into the shape required. Insulation of the same thickness and conductivity as the adjoining pipe insulation shall be used. If nesting size insulation is used, the insulation shall be overlapped 2 inches or one pipe diameter. Elbows insulated using segments shall conform to MICA Tables 12.20 "Mitered Insulation Elbow'. - c. Upon completion of insulation installation on flanges, unions, valves, anchors, fittings and accessories, terminations, seams, joints and insulation not protected by factory vapor retarder jackets or PVC fitting covers shall be protected with two coats of vapor retarder coating with a minimum total thickness of 1/16 inch, applied with glass tape embedded between coats. Tape seams shall overlap 1 inch. The coating shall extend out onto the adjoining pipe insulation 2 inches. Fabricated insulation with a factory vapor retarder jacket shall be protected with two coats of vapor retarder coating with a minimum thickness of 1/16 inch and with a 2 inch wide glass tape embedded between coats. Where fitting insulation butts to pipe insulation, the joints shall be sealed with a vapor retarder coating and a 4 inch wide ASJ tape which matches the jacket of the pipe insulation. - d. Anchors attached directly to the pipe shall be insulated for a sufficient distance to prevent condensation but not less than 6 inches from the insulation surface. - e. Insulation shall be marked showing the location of unions, strainers, and check valves. # 3.2.2.5 Optional PVC Fitting Covers At the option of the Contractor, premolded, one or two piece PVC fitting covers may be used in lieu of the vapor retarder and embedded glass tape. Factory precut or premolded insulation segments shall be used under the fitting covers for elbows. Insulation segments shall be the same insulation as the pipe insulation including same density, thickness, and thermal conductivity. The covers shall be secured by PVC vapor retarder tape, adhesive, seal-welding or with tacks made for securing PVC covers. Seams in the cover, and tacks and laps to adjoining pipe insulation jacket, shall be sealed with vapor retarder tape to ensure that the assembly has a continuous vapor seal. # 3.2.3 Aboveground Hot Pipelines The following hot pipelines above 60 degrees F shall be insulated per Table II: - a. Domestic hot water supply & recirculating system. - b. Hot water heating. #### 3.2.3.1 Insulation Thickness Insulation thickness for hot pipelines shall be determined using Table II. #### LEGEND: PF - Phenolic Foam CG - Cellular Glass CS - Calcium Silicate MF - Mineral Fiber FC - Flexible Elastomeric Cellular PL - Perlite PC - Polyisocyanurate Foam Table II - Hot Piping Insulation Thickness Pipe Size (inches) | Type of
Service
(degrees F) | Material | Runouts
up to
2 in * | 1 in
&
less | 1.25 -
2
in | 2.5 -
4
in | 5 -
6
in | 8 in
&
larger | |--|----------------------------|---------------------------------|--------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------| | Hot domestic
water supply &
recirculating
system, & water
defrost lines
(200 F max)** | CG
FC
PF
MF
PC | 1.5
0.5
0.5
0.5
1.0 | 1.5
0.5
0.5
1.5 | 1.5
1.0
1.0
1.5 | 1.5
1.0
1.0
1.5 | 1.5
1.5
1.0
1.5 | 1.5
1.5
1.0
1.5 | | Heating hot
water, supply
& return, &
Heating oil
(250 F max) | CG
PF
MF
CS
PC | 1.5
0.5
0.5
1.0 | 1.5
1.0
1.5
1.5 | 2.0
1.0
1.5
2.0
1.0 | 2.0
1.0
2.0
2.5
1.0 | 2.5
1.0
2.5
2.5
1.0 | 3.0
1.5
3.0
3.0
1.0 | ^{*} When runouts to terminal units exceed 12 feet, the entire length of runout shall be insulated like the main feed pipe. # Table II - Hot Piping Insulation Thickness Pipe Size (inches) | Type of | | Runouts | 1 in | 1.25 - | 2.5 - | 5 - | 8 in | |-------------|----------|---------|------|--------|-------|-----|--------| | Service | | up to | & | 2 | 4 | 6 | & | | (degrees F) | Material | 2 in * | less | in | in | in | larger | ^{**} Applies to recirculating sections of service or domestic hot water systems and first 8 feet from storage tank for non-recirculating systems. 3.2.3.2 Jacket for Insulated Hot Pipe, Except Pipe Insulated with Flexible Elastomeric Cellular Insulation shall be covered, in accordance with manufacturer's recommendations, with a factory applied Type II jacket or field applied aluminum where required or seal welded PVC. - 3.2.3.3 Insulation for Straight Runs - a. Insulation shall be applied to the pipe with joints tightly butted. - b. Longitudinal laps of the jacket material shall overlap not less than 1-1/2 inches, and butt strips 3 inches wide shall be provided for circumferential joints. - c. Laps and butt strips shall be secured with adhesive and stapled on 4 inch centers if not factory self-sealing. Adhesive may be omitted where pipe is concealed. - d. Factory self-sealing lap systems may be used when the ambient temperature is between 40 degrees and 120 degrees F and shall be installed in accordance with manufacturer's instructions. Laps and butt strips shall be stapled whenever there is nonadhesion of the system. Where gaps occur, the section shall be replaced or the gap repaired by applying adhesive under the lap and then stapling. - e. Breaks and punctures in the jacket material shall be patched by either wrapping a strip of jacket material around the pipe and securing with adhesive and staple on 4 inch centers (if not factory self-sealing), or patching with tape and sealing with a brush coat of vapor retarder coating. Adhesive may be omitted where pipe is concealed. Patch shall extend not less than 1-1/2 inches past the break. - f. Flexible elastomeric cellular pipe insulation shall be installed by slitting tubular sections and applying onto piping or tubing. Alternately, whenever possible, slide unslit sections over the open ends of piping or tubing. All seams and butt joints shall be secured and sealed with adhesive. When using self seal products only the butt joints shall be secured with adhesive. Insulation shall be pushed on the pipe, never pulled. Stretching of insulation may result in open seams and joints. All edges shall be clean cut. Rough or jagged edges of the insulation shall not be permitted. Proper tools such as sharp knives shall be used. ### 3.2.3.4 Insulation for Fittings and Accessories - a. Pipe insulation shall be tightly butted to the insulation of the fittings and accessories. - b. Precut or preformed insulation shall be placed around all fittings and accessories and shall conform to MICA plates, except as modified herein: 5 for anchors; 10, 11, 12, and 13 for fittings; 14, 15 and 16 for valves; 17 for flanges and unions; and 18 for couplings. Insulation shall be the same as the pipe insulation, including same density, thickness, and thermal conductivity. Where precut/preformed is unavailable, rigid preformed pipe insulation sections may be segmented into the shape required. Insulation of the same thickness and conductivity as the adjoining pipe insulation shall be used. If nesting size insulation is used, the insulation shall be overlapped 2 inches or one pipe diameter. Elbows insulated using segments shall conform to MICA Tables 12.20 "Mitered Insulation Elbow". - c. Upon completion of installation of insulation on flanges,
unions, valves, anchors, fittings and accessories, terminations and insulation not protected by factory vapor retarder jackets or PVC fitting covers shall be protected with two coats of adhesive applied with glass tape embedded between coats. Tape seams shall overlap 1 inch. Adhesive shall extend onto the adjoining insulation not less than 2 inches. The total dry film thickness shall be not less than 1/16 inch. - d. Insulation terminations shall be tapered to unions at a 0.9 radian angle. - e. At the option of the Contractor, factory premolded one- or two-piece PVC fitting covers may be used in lieu of the adhesive and embedded glass tape. Factory premolded segments or factory or field cut blanket insert insulation segments shall be used under the cover and shall be the same thickness as adjoining pipe insulation. The covers shall be secured by PVC vapor retarder tape, adhesive, seal-welding or with tacks made for securing PVC covers. # 3.2.4 Piping Exposed to Weather Piping exposed to weather shall be insulated and jacketed as specified for the applicable service inside the building. After this procedure, an aluminum jacket or PVC jacket shall be applied. PVC jacketing requires no factory applied jacket beneath it, however an all service jacket shall be applied if factory applied jacketing is not furnished. Flexible elastomeric cellular insulation exposed to weather shall be treated in accordance with paragraph INSTALLATION OF FLEXIBLE ELASTOMERIC CELLULAR INSULATION. #### 3.2.4.1 Aluminum Jacket The jacket for hot piping may be factory applied. The jacket shall overlap not less than 2 inches at longitudinal and circumferential joints and shall be secured with bands at not more than 12 inch centers. Longitudinal joints shall be overlapped down to shed water and located at 4 or 8 o'clock positions. Joints on piping 60 degrees F and below shall be sealed with caulking while overlapping to prevent moisture penetration. Where jacketing on piping 60 degrees F and below abuts an uninsulated surface, joints shall be caulked to prevent moisture penetration. Joints on piping above 60 degrees F shall be sealed with a moisture retarder. # 3.2.4.2 Insulation for Fittings Flanges, unions, valves, fittings, and accessories shall be insulated and finished as specified for the applicable service. Two coats of breather emulsion type weatherproof mastic (impermeable to water, permeable to air) recommended by the insulation manufacturer shall be applied with glass tape embedded between coats. Tape overlaps shall be not less than 1 inch and the adjoining aluminum jacket not less than 2 inches. Factory preformed aluminum jackets may be used in lieu of the above. Molded PVC fitting covers shall be provided when PVC jackets are used for straight runs of pipe. PVC fitting covers shall have adhesive welded joints and shall be weatherproof. ### 3.2.4.3 PVC Jacket PVC jacket shall be ultraviolet resistant and adhesive welded weather tight with manufacturer's recommended adhesive. Installation shall include provision for thermal expansion. #### 3.3 DUCT INSULATION INSTALLATION Except for oven hood exhaust duct insulation, corner angles shall be installed on external corners of insulation on ductwork in exposed finished spaces before covering with jacket. Air conditioned spaces shall be defined as those spaces directly supplied with cooled conditioned air (or provided with a cooling device such as a fan-coil unit) and heated conditioned air (or provided with a heating device such as a unit heater, radiator or convector). #### 3.3.1 Duct Insulation Thickness Duct insulation thickness shall be in accordance with Table III. Maximum thickness for flexible elastomeric cellular insulation shall not exceed 25 mm, and maximum thickness for polyisocyanurate foam insulation shall not exceed 40 mm to comply with ASTM E 84 flame spread/smoke developed ratings of 25/50 Table III - Minimum Duct Insulation (inches) | Cold Air Ducts | 2.0 | |------------------------|-----| | Relief Ducts | 1.5 | | Fresh Air Intake Ducts | 1.5 | | Warm Air Ducts | 2.0 | | Relief Ducts | 1.5 | | Fresh Air Intake Ducts | 1.5 | Maximum thickness for flexible elastomeric cellular insulation shall not exceed 1 inch and maximum thickness for polyisocyanurate foam insulation shall not exceed 1.5 inch, to comply with ASTM E 84 flame spread/smoke developed ratings of 25/50. # 3.3.2 Insulation and Vapor Retarder for Cold Air Duct Insulation and vapor retarder shall be provided for the following cold air ducts and associated equipment. - a. Supply ducts. - b. Return air ducts. - c. Relief ducts. - d. Flexible runouts (field-insulated). - e. Plenums. Insulation for rectangular ducts shall be flexible type where concealed, minimum density 3/4 pcf and rigid type where exposed, minimum density 3 pcf. Insulation for round/oval ducts shall be flexible type, minimum density 3/4 pcf with a factory Type I or II jacket; or, a semi rigid board, minimum density 3 pcf, formed or fabricated to a tight fit, edges beveled and joints tightly butted and staggered, with a factory applied Type I or II all service jacket. Insulation for exposed ducts shall be provided with either a white, paintable, factory-applied Type I jacket or a vapor retarder jacket coating finish as specified. Insulation on concealed duct shall be provided with a factory-applied Type I or II vapor retarder jacket. The total dry film thickness shall be approximately 1/16 inch.. Duct insulation shall be continuous through sleeves and prepared openings except fire wall penetrations. Duct insulation terminating at fire dampers, shall be continuous over the damper collar and retaining angle of fire dampers, which are exposed to unconditioned air and which may be prone to condensate formation. Duct insulation and vapor retarder shall cover the collar, neck, and any uninsulated surfaces of diffusers, registers and grills. Vapor retarder materials shall be applied to form a complete unbroken vapor seal over the insulation. Sheet Metal Duct shall be sealed in accordance with CEGS 15895A AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM. # 3.3.2.1 Installation on Concealed Duct - a. For rectangular, oval or round ducts, insulation shall be attached by applying adhesive around the entire perimeter of the duct in 6 inch wide strips on 12 inch centers. - b. For rectangular and oval ducts, 24 inches and larger insulation shall be additionally secured to bottom of ducts by the use of mechanical fasteners. Fasteners shall be spaced on 16 inch centers and not more than 16 inches from duct corners. - c. For rectangular, oval and round ducts, mechanical fasteners shall be provided on sides of duct risers for all duct sizes. Fasteners shall be spaced on 16 inch centers and not more than 16 inches from duct corners. - d. Insulation shall be impaled on the mechanical fasteners (self stick pins) where used and shall be pressed thoroughly into the adhesive. Care shall be taken to ensure vapor retarder jacket joints overlap 2 inches. The insulation shall not be compressed to a thickness less than that specified. Insulation shall be carried over standing seams and trapeze-type duct hangers. - e. Self-locking washers shall be installed where mechanical fasteners are used. The pin shall be trimmed back and bent over. - f. Jacket overlaps shall be secured with staples and tape as necessary to ensure a secure seal. Staples, tape and seams shall be coated with a brush coat of vapor retarder coating. - g. Breaks in the jacket material shall be covered with patches of the same material as the vapor retarder jacket. The patches shall extend not less than 2 inches beyond the break or penetration in all directions and shall be secured with tape and staples. Staples and tape joints shall be sealed with a brush coat of vapor retarder coating. - h. At jacket penetrations such as hangers, thermometers, and damper operating rods, voids in the insulation shall be filled and the penetration sealed with a brush coat of vapor retarder coating. - i. Insulation terminations and pin punctures shall be sealed and flashed with a reinforced vapor retarder coating finish or tape with a brush coat of vapor retarder coating. The coating shall overlap the adjoining insulation and uninsulated surface 2 inches. Pin puncture coatings shall extend 2 inches from the puncture in all directions. - j. Where insulation standoff brackets occur, insulation shall be extended under the bracket and the jacket terminated at the bracket. # 3.3.3 Insulation for Warm Air Duct Insulation and vapor barrier shall be provided for the following warm air ducts and associated equipment:. - a. Supply ducts. - b. Return air ducts - c. Relief air ducts - d. Flexible runouts (field insulated) - e. Plenums - f. Duct-mounted coil casings - q. Coil-headers and return bends - h. Coil casings. Insulation for rectangular ducts shall be flexible type where concealed, minimum density 3/4 pcf; and rigid type where exposed, minimum density 3 pcf. Insulation on exposed ducts shall be provided with a white, paintable, factory-applied Type II jacket, or finished with adhesive finish. Flexible type insulation shall be used for round ducts, minimum density 3/4 pcf with a factory-applied Type II jacket. Insulation on concealed duct shall be provided with a factory-applied Type II jacket. Adhesive finish where indicated to be used shall be accomplished by applying two coats of adhesive with a layer of glass cloth embedded between the coats. The total dry film thickness shall be approximately 1/16 inch. Duct insulation shall be continuous through sleeves and prepared openings. Duct insulation shall terminate at fire dampers and flexible connections. #### 3.3.3.1 Installation on Concealed Duct - a. For rectangular, oval and round ducts, insulation shall be attached by applying adhesive around the entire perimeter of the duct in 6 inch wide strips on 12 inch centers. - b. For rectangular and oval ducts 24 inches and
larger, insulation shall be secured to the bottom of ducts by the use of mechanical fasteners. Fasteners shall be spaced on 18 inch centers and not more than 18 inches from duct corner. - c. For rectangular, oval and round ducts, mechanical fasteners shall be provided on sides of duct risers for all duct sizes. Fasteners shall be spaced on 18 inch centers and not more than 18 inches from duct corners. - d. The insulation shall be impaled on the mechanical fasteners where used. The insulation shall not be compressed to a thickness less than that specified. Insulation shall be carried over standing seams and trapeze-type hangers. - e. Self-locking washers shall be installed where mechanical fasteners are used and the pin trimmed and bent over. - f. Insulation jacket shall overlap not less than 2 inches at joints and the lap shall be secured and stapled on 4 inch centers. # 3.3.4 Duct Exposed to Weather # 3.3.4.1 Round Duct Aluminum jacket with factory applied moisture retarder shall be applied with the joints lapped not less than 3 inches and secured with bands located at circumferential laps and at not more than 12 inch intervals throughout. Horizontal joints shall lap down to shed water and located at 4 or 8 o'clock position. Joints shall be sealed with caulking to prevent moisture penetration. Where jacketing abuts an uninsulated surface, joints shall be sealed with caulking. ### 3.3.4.2 Fittings Fittings and other irregular shapes shall be finished as specified for rectangular ducts. # 3.3.4.3 Rectangular Ducts Two coats of weather barrier mastic reinforced with fabric or mesh for outdoor application shall be applied to the entire surface. Each coat of weatherproof mastic shall be 1/16 inch minimum thickness. The exterior shall be a metal jacketing applied for mechanical abuse and weather protection, and secured with screws. -- End of Section -- ### SECTION 15182A # REFRIGERANT PIPING 01/01 ### PART 1 GENERAL #### 1.1 REFERENCES ASTM A 193/A 193M ASTM B 280 The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # AIR CONDITIONING AND REFRIGERATION INSTITUTE (ARI) | ARI 710 | (1995) Liquid-Line Driers | |-------------------------|--| | ARI 720 | (1997) Refrigerant Access Valves and Hose
Connectors | | ARI 750 | (1994) Thermostatic Refrigerant Expansion Valves | | ARI 760 | (1994) Solenoid Valves for Use with Volatile Refrigerants | | AMERICAN SOCIETY FOR TE | STING AND MATERIALS (ASTM) | | ASTM A 53/A 53M | (1999b) Pipe, Steel, Black and Hot-Dipped,
Zinc-Coated, Welded and Seamless | | | Service | |-------------------|---| | ASTM A 334/A 334M | (1999) Seamless and Welded Carbon and
Alloy-Steel Tubes for Low-Temperature
Service | | ASTM A 653/A 653M | (2000) Steel Sheet, Zinc-Coated | (1999a) Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature (1999) Seamless Copper Tube for Air Conditioning and Refrigeration Field | ASIN A 033/A 033N | (Galvanized) or Zinc-Iron Alloy-Coated (Galvannealed) by the Hot-Dip Process | |-------------------|--| | ASTM B 32 | (1996) Solder Metal | | ASTM B 62 | (1993) Composition Bronze or Ounce Metal
Castings | | ASTM B 75 | (1999) Seamless Copper Tube | | ASTM B 117 | (1997) Operating Salt Spray (Fog) Apparatus | | | | ASTM B 813 (1993) Liquid and Paste Fluxes for Service | | Soldering Applications of Copper and
Copper Alloy Tube | |-------------------------|---| | ASTM D 520 | (1984; R 1995el) Zinc Dust Pigment | | ASTM D 3308 | (1997) PTFE Resin Skived Tape | | ASTM E 84 | (2000a) Surface Burning Characteristics of Building Materials | | AMERICAN SOCIETY OF HEA | ATING, REFRIGERATING AND AIR-CONDITIONING | | ASHRAE 15 | (1994; Errata 1994) Safety Code for
Mechanical Refrigeration | | ASHRAE 17 | (1998) Method of Testing for Capacity
Rating of Thermostatic Refrigerant
Expansion Valves | | ASME INTERNATIONAL (ASM | ME) | | ASME B1.20.1 | (1983; R 1992) Pipe Threads, General
Purpose (Inch) | | ASME B16.3 | (1998) Malleable Iron Threaded Fittings | | ASME B16.5 | (1996; B16.5a) Pipe Flanges and Flanged
Fittings NPS 1/2 thru NPS 24 | | ASME B16.9 | (1993) Factory-Made Wrought Steel
Buttwelding Fittings | | ASME B16.11 | (1996) Forged Fittings, Socket-Welding and
Threaded | | ASME B16.21 | (1992) Nonmetallic Flat Gaskets for Pipe
Flanges | | ASME B16.22 | (1995; B16.22a1998) Wrought Copper and
Copper Alloy Solder Joint Pressure Fittings | | ASME B16.26 | (1988) Cast Copper Alloy Fittings for Flared Copper Tubes | | ASME B31.1 | (1998) Power Piping | | ASME B31.5 | (1992; B31.5a1994) Refrigeration Piping | | ASME B31.9 | (1996) Building Services Piping | | ASME B40.1 | (1991) Gauges - Pressure Indicating Dial
Type - Elastic Element | | ASME BPV IX | (1998) Boiler and Pressure Vessel Code;
Section IX, Welding and Brazing | # AMERICAN WELDING SOCIETY (AWS) Qualifications AWS A5.8 (1992) Filler Metals for Brazing and Braze Welding AWS Brazing Hdbk (1991) Brazing Handbook AWS D1.1 (2000) Structural Welding Code - Steel AWS Z49.1 (1999) Safety in Welding and Cutting MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS) MSS SP-58 (1993) Pipe Hangers and Supports - Materials, Design and Manufacture MSS SP-69 (1996) Pipe Hangers and Supports - Selection and Application #### 1.2 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: ### SD-02 Shop Drawings Refrigerant Piping System; G, ED Drawings, at least 5 weeks prior to beginning construction, provided in adequate detail to demonstrate compliance with contract requirements. Drawings shall consist of: - a. Piping layouts which identify all valves and fittings. - b. Plans and elevations which identify clearances required for maintenance and operation. # SD-03 Product Data Refrigerant Piping System; G, ED Manufacturer's standard catalog data, at least 5 weeks prior to the purchase or installation of a particular component, highlighted to show material, size, options, performance charts and curves, etc. in adequate detail to demonstrate compliance with contract requirements. Data shall include manufacturer's recommended installation instructions and procedures. Data shall be provided for the following components as a minimum: - a. Piping and Fittings - b. Valves - c. Piping Accessories - d Pipe Hangers, Inserts, and Supports ### Qualifications Six copies of qualified procedures, and list of names and identification symbols of qualified welders and welding operators, prior to non-factory welding operations. ### Refrigerant Piping Tests A schedule, at least 2 weeks prior to the start of related testing, for each test. The schedules shall identify the proposed date, time, and location for each test. #### Demonstrations A schedule, at least 2 weeks prior to the date of the proposed training course, which identifies the date, time, and location for the training. #### Verification of Dimensions A letter, at least 2 weeks prior to beginning construction, including the date the site was visited, conformation of existing conditions, and any discrepancies found. # SD-06 Test Reports # Refrigerant Piping Tests Six copies of the report shall be provided in bound 8 $1/2 \times 11$ inch booklets. Reports shall document all phases of the tests performed. The report shall include initial test summaries, all repairs/adjustments made, and the final test results. # SD-07 Certificates ### Service Organization A certified list of qualified permanent service organizations for support of the equipment which includes their addresses and qualifications. The service organizations shall be reasonably convenient to the equipment installation and be able to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract. #### SD-10 Operation and Maintenance Data #### Maintenance Manuals Six complete copies of maintenance manual in bound 8 $1/2 \times 11$ inch booklets listing routine maintenance procedures, possible breakdowns and repairs, and a trouble shooting guide. The manuals shall include piping layouts and simplified wiring and control diagrams of the system as installed. #### 1.3 QUALIFICATIONS Piping shall be welded in accordance with the qualified procedures using performance qualified welders and welding operators. Procedures and welders shall be qualified in accordance with ASME BPV IX. Welding procedures qualified by others, and welders and welding operators qualified by another employer may be accepted as permitted by ASME B31.1. The Contracting Officer shall be notified 24 hours in advance of tests and the tests shall be performed at the work site if practical. The welder or welding operator shall apply the personally assigned symbol near each weld made, as a permanent record. #### 1.4 SAFETY REQUIREMENTS Exposed moving parts, parts that produce high operating temperature, parts which may be electrically energized, and parts that may be a hazard to operating personnel shall be insulated, fully enclosed, guarded, or fitted with other types of safety devices. Safety devices shall be installed so that proper operation of equipment is not impaired. Welding and cutting safety requirements shall be in accordance with AWS Z49.1. ### 1.5 DELIVERY, STORAGE, AND HANDLING Stored
items shall be protected from the weather, humidity and temperature variations, dirt and dust, or other contaminants. Proper protection and care of all material both before and during installation shall be the Contractor's responsibility. Any materials found to be damaged shall be replaced at the Contractor's expense. During installation, piping and similar openings shall be capped to keep out dirt and other foreign matter. ### 1.6 PROJECT/SITE CONDITIONS #### 1.6.1 Verification of Dimensions The Contractor shall become familiar with all details of the work, verify all dimensions in the field, and advise the Contracting Officer of any discrepancy before performing any work. # 1.6.2 Drawings Because of the small scale of the drawings, it is not possible to indicate all offsets, fittings, and accessories that may be required. The Contractor shall carefully investigate the plumbing, fire protection, electrical, structural and finish conditions that would affect the work to be performed and shall arrange such work accordingly, furnishing required offsets, fittings, and accessories to meet such conditions. #### PART 2 PRODUCTS #### 2.1 STANDARD COMMERCIAL PRODUCTS Materials and equipment shall be standard products of a manufacturer regularly engaged in the manufacturing of such products, which are of a similar material, design and workmanship. The standard products shall have been in satisfactory commercial or industrial use for 2 years prior to bid opening. The 2 year use shall include applications of equipment and materials under similar circumstances and of similar size. The 2 years experience shall be satisfactorily completed by a product which has been sold or is offered for sale on the commercial market through advertisements, manufacturer's catalogs, or brochures. Products having less than a 2 year field service record shall be acceptable if a certified record of satisfactory field operation, for not less than 6000 hours exclusive of the manufacturer's factory tests, can be shown. Products shall be supported by a service organization. System components shall be environmentally suitable for the indicated locations. #### 2.2 ELECTRICAL WORK Electrical equipment and wiring shall be in accordance with Section 16415A ELECTRICAL WORK, INTERIOR. Field wiring shall be in accordance with manufacturer's instructions. Manual or automatic control and protective or signal devices required for the operation specified and any control wiring required for controls and devices specified, but not shown, shall be provided. #### 2.3 REFRIGERANT PIPING SYSTEM Refrigerant piping, valves, fittings, and accessories shall be in accordance with ASHRAE 15 and ASME B31.5, except as specified herein. Refrigerant piping, valves, fittings, and accessories shall be compatible with the fluids used and capable of withstanding the pressures and temperatures of the service. Refrigerant piping, valves, and accessories used for refrigerant service shall be cleaned, dehydrated, and sealed (capped or plugged) prior to shipment from the manufacturer's plant. ### 2.4 PIPE, FITTINGS AND END CONNECTIONS (JOINTS) #### 2.4.1 Steel Pipe Steel pipe for refrigerant service shall conform to ASTM A 53/A 53M, Schedule 40, Type E or S, Grades A or B. Type F pipe shall not be used. #### 2.4.1.1 Welded Fittings and Connections Butt-welded fittings shall conform to ASME B16.9. Socket-welded fittings shall conform to ASME B16.11. Welded fittings shall be identified with the appropriate grade and marking symbol. Welded valves and pipe connections (both butt-welds and socket-welds types) shall conform to ASME B31.9. # 2.4.1.2 Threaded Fittings and Connections Threaded fitting shall conform to ASME B16.3. Threaded valves and pipe connections shall conform to ASME B1.20.1. # 2.4.1.3 Flanged Fittings and Connections Flanges shall conform to ASME B16.5, Class 150. Gaskets shall be nonasbestos compressed material in accordance with ASME B16.21, 1/16 inch thickness, full face or self-centering flat ring type. This gaskets shall contain aramid fibers bonded with styrene butadeine rubber (SBR) or nitrile butadeine rubber (NBR). Bolts, nuts, and bolt patterns shall conform to ASME B16.5. Bolts shall be high or intermediate strength material conforming to ASTM A 193/A 193M. ### 2.4.2 Steel Tubing Tubing shall be cold-rolled, electric-forged, welded-steel in accordance with ASTM A 334/A 334M, Grade 1. Joints and fittings shall be socket type provided by the steel tubing manufacturer. # 2.4.3 Copper Tubing Copper tubing shall conform to ASTM B 280 annealed or hard drawn as required. Copper tubing shall be soft annealed where bending is required and hard drawn where no bending is required. Soft annealed copper tubing shall not be used in sizes larger than 1-3/8 inches. Joints shall be brazed except that joints on lines 7/8 inchand smaller may be flared. Cast copper alloy fittings for flared copper tube shall conform to ASME B16.26 and ASTM B 62. Wrought copper and bronze solder-joint pressure fittings shall conform to ASME B16.22 and ASTM B 75. Joints and fittings for brazed joint shall be wrought-copper or forged-brass sweat fittings. Cast sweat-type joints and fittings shall not be allowed for brazed joints. Brass or bronze adapters for brazed tubing may be used for connecting tubing to flanges and to threaded ends of valves and equipment. ### 2.4.4 Solder Solder shall conform to ASTM B 32, grade Sb5, tin-antimony alloy for service pressures up to 150 psig. Solder flux shall be liquid or paste form, non-corrosive and conform to ASTM B 813. ### 2.4.5 Brazing Filler Metal Filler metal shall conform to AWS A5.8, Type BAg-5 with AWS Type 3 flux, except Type BCuP-5 or BCuP-6 may be used for brazing copper-to-copper joints. #### 2.5 VALVES Valves shall be designed, manufactured, and tested specifically for refrigerant service. Valve bodies shall be of brass, bronze, steel, or ductile iron construction. Valves 1 inch and smaller shall have brazed or socket welded connections. Valves larger than 1 inch shall have tongue-and-groove flanged end connections. Threaded end connections shall not be used, except in pilot pressure or gauge lines where maintenance disassembly is required and welded flanges cannot be used. Internal parts shall be removable for inspection or replacement without applying heat or breaking pipe connections. Valve stems exposed to the atmosphere shall be stainless steel or corrosion resistant metal plated carbon steel. Direction of flow shall be legibly and permanently indicated on the valve body. Control valve inlets shall be fitted with integral or adapted strainer or filter where recommended or required by the manufacturer. Purge, charge and receiver valves shall be of manufacturer's standard configuration. # 2.5.1 Refrigerant Stop Valves Valve shall be the globe or full-port ball type with a back-seating stem especially packed for refrigerant service. Valve packing shall be replaceable under line pressure. Valve shall be provided with a handwheel operator and a seal cap. Valve shall be the straight or angle pattern design as indicated. ### 2.5.2 Check Valves Valve shall be the swing or lift type as required to provide positive shutoff at the differential pressure indicated. Valve shall be provide with resilient seat. # 2.5.3 Liquid Solenoid Valves Valves shall comply with ARI 760 and be suitable for continuous duty with applied voltages 15 percent under and 5 percent over nominal rated voltage at maximum and minimum encountered pressure and temperature service conditions. Valves shall be direct-acting or pilot-operating type, packless, except that packed stem, seal capped, manual lifting provisions shall be furnished. Solenoid coils shall be moisture-proof, UL approved, totally encapsulated or encapsulated and metal jacketed as required. Valves shall have safe working pressure of 400 psi and a maximum operating pressure differential of at least 200 psi at 85 percent rated voltage. Valves shall have an operating pressure differential suitable for the refrigerant used. # 2.5.4 Expansion Valves Valve shall conform to ARI 750 and ASHRAE 17. Valve shall be the diaphragm and spring-loaded type with internal or external equalizers, and bulb and capillary tubing. Valve shall be provided with an external superheat adjustment along with a seal cap. Internal equalizers may be utilized where flowing refrigerant pressure drop between outlet of the valve and inlet to the evaporator coil is negligible and pressure drop across the evaporator is less than the pressure difference corresponding to 2 degrees F of saturated suction temperature at evaporator conditions. Bulb charge shall be determined by the manufacturer for the application and such that liquid will remain in the bulb at all operating conditions. Gas limited liquid charged valves and other valve devices for limiting evaporator pressure shall not be used without a distributor or discharge tube or effective means to prevent loss of control when bulb becomes warmer than valve body. Pilot-operated valves shall have a characterized plug to provide required modulating control. A de-energized solenoid valve may be used in the pilot line to close the main valve in lieu of a solenoid valve in the main liquid line. An isolatable pressure gauge shall be provided in the pilot line, at the main valve. Automatic pressure reducing or constant pressure regulating expansion valves may be used only where indicted or for constant evaporator loads. #### 2.5.5 Safety Relief Valves Valve shall be the two-way type, unless indicated otherwise. Valve shall bear the ASME code symbol. Valve capacity shall be certified by the National Board of Boiler and Pressure Vessel Inspectors. Valve shall be of an automatically reseating design after activation. # 2.5.6 Evaporator Pressure Regulators, Direct-Acting Valve shall include a diaphragm/spring assembly, external pressure adjustment with seal cap, and pressure gauge port. Valve shall maintain a
constant inlet pressure by balancing inlet pressure on diaphragm against an adjustable spring load. Pressure drop at system design load shall not exceed the pressure difference corresponding to a 2 degrees F change in saturated refrigerant temperature at evaporator operating suction temperature. Spring shall be selected for indicated maximum allowable suction pressure range. #### 2.5.7 Refrigerant Access Valves Refrigerant access valves and hose connections shall be in accordance with ARI 720. # 2.6 PIPING ACCESSORIES #### 2.6.1 Filter Driers Driers shall conform to ARI 710. Sizes 5/8 inch and larger shall be the full flow, replaceable core type. Sizes 1/2 inch and smaller shall be the sealed type. Cores shall be of suitable desiccant that will not plug, cake, dust, channel, or break down, and shall remove water, acid, and foreign material from the refrigerant. Filter driers shall be constructed so that none of the desiccant will pass into the refrigerant lines. Minimum bursting pressure shall be 1,500 psi. ### 2.6.2 Sight Glass and Liquid Level Indicator # 2.6.2.1 Assembly and Components Assembly shall be pressure- and temperature-rated and constructed of materials suitable for the service. Glass shall be borosilicate type. Ferrous components subject to condensation shall be electro-galvanized. ### 2.6.2.2 Gauge Glass Gauge glass shall include top and bottom isolation valves fitted with automatic checks, and packing followers; red-line or green-line gauge glass; elastomer or polymer packing to suit the service; and gauge glass quard. # 2.6.2.3 Bull's-Eye and Inline Sight Glass Reflex Lens Bull's-eye and inline sight glass reflex lens shall be provided for dead-end liquid service. For pipe line mounting, two plain lenses in one body suitable for backlighted viewing shall be provided. #### 2.6.2.4 Moisture Indicator Indicator shall be a self-reversible action, moisture reactive, color changing media. Indicator shall be furnished with full-color-printing tag containing color, moisture and temperature criteria. Unless otherwise indicated, the moisture indicator shall be an integral part of each corresponding sight glass. ### 2.6.3 Vibration Dampeners Dampeners shall be of the all-metallic bellows and woven-wire type. # 2.6.4 Flexible Pipe Connectors Connector shall be a composite of interior corrugated phosphor bronze or Type 300 Series stainless steel, as required for fluid service, with exterior reinforcement of bronze, stainless steel or monel wire braid. Assembly shall be constructed with a safety factor of not less than 4 at 300 degrees F. Unless otherwise indicated, the length of a flexible connector shall be as recommended by the manufacturer for the service intended. # 2.6.5 Strainers Strainers used in refrigerant service shall have brass or cast iron body, Y-or angle-pattern, cleanable, not less than 60-mesh noncorroding screen of an area to provide net free area not less than ten times the pipe diameter with pressure rating compatible with the refrigerant service. Screens shall be stainless steel or monel and reinforced spring-loaded where necessary for bypass-proof construction. # 2.6.6 Pressure and Vacuum Gauges Gauges shall conform to ASME B40.1 and shall be provided with throttling type needle valve or a pulsation dampener and shut-off valve. Gauge shall be a minimum of 3-1/2 inches in diameter with a range from 0 psig to approximately 1.5 times the maximum system working pressure. Each gauge range shall be selected so that at normal operating pressure, the needle is within the middle-third of the range. ### 2.6.7 Temperature Gauges Temperature gauges shall be the industrial duty type and be provided for the required temperature range. Gauges shall have Fahrenheit scale in 2 degree graduations scale (black numbers) on a white face. The pointer shall be adjustable. Rigid stem type temperature gauges shall be provided in thermal wells located within 5 feet of the finished floor. Universal adjustable angle type or remote element type temperature gauges shall be provided in thermal wells located 5 to 7 feet above the finished floor. Remote element type temperature gauges shall be provided in thermal wells located 7 feet above the finished floor. #### 2.6.7.1 Stem Cased-Glass Stem cased-glass case shall be polished stainless steel or cast aluminum, 9 inches long, with clear acrylic lens, and non-mercury filled glass tube with indicating-fluid column. # 2.6.7.2 Bimetallic Dial Bimetallic dial type case shall be not less than 3-1/2 inches, stainless steel, and shall be hermetically sealed with clear acrylic lens. Bimetallic element shall be silicone dampened and unit fitted with external calibrator adjustment. Accuracy shall be one percent of dial range. # 2.6.7.3 Liquid-, Solid-, and Vapor-Filled Dial Liquid-, solid-, and vapor-filled dial type cases shall be not less than 3-1/2 inches, stainless steel or cast aluminum with clear acrylic lens. Fill shall be nonmercury, suitable for encountered cross-ambients, and connecting capillary tubing shall be double-braided bronze. # 2.6.7.4 Thermal Well Thermal well shall be identical size, 1/2 or 3/4 inch NPT connection, brass or stainless steel. Where test wells are indicated, provide captive plug-fitted type 1/2 inch NPT connection suitable for use with either engraved stem or standard separable socket thermometer or thermostat. Extended neck thermal wells shall be of sufficient length to clear insulation thickness by 1 inch. ### 2.6.8 Pipe Hangers, Inserts, and Supports Pipe hangers, inserts, guides, and supports shall conform to MSS SP-58 and MSS SP-69. #### 2.6.9 Escutcheons Escutcheons shall be chromium-plated iron or chromium-plated brass, either one piece or split pattern, held in place by internal spring tension or set screws. #### 2.7 FABRICATION # 2.7.1 Factory Coating Unless otherwise specified, equipment and component items, when fabricated from ferrous metal, shall be factory finished with the manufacturer's standard finish, except that items located outside of buildings shall have weather resistant finishes that will withstand 500 hours exposure to the salt spray test specified in ASTM B 117 using a 5 percent sodium chloride solution. Immediately after completion of the test, the specimen shall show no signs of blistering, wrinkling, cracking, or loss of adhesion and no sign of rust creepage beyond 1/8 inch on either side of the scratch mark. Cut edges of galvanized surfaces where hot-dip galvanized sheet steel is used shall be coated with a zinc-rich coating conforming to ASTM D 520, Type I. ### 2.7.2 Factory Applied Insulation Refrigerant suction lines between the cooler and each compressor shall be insulated with not less than 3/4 inch thick unicellular plastic foam. Factory insulated items installed outdoors are not required to be fire-rated. As a minimum, factory insulated items installed indoors shall have a flame spread index no higher than 75 and a smoke developed index no higher than 150. Factory insulated items (no jacket) installed indoors and which are located in air plenums, in ceiling spaces, and in attic spaces shall have a flame spread index no higher than 25 and a smoke developed index no higher than 50. Flame spread and smoke developed indexes shall be determined by ASTM E 84. Insulation shall be tested in the same density and installed thickness as the material to be used in the actual construction. Material supplied by a manufacturer with a jacket shall be tested as a composite material. Jackets, facings, and adhesives shall have a flame spread index no higher than 25 and a smoke developed index no higher than 50 when tested in accordance with ASTM E 84. # 2.8 SUPPLEMENTAL COMPONENTS/SERVICES ### 2.8.1 Field Applied Insulation Field applied insulation shall be provided and installed in accordance with Section 15080A THERMAL INSULATION FOR MECHANICAL SYSTEMS. #### PART 3 EXECUTION #### 3.1 INSTALLATION Pipe and fitting installation shall conform to the requirements of ASME B31.1. Pipe shall be cut accurately to measurements established at the jobsite, and worked into place without springing or forcing, completely clearing all windows, doors, and other openings. Cutting or other weakening of the building structure to facilitate piping installation will not be permitted without written approval. Pipe or tubing shall be cut square, shall have burrs removed by reaming, and shall permit free expansion and contraction without causing damage to the building structure, pipe, joints, or hangers. ### 3.1.1 Directional Changes Changes in direction shall be made with fittings, except that bending of pipe 4 inches and smaller will be permitted, provided a pipe bender is used and wide weep bends are formed. Mitering or notching pipe or other similar construction to form elbows or tees will not be permitted. The centerline radius of bends shall not be less than 6 diameters of the pipe. Bent pipe showing kinks, wrinkles, flattening, or other malformations will not be accepted. # 3.1.2 Functional Requirements Piping shall be installed 1/2 inch per 10 feet of pipe in the direction of flow to ensure adequate oil drainage. Open ends of refrigerant lines or equipment shall be properly capped or plugged during installation to keep moisture, dirt, or other foreign material out of the system. Piping shall remain capped until installation. Equipment piping shall be in accordance with the equipment manufacturer's recommendations and the contract drawings. Equipment and piping arrangements shall fit into space allotted and allow adequate acceptable clearances for installation, replacement, entry, servicing, and maintenance. ### 3.1.3 Fittings and End Connections #### 3.1.3.1 Threaded Connections Threaded connections shall be made with tapered threads and made tight with PTFE tape complying with ASTM D 3308 or equivalent thread-joint compound applied to the male threads only. Not more than three threads shall show after the joint is made. #### 3.1.3.2
Brazed Connections Brazing shall be performed in accordance with AWS Brazing Hdbk, except as modified herein. During brazing, the pipe and fittings shall be filled with a pressure regulated inert gas, such as nitrogen, to prevent the formation of scale. Before brazing copper joints, both the outside of the tube and the inside of the fitting shall be cleaned with a wire fitting brush until the entire joint surface is bright and clean. Brazing flux shall not be used. Surplus brazing material shall be removed at all joints. Steel tubing joints shall be made in accordance with the manufacturer's recommendations. Joints in steel tubing shall be painted with the same material as the baked-on coating within 8 hours after joints are made. Tubing shall be protected against oxidation during brazing by continuous purging of the inside of the piping using nitrogen. Piping shall be supported prior to brazing and not be sprung or forced. # 3.1.3.3 Welded Connections Welded joints in steel refrigerant piping shall be fusion-welded. Branch connections shall be made with welding tees or forged welding branch outlets. Pipe shall be thoroughly cleaned of all scale and foreign matter before the piping is assembled. During welding the pipe and fittings shall be filled with an inert gas, such as nitrogen, to prevent the formation of scale. Beveling, alignment, heat treatment, and inspection of weld shall conform to ASME B31.1. Weld defects shall be removed and rewelded at no additional cost to the Government. Electrodes shall be stored and dried in accordance with AWS D1.1 or as recommended by the manufacturer. Electrodes that have been wetted or that have lost any of their coating shall not be used. ### 3.1.3.4 Flared Connections When flared connections are used, a suitable lubricant shall be used between the back of the flare and the nut in order to avoid tearing the flare while tightening the nut. ### 3.1.3.5 Flanged Connections When steel refrigerant piping is used, union or flange joints shall be provided in each line immediately preceding the connection to each piece of equipment requiring maintenance, such as compressors, coils, chillers, control valves, and other similar items. Flanged joints shall be assembled square end tight with matched flanges, gaskets, and bolts. Gaskets shall be suitable for use with the refrigerants to be handled. #### 3.1.4 Valves #### 3.1.4.1 General Refrigerant stop valves shall be installed on each side of each piece of equipment such as compressors condensers, evaporators, receivers, and other similar items in multiple-unit installation, to provide partial system isolation as required for maintenance or repair. Stop valves shall be installed with stems horizontal unless otherwise indicated. Ball valves shall be installed with stems positioned to facilitate operation and maintenance. Isolating valves for pressure gauges and switches shall be external to thermal insulation. Safety switches shall not be fitted with isolation valves. Filter dryers having access ports may be considered a point of isolation. Purge valves shall be provided at all points of systems where accumulated noncondensible gases would prevent proper system operation. Valves shall be furnished to match line size, unless otherwise indicated or approved. ### 3.1.4.2 Expansion Valves Expansion valves shall be installed with the thermostatic expansion valve bulb located on top of the suction line when the suction line is less than 2-1/8 inches in diameter and at the 4 o'clock or 8 o'clock position on lines larger than 2-1/8 inches. The bulb shall be securely fastened with two clamps. The bulb shall be insulated. The bulb shall installed in a horizontal portion of the suction line, if possible, with the pigtail on the bottom. If the bulb must be installed in a vertical line, the bulb tubing shall be facing up. ### 3.1.4.3 Valve Identification Each system valve, including those which are part of a factory assembly, shall be tagged. Tags shall be in alphanumeric sequence, progressing in direction of fluid flow. Tags shall be embossed, engraved, or stamped plastic or nonferrous metal of various shapes, sized approximately 1-3/8 inch diameter, or equivalent dimension, substantially attached to a component or immediately adjacent thereto. Tags shall be attached with nonferrous, heavy duty, bead or link chain, 14 gauge annealed wire, nylon cable bands or as approved. Tag numbers shall be referenced in Operation and Maintenance Manuals and system diagrams. ### 3.1.5 Vibration Dampers Vibration damper shall be provided in the suction and discharge lines on spring mounted compressors. Vibration dampers shall be installed parallel with the shaft of the compressor and shall be anchored firmly at the upstream end on the suction line and the downstream end in the discharge line. #### 3.1.6 Strainers Strainers shall be provided immediately ahead of solenoid valves and expansion devices. Strainers may be an integral part of an expansion valve. # 3.1.7 Filter Dryer A liquid line filter dryer shall be provided on each refrigerant circuit located such that all liquid refrigerant passes through a filter dryer. Dryers shall be sized in accordance with the manufacturer's recommendations for the system in which it is installed. Dryers shall be installed such that it can be isolated from the system, the isolated portion of the system evacuated, and the filter dryer replaced. Dryers shall be installed in the horizontal position except replaceable core filter dryers may be installed in the vertical position with the access flange on the bottom. ### 3.1.8 Sight Glass A moisture indicating sight glass shall be installed in all refrigerant circuits down stream of all filter dryers and where indicated. Site glasses shall be full line size. ### 3.1.9 Discharge Line Oil Separator Discharge line oil separator shall be provided in the discharge line from each compressor. Oil return line shall be connected to the compressor as recommended by the compressor manufacturer. #### 3.1.10 Accumulator Accumulators shall be provided in the suction line to each compressor. # 3.1.11 Flexible Pipe Connectors Connectors shall be installed perpendicular to line of motion being isolated. Piping for equipment with bidirectional motion shall be fitted with two flexible connectors, in perpendicular planes. Reinforced elastomer flexible connectors shall be installed in accordance with manufacturer's instructions. Piping guides and restraints related to flexible connectors shall be provided as required. # 3.1.12 Temperature Gauges Temperature gauges shall be located specifically on, but not limited to the following: the sensing element of each automatic temperature control device where a thermometer is not an integral part thereof. Thermal wells for insertion thermometers and thermostats shall extend beyond thermal insulation surface not less than 1 inch. ### 3.1.13 Pipe Hangers, Inserts, and Supports Pipe hangers, inserts, and supports shall conform to MSS SP-58 and MSS SP-69, except as modified herein. Pipe hanger types 5, 12, and 26 shall not be used. Hangers used to support piping 2 inches and larger shall be fabricated to permit adequate adjustment after erection while still supporting the load. Piping subjected to vertical movement, when operating temperatures exceed ambient temperatures, shall be supported by variable spring hangers and supports or by constant support hangers. ### 3.1.13.1 Hangers Type 3 shall not be used on insulated piping. Type 24 may be used only on trapeze hanger systems or on fabricated frames. #### 3.1.13.2 Inserts Type 18 inserts shall be secured to concrete forms before concrete is placed. Continuous inserts which allow more adjustments may be used if they otherwise meet the requirements for Type 18 inserts. # 3.1.13.3 C-Clamps Type 19 and 23 C-clamps shall be torqued per MSS SP-69 and have both locknuts and retaining devices, furnished by the manufacturer. Field-fabricated C-clamp bodies or retaining devices are not acceptable. ### 3.1.13.4 Angle Attachments Type 20 attachments used on angles and channels shall be furnished with an added malleable-iron heel plate or adapter. # 3.1.13.5 Saddles and Shields Where Type 39 saddle or Type 40 shield are permitted for a particular pipe attachment application, the Type 39 saddle, connected to the pipe, shall be used on all pipe 4 inches and larger when the temperature of the medium is 60 degrees F or higher. Type 40 shields shall be used on all piping less than 4 inches and all piping 4 inches and larger carrying medium less than 60 degrees F. A high density insulation insert of cellular glass shall be used under the Type 40 shield for piping 2 inches and larger. # 3.1.13.6 Horizontal Pipe Supports Horizontal pipe supports shall be spaced as specified in MSS SP-69 and a support shall be installed not over 1 foot from the pipe fitting joint at each change in direction of the piping. Pipe supports shall be spaced not over 5 feet apart at valves. # 3.1.13.7 Vertical Pipe Supports Vertical pipe shall be supported at each floor, except at slab-on-grade, and at intervals of not more than 15 feet, not more than 8 feetfrom end of risers, and at vent terminations. ### 3.1.13.8 Pipe Guides Type 35 guides using, steel, reinforced polytetrafluoroethylene (PTFE) or graphite slides shall be provided where required to allow longitudinal pipe movement. Lateral restraints shall be provided as required. Slide materials shall be suitable for the system operating temperatures, atmospheric conditions, and bearing loads encountered. ### 3.1.13.9 Steel Slides Where steel slides do not require provisions for restraint of lateral movement, an alternate guide method may be used. On piping 4 inches and larger, a Type 39 saddle shall be used. On piping under 4 inches, a Type 40 protection shield may be attached to the pipe or insulation and freely rest on a steel slide plate. #### 3.1.13.10 High Temperature Guides with Cradles Where
there are high system temperatures and welding to piping is not desirable, then the Type 35 guide shall include a pipe cradle, welded to the guide structure and strapped securely to the pipe. The pipe shall be separated from the slide material by at least 4 inches, or by an amount adequate for the insulation, whichever is greater. ### 3.1.13.11 Multiple Pipe Runs In the support of multiple pipe runs on a common base member, a clip or clamp shall be used where each pipe crosses the base support member. Spacing of the base support members shall not exceed the hanger and support spacing required for an individual pipe in the multiple pipe run. # 3.1.13.12 Seismic Requirements Piping and attached valves shall be supported and braced to resist seismic loads. Structural steel required for reinforcement to properly support piping, headers, and equipment but not shown shall be provided under this section. Material used for support shall be as specified under Division 5 - METALS. # 3.1.13.13 Structural Attachments Attachment to building structure concrete and masonry shall be by cast-in concrete inserts, built-in anchors, or masonry anchor devices. Inserts and anchors shall be applied with a safety factor not less than 5. Supports shall not be attached to metal decking. Masonry anchors for overhead applications shall be constructed of ferrous materials only. Structural steel brackets required to support piping, headers, and equipment, but not shown, shall be provided under this section. Material used for support shall be as specified under Division 5 - METALS. ### 3.1.14 Pipe Alignment Guides Pipe alignment guides shall be provided where indicated for expansion loops, offsets, and bends and as recommended by the manufacturer for expansion joints, not to exceed 5 feet on each side of each expansion joint, and in lines 4 inches or smaller not more than 2 feet on each side of the joint. ### 3.1.15 Pipe Anchors Anchors shall be provided wherever necessary or indicated to localize expansion or to prevent undue strain on piping. Anchors shall consist of heavy steel collars with lugs and bolts for clamping and attaching anchor braces, unless otherwise indicated. Anchor braces shall be installed in the most effective manner to secure the desired results using turnbuckles where required. Supports, anchors, or stays shall not be attached where they will injure the structure or adjacent construction during installation or by the weight of expansion of the pipeline. Where pipe and conduit penetrations of vapor barrier sealed surfaces occur, these items shall be anchored immediately adjacent to each penetrated surface, to provide essentially zero movement within penetration seal. Detailed drawings of pipe anchors shall be submitted for approval before installation. # 3.1.16 Building Surface Penetrations Sleeves shall not be installed in structural members except where indicated or approved. Sleeves in nonload bearing surfaces shall be galvanized sheet metal, conforming to ASTM A 653/A 653M, Coating Class G-90, 20 gauge. Sleeves in load bearing surfaces shall be uncoated carbon steel pipe, conforming to ASTM A 53/A 53M, Standard weight. Sealants shall be applied to moisture and oil-free surfaces and elastomers to not less than 1/2 inch depth. Sleeves shall not be installed in structural members. # 3.1.16.1 Refrigerated Space Refrigerated space building surface penetrations shall be fitted with sleeves fabricated from hand-lay-up or helically wound, fibrous glass reinforced polyester or epoxy resin with a minimum thickness equal to equivalent size Schedule 40 steel pipe. Sleeves shall be constructed with integral collar or cold side shall be fitted with a bonded slip-on flange or extended collar. In the case of masonry penetrations where sleeve is not cast-in, voids shall be filled with latex mixed mortar cast to shape of sleeve and flange/external collar type sleeve shall be assembled with butyl elastomer vapor barrier sealant through penetration to cold side surface vapor barrier overlap and fastened to surface with masonry anchors. Integral cast-in collar type sleeve shall be flashed with not less than 4 inches of cold side vapor barrier overlap of sleeve surface. Normally noninsulated penetrating round surfaces shall be sealed to sleeve bore with mechanically expandable seals in vapor tight manner and remaining warm and cold side sleeve depth shall be insulated with not less than 4 inches of foamed-in-place rigid polyurethane or foamed-in-place silicone elastomer. Vapor barrier sealant shall be applied to finish warm side insulation surface. Warm side of penetrating surface shall be insulated beyond vapor barrier sealed sleeve insulation for a distance which prevents condensation. Wires in refrigerated space surface penetrating conduit shall be sealed with vapor barrier plugs or compound to prevent moisture migration through conduit and condensation therein. ### 3.1.16.2 General Service Areas Each sleeve shall extend through its respective wall, floor, or roof, and shall be cut flush with each surface. Pipes passing through concrete or masonry wall or concrete floors or roofs shall be provided with pipe sleeves fitted into place at the time of construction. Sleeves shall be of such size as to provide a minimum of 1/4 inch all-around clearance between bare pipe and sleeves or between jacketed-insulation and sleeves. Except in pipe chases or interior walls, the annular space between pipe and sleeve or between jacket over-insulation and sleeve shall be sealed in accordance with Section 07900a JOINT SEALING. # 3.1.16.3 Waterproof Penetrations Pipes passing through roof or floor waterproofing membrane shall be installed through a 17 ounce copper sleeve, or a 0.032 inch thick aluminum sleeve, each within an integral skirt or flange. Flashing sleeve shall be suitably formed, and skirt or flange shall extend not less than 8 inches from the pipe and be set over the roof or floor membrane in a troweled coating of bituminous cement. The flashing sleeve shall extend up the pipe a minimum of 2 inches above the roof or floor penetration. The annular space between the flashing sleeve and the bare pipe or between the flashing sleeve and the metal-jacket-covered insulation shall be sealed as indicated. Penetrations shall be sealed by either one of the following methods. - a. Waterproofing Clamping Flange: Pipes up to and including 10 inches in diameter passing through roof or floor waterproofing membrane may be installed through a cast iron sleeve with caulking recess, anchor lugs, flashing clamp device, and pressure ring with brass bolts. Waterproofing membrane shall be clamped into place and sealant shall be placed in the caulking recess. - b. Modular Mechanical Type Sealing Assembly: In lieu of a waterproofing clamping flange and caulking and sealing of annular space between pipe and sleeve or conduit and sleeve, a modular mechanical type sealing assembly may be installed. Seals shall consist of interlocking synthetic rubber links shaped to continuously fill the annular space between the pipe/conduit and sleeve with corrosion protected carbon steel bolts, nuts, and pressure plates. Links shall be loosely assembled with bolts to form a continuous rubber belt around the pipe with a pressure plate under each bolt head and each nut. After the seal assembly is properly positioned in the sleeve, tightening of the bolt shall cause the rubber sealing elements to expand and provide a watertight seal rubber sealing elements to expand and provide a watertight seal between the pipe/conduit seal between the pipe/conduit and the sleeve. Each seal assembly shall be sized as recommended by the manufacturer to fit the pipe/conduit and sleeve involved. The Contractor electing to use the modular mechanical type seals shall provide sleeves of the proper diameters. #### 3.1.16.4 Fire-Rated Penetrations Penetration of fire-rated walls, partitions, and floors shall be sealed. #### 3.1.16.5 Escutcheons Finished surfaces where exposed piping, bare or insulated, pass through floors, walls, or ceilings, except in boiler, utility, or equipment rooms, shall be provided with escutcheons. Where sleeves project slightly from floors, special deep-type escutcheons shall be used. Escutcheon shall be secured to pipe or pipe covering. # 3.1.17 Access Panels Access panels shall be provided for all concealed valves, vents, controls, and items requiring inspection or maintenance. Access panels shall be of sufficient size and located so that the concealed items may be serviced and maintained or completely removed and replaced. Access panels shall be as specified in Section 05500a MISCELLANEOUS METALS. # 3.1.18 Field Applied Insulation Field installed insulation shall be as specified in Section 15080A THERMAL INSULATION FOR MECHANICAL SYSTEMS, except as defined differently herein. ## 3.1.19 Field Painting Painting required for surfaces not otherwise specified, and finish painting of items only primed at the factory are specified in Section 09900 PAINTING, GENERAL. #### 3.1.19.1 Color Coding Color coding for piping identification is specified in Section 09900 PAINTING, GENERAL. # 3.1.19.2 Color Coding Scheme A color coding scheme for locating hidden piping shall be in accordance with Section 15400A PLUMBING, GENERAL PURPOSE. #### 3.2 CLEANING AND ADJUSTING Clean uncontaminated system(s) by evacuation and purging procedures currently recommended by refrigerant and refrigerant equipment manufacturers, and as specified herein, to remove small amounts of air and moisture. Systems containing moderate amounts of air, moisture, contaminated refrigerant, or any foreign matter shall be considered contaminated systems. Restoring contaminated systems to clean condition including disassembly, component replacement, evacuation, flushing, purging, and re-charging, shall be performed using currently approved refrigerant and refrigeration manufacturer's procedures. Restoring contaminated systems
shall be at no additional cost to the Government as determined by the Contracting Officer. Water shall not be used in any procedure or test. ## 3.3 REFRIGERANT PIPING TESTS After all components of the refrigerant system have been installed and connected, the entire refrigeration system shall be subjected to pneumatic, evacuation, and startup tests as described herein. Tests shall be conducted in the presence of the Contracting Officer. Water and electricity required for the tests will be furnished by the Government. Any material, equipment, instruments, and personnel required for the test shall be provided by the Contractor. The services of a qualified technician shall be provided as required to perform all tests and procedures indicated herein. Field tests shall be coordinated with Section 15990A TESTING, ADJUSTING, AND BALANCING OF HVAC SYSTEMS. ## 3.3.1 Preliminary Procedures Prior to pneumatic testing, equipment which has been factory tested and refrigerant charged as well as equipment which could be damaged or cause personnel injury by imposed test pressure, positive or negative, shall be isolated from the test pressure or removed from the system. Safety relief valves and rupture discs, where not part of factory sealed systems, shall be removed and openings capped or plugged. # 3.3.2 Pneumatic Test Pressure control and excess pressure protection shall be provided at the source of test pressure. Valves shall be wide open, except those leading to the atmosphere. Test gas shall be dry nitrogen, with minus 70 degree F dewpoint and less than 5 ppm oil. Test pressure shall be applied in two stages before any refrigerant pipe is insulated or covered. First stage test shall be at 10 psi with every joint being tested with a thick soap or color indicating solution. Second stage tests shall raise the system to the minimum refrigerant leakage test pressure specified in ASHRAE 15 with a maximum test pressure 25 percent greater. Pressure above 100 psig shall be raised in 10 percent increments with a pressure acclimatizing period between increments. The initial test pressure shall be recorded along with the ambient temperature to which the system is exposed. Final test pressures of the second stage shall be maintained on the system for a minimum of 24 hours. At the end of the 24 hour period, the system pressure will be recorded along with the ambient temperature to which the system is exposed. A correction factor of 0.3 psi will be allowed for each degree F change between test space initial and final ambient temperature, plus for increase and minus for a decrease. If the corrected system pressure is not exactly equal to the initial system test pressure, then the system shall be investigated for leaking joints. To repair leaks, the joint shall be taken apart, thoroughly cleaned, and reconstructed as a new joint. Joints repaired by caulking, remelting, or back-welding/brazing shall not be acceptable. Following repair, the entire system shall be retested using the pneumatic tests described above. The entire system shall be reassembled once the pneumatic tests are satisfactorily completed. #### 3.3.3 Evacuation Test Following satisfactory completion of the pneumatic tests, the pressure shall be relieved and the entire system shall be evacuated to an absolute pressure of 300 micrometers. During evacuation of the system, the ambient temperature shall be higher than 35 degrees F. No more than one system shall be evacuated at one time by one vacuum pump. Once the desired vacuum has been reached, the vacuum line shall be closed and the system shall stand for 1 hour. If the pressure rises over 500 micrometers after the 1 hour period, then the system shall be evacuated again down to 300 micrometers and let set for another 1 hour period. The system shall not be charged until a vacuum of at least 500 micrometers is maintained for a period of 1 hour without the assistance of a vacuum line. If during the testing the pressure continues to rise, check the system for leaks, repair as required, and repeat the evacuation procedure. During evacuation, pressures shall be recorded by a thermocouple-type, electronic-type, or a calibrated-micrometer type gauge. # 3.3.4 System Charging and Startup Test Following satisfactory completion of the evacuation tests, the system shall be charged with the required amount of refrigerant by raising pressure to normal operating pressure and in accordance with manufacturer's procedures. Following charging, the system shall operate with high-side and low-side pressures and corresponding refrigerant temperatures, at design or improved values. The entire system shall be tested for leaks. Fluorocarbon systems shall be tested with halide torch or electronic leak detectors. ## 3.3.5 Refrigerant Leakage If a refrigerant leak is discovered after the system has been charged, the leaking portion of the system shall immediately be isolated from the remainder of the system and the refrigerant pumped into the system receiver or other suitable container. Under no circumstances shall the refrigerant be discharged into the atmosphere. # 3.3.6 Contractor's Responsibility The Contractor shall, at all times during the installation and testing of the refrigeration system, take steps to prevent the release of refrigerants into the atmosphere. The steps shall include, but not be limited to, procedures which will minimize the release of refrigerants to the atmosphere and the use of refrigerant recovery devices to remove refrigerant from the system and store the refrigerant for reuse or reclaim. At no time shall more than 3 ounces of refrigerant be released to the atmosphere in any one occurrence. Any system leaks within the first year shall be repaired in accordance with the requirements herein at no cost to the Government including material, labor, and refrigerant if the leak is the result of defective equipment, material, or installation. ## 3.4 DEMONSTRATIONS Contractor shall conduct a training course for the operating staff as designated by the Contracting Officer. The training period shall consist of a total 16ompleted but prior to final acceptance tests. The field posted instructions shall cover all of the items contained in the approved operation and maintenance manuals as well as demonstrations of routine maintenance operations. -- End of Section -- ## SECTION 15190A # GAS PIPING SYSTEMS 02/99 # PART 1 GENERAL ## 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # AMERICAN GAS ASSOCIATION (AGA) AGA Manual (1994; Addenda/Correction Jan 1996) A.G.A. Plastic Pipe Manual for Gas Service ## AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) ANSI Z21.45 (1995) Flexible Connectors of Other Than All-Metal Construction for Gas Appliances # AMERICAN PETROLEUM INSTITUTE (API) API Spec 6D (1994; Supple 1 Jun 1996; Supple 2 Dec 1997) Pipeline Valves (Gate, Plug, Ball, and Check Valves) # AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM A 539 | (1999) Electric-Resistance-Welded Coiled
Steel Tubing for Gas and Fuel Oil Lines | |------------|--| | ASTM B 88 | (1999) Seamless Copper Water Tube | | ASTM B 280 | (1999) Seamless Copper Tube for Air
Conditioning and Refrigeration Field
Service | ## ASME INTERNATIONAL (ASME) | ASME B1.20.1 | (1983; R 1992) Pipe Threads, General
Purpose (Inch) | |--------------|---| | ASME B16.3 | (1998) Malleable Iron Threaded Fittings | | ASME B16.5 | (1996; B16.5a) Pipe Flanges and Flanged
Fittings NPS 1/2 thru NPS 24 | | ASME B16.9 | (1993) Factory-Made Wrought Steel
Buttwelding Fittings | | ASME B16.11 | (1996) Forged Fittings, Socket-Welding and
Threaded | |--------------|---| | ASME B16.21 | (1992) Nonmetallic Flat Gaskets for Pipe
Flanges | | ASME B16.33 | (1990) Manually Operated Metallic Gas
Valves for Use in Gas Piping Systems Up to
125 psig (Sizes 1/2 through 2) | | ASME B31.1 | (1998) Power Piping | | ASME B31.2 | (1968) Fuel Gas Piping | | ASME B36.10M | (1996) Welded and Seamless Wrought Steel
Pipe | | ASME BPV IX | (1998) Boiler and Pressure Vessel Code;
Section IX, Welding and Brazing
Qualifications | MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS) | MSS SP-25 | (1998) Standard Marking System for Valves, Fittings, Flanges and Unions | |-----------|---| | MSS SP-58 | (1993) Pipe Hangers and Supports -
Materials, Design and Manufacture | | MSS SP-69 | (1996) Pipe Hangers and Supports -
Selection and Application | # NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) | NFPA 54 | (1999) | National | Fuel Gas Co | ode | |---------|--------|----------|-------------|------| | NFPA 70 | (2002) | National | Electrical | Code | ## UNDERWRITERS LABORATORIES (UL) | UL (| Gas&Oil Dir | (1999) | Gas | and | Oil | Equipment | Directory | |------|----------------------|--------|-----|-----|-----|-----------|-----------| | 1.2 | GENERAL REQUIREMENTS | | | | | | | # 1.2.1 Welding Piping shall be welded in accordance with qualified procedures using performance qualified welders and welding operators. Procedures and welders shall be qualified in accordance with ASME BPV IX. Welding procedures qualified by others, and welders and welding operators qualified by another employer may be accepted as permitted by ASME B31.1. The Contracting Officer shall be notified at least 24 hours in advance of tests and the tests shall be performed at the work site if practicable. The Contracting Officer shall be furnished with a copy of qualified procedures and a list of names and identification
symbols of qualified welders and welding operators. The welder or welding operator shall apply his assigned symbol near each weld he makes as a permanent record. Structural members shall be welded in accordance with Section 05500a MISCELLANEOUS METALS. #### 1.2.2 Standard Products Materials and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products and shall essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening. Asbestos or products containing asbestos shall not be used. Manufacturer's descriptive data and installation instructions shall be submitted for approval for compression-type mechanical joints used in joining dissimilar materials and for insulating joints. Valves, flanges and fittings shall be marked in accordance with MSS SP-25. ## 1.2.3 Verification of Dimensions The Contractor shall become familiar with all details of the work, verify all dimensions in the field, and shall advise the Contracting Officer of any discrepancy before performing the work. #### 1.3 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-02 Shop Drawings Gas Piping System; G, ED. Drawings showing location, size and all branches of pipeline; location of all required shutoff valves; and instructions necessary for the installation of connectors and supports. SD-06 Test Reports Test reports in booklet form tabulating test and measurements performed. The reports shall be dated after award of this contract, shall state the contractor's name and address, shall name the project and location, and shall list the specific requirements which are being certified. ## PART 2 PRODUCTS ## 2.1 PIPE AND FITTINGS ## 2.1.1 Steel Pipe, Joints, and Fittings Steel pipe shall conform to ASME B36.10M. Malleable-iron threaded fittings shall conform to ASME B16.3. Steel pipe flanges and flanged fittings including bolts, nuts, and bolt pattern shall be in accordance with ASME B16.5. Wrought steel buttwelding fittings shall conform to ASME B16.9. Socket welding and threaded forged steel fittings shall conform to ASME B16.11. # 2.1.2 Copper Tubing, Joints and Fittings Copper tubing shall conform to ASTM B 88, Type K or L, or ASTM B 280. Tubing joints shall be made up with tubing fittings recommended by the tubing manufacturer. ## 2.1.3 Steel Tubing, Joints and Fittings Steel tubing shall conform to ASTM A 539. Tubing joints shall be made up with gas tubing fittings recommended by the tubing manufacturer. # 2.1.4 Sealants for Steel Pipe Threaded Joints Joint sealing compound shall be listed in UL Gas&Oil Dir, Class 20 or less. Tetrafluoroethylene tape shall conform to UL Gas&Oil Dir. ## 2.1.5 Identification Pipe flow markings and metal tags shall be provided as required. #### 2.1.6 Flange Gaskets Gaskets shall be nonasbestos compressed material in accordance with ASME B16.21, 1/16 inch thickness, full face or self-centering flat ring type. The gaskets shall contain aramid fibers bonded with styrene butadiene rubber (SBR) or nitrile butadiene rubber (NBR) suitable for a maximum 600 degree F service. NBR binder shall be used for hydrocarbon service. ## 2.1.7 Pipe Threads Pipe threads shall conform to ASME B1.20.1. #### 2.1.8 Escutcheons Escutcheons shall be chromium-plated steel or chromium-plated brass, either one piece or split pattern, held in place by internal spring tension or set screw. ## 2.1.9 Gas Transition Fittings Gas transition fittings shall be manufactured steel fittings approved for jointing metallic and thermoplastic or fiberglass pipe. Approved transition fittings are those that conform to AGA Manual requirements for transitions fittings. ## 2.1.10 Insulating Pipe Joints ## 2.1.10.1 Insulating Joint Material Insulating joint material shall be provided between flanged or threaded metallic pipe systems where shown to control galvanic or electrical action. ## 2.1.10.2 Threaded Pipe Joints Joints for threaded pipe shall be steel body nut type dielectric unions with insulating gaskets. ## 2.1.10.3 Flanged Pipe Joints Joints for flanged pipe shall consist of full face sandwich-type flange insulating gasket of the dielectric type, insulating sleeves for flange bolts, and insulating washers for flange nuts. #### 2.1.11 Flexible Connectors Flexible connectors for connecting gas utilization equipment to building gas piping shall conform to ANSI Z21.45. #### 2.2 VALVES Valves shall be suitable for shutoff or isolation service and shall conform to the following: #### 2.2.1 Valves 2 Inches and Smaller Valves 2 inches and smaller shall conform to ASME B16.33 and shall be of materials and manufacture compatible with system materials used. ## 2.2.2 Valves 2-1/2 Inches and Larger Valves 2-1/2 inches and larger shall be carbon steel conforming to API Spec 6D, Class 150. #### 2.3 PIPE HANGERS AND SUPPORTS Pipe hangers and supports shall conform to MSS SP-58 and MSS SP-69. #### 2.4 METERS, REGULATORS AND SHUTOFF VALVES Meters, regulators and shutoff valves shall be as specified in Division 2. #### PART 3 EXECUTION ## 3.1 EXCAVATION AND BACKFILLING Earthwork shall be as specified in Division 2. #### 3.2 GAS PIPING SYSTEM Gas piping system shall be from the point of delivery, defined as the outlet of the meter set assembly, specified in Division 2, to the connections to each gas utilization device. # 3.2.1 Protection of Materials and Components Pipe and tube openings shall be closed with caps or plugs during installation. Equipment shall be protected from dirt, water, and chemical or mechanical damage. At the completion of all work, the entire system shall be thoroughly cleaned. # 3.2.2 Workmanship and Defects Piping, tubing and fittings shall be clear and free of cutting burrs and defects in structure or threading and shall be thoroughly brushed and chip-and scale-blown. Defects in piping, tubing or fittings shall not be repaired. When defective piping, tubing, or fittings are located in a system, the defective material shall be replaced. # 3.3 PROTECTIVE COVERING #### 3.3.1 Underground Metallic Pipe Buried metallic piping shall be protected from corrosion with protective coatings as specified in Division 2. When dissimilar metals are joined underground, gastight insulating fittings shall be used. ## 3.3.2 Aboveground Metallic Piping Systems #### 3.3.2.1 Ferrous Surfaces Shop primed surfaces shall be touched up with ferrous metal primer. Surfaces that have not been shop primed shall be solvent cleaned. Surfaces that contain loose rust, loose mill scale and other foreign substances shall be mechanically cleaned by power wire brushing and primed with ferrous metal primer. Primed surface shall be finished with two coats of exterior oil paint. ## 3.3.2.2 Nonferrous Surfaces Except for aluminum alloy pipe, nonferrous surfaces shall not be painted. Surfaces of aluminum alloy pipe and fittings shall be painted to protect against external corrosion where they contact masonry, plaster, insulation, or are subject to repeated wettings by such liquids as water, detergents or sewage. The surfaces shall be solvent-cleaned and treated with vinyl type wash coat. A first coat of aluminum paint and a second coat of alkyd gloss enamel or silicone alkyd copolymer enamel shall be applied. #### 3.4 INSTALLATION Installation of the gas system shall be in conformance with the manufacturer's recommendations and applicable provisions of NFPA 54, AGA Manual, and as indicated. Pipe cutting shall be done without damage to the pipe. Unless otherwise authorized, cutting shall be done by an approved type of mechanical cutter. Wheel cutters shall be used where practicable. On steel pipe 6 inches and larger, an approved gas cutting and beveling machine may be used. Cutting of thermoplastic and fiberglass pipe shall be in accordance with AGA Manual. # 3.4.1 Concealed Piping in Buildings When installing piping which is to be concealed, unions, tubing fittings, running threads, right- and left-hand couplings, bushings, and swing joints made by combinations of fittings shall not be used. # 3.4.1.1 Piping in Partitions Concealed piping shall be located in hollow rather than solid partitions. Tubing passing through walls or partitions shall be protected against physical damage. ## 3.4.2 Aboveground Piping Aboveground piping shall be run as straight as practicable along the alignment indicated and with a minimum of joints. Piping shall be separately supported. Exposed horizontal piping shall not be installed farther than 6 inches from nearest parallel wall in laundry areas where clothes hanging could be attempted. # 3.4.3 Final Gas Connections Unless otherwise specified, final connections shall be made with rigid metallic pipe and fittings. In addition to cautions listed in instructions required by ANSI standards for flexible connectors, insure that flexible connectors do not pass through equipment cabinet. Provide accessible gas shutoff valve and coupling for each gas equipment item. #### 3.5 PIPE JOINTS Pipe joints shall be designed and installed to effectively sustain the longitudinal pull-out forces caused by contraction of the piping or superimposed loads. #### 3.5.1 Threaded Metallic Joints Threaded joints in metallic pipe shall have tapered threads evenly cut and shall be made with UL approved graphite joint sealing compound for gas service or tetrafluoroethylene tape applied to the male threads only. Threaded joints up to 1-1/2 inches in diameter may be made with approved tetrafluoroethylene tape. Threaded joints up to 2 inches in diameter may be made with approved joint sealing compound. After cutting and before threading, pipe shall be reamed and burrs shall be removed. Caulking
of threaded joints to stop or prevent leaks shall not be permitted. #### 3.5.2 Welded Metallic Joints Beveling, alignment, heat treatment, and inspection of welds shall conform to ASME B31.2. Weld defects shall be removed and repairs made to the weld, or the weld joints shall be entirely removed and rewelded. After filler metal has been removed from its original package, it shall be protected or stored so that its characteristics or welding properties are not affected adversely. Electrodes that have been wetted or have lost any of their coating shall not be used. ## 3.6 PIPE SLEEVES Pipes passing through concrete or masonry walls or concrete floors or roofs shall be provided with pipe sleeves fitted into place at the time of construction. Sleeves shall not be installed in structural members except where indicated or approved. All rectangular and square openings shall be as detailed. Each sleeve shall extend through its respective wall, floor or roof, and shall be cut flush with each surface, except in mechanical room floors not located on grade where clamping flanges or riser pipe clamps are used. Sleeves in mechanical room floors above grade shall extend at least 4 inches above finish floor. Unless otherwise indicated, sleeves shall be large enough to provide a minimum clearance of 1/4 inch all around the pipe. Sleeves in bearing walls, waterproofing membrane floors, and wet areas shall be steel pipe. Sleeves in nonbearing walls, floors, or ceilings may be steel pipe, galvanized sheet metal with lock-type longitudinal seam, or moisture-resistant fiber or plastic. For penetrations of fire walls, fire partitions and floors which are not on grade, the annular space between the pipe and sleeve shall be sealed with firestopping material and sealant. #### 3.7 PIPES PENETRATING WATERPROOFING MEMBRANES Pipes penetrating waterproofing membranes shall be installed as specified in Section 15400A PLUMBING, GENERAL PURPOSE. ## 3.8 FIRE SEAL Penetrations of fire rated partitions, walls and floors shall be fire sealed. ## 3.9 ESCUTCHEONS Escutcheons shall be provided for all finished surfaces where gas piping passes through floors, walls, or ceilings except in boiler, utility, or equipment rooms. #### 3.10 SPECIAL REQUIREMENTS Drips, grading of the lines, freeze protection, and branch outlet locations shall be as shown and shall conform to the requirements of NFPA 54. #### 3.11 BUILDING STRUCTURE Building structure shall not be weakened by the installation of any gas piping. Beams or joists shall not be cut or notched. #### 3.12 PIPING SYSTEM SUPPORTS Gas piping systems in buildings shall be supported with pipe hooks, metal pipe straps, bands or hangers suitable for the size of piping or tubing. Gas piping system shall not be supported by other piping. Spacing of supports in gas piping and tubing installations shall conform to the requirements of NFPA 54. The selection and application of supports in gas piping and tubing installations shall conform to the requirements of MSS SP-69. In the support of multiple pipe runs on a common base member, a clip or clamp shall be used where each pipe crosses the base support member. Spacing of the base support members shall not exceed the hanger and support spacing required for any of the individual pipes in the multiple pipe run. The clips or clamps shall be rigidly connected to the common base member. A clearance of 1/8 inch shall be provided between the pipe and clip or clamp for all piping which may be subjected to thermal expansion. # 3.13 ELECTRICAL BONDING AND GROUNDING The gas piping system within the building shall be electrically continuous and bonded to a grounding electrode as required by NFPA 70. Conventional flange joints allow sufficient current flow to satisfy this requirement. # 3.14 SHUTOFF VALVE Main gas shutoff valve controlling the gas piping system shall be easily accessible for operation and shall be installed as indicated, protected from physical damage, and marked with a metal tag to clearly identify the piping system controlled. # 3.15 CATHODIC PROTECTION Cathodic protection shall be provided for underground ferrous gas piping. #### 3.16 TESTING Before any section of a gas piping system is put into service, it shall be carefully tested to assure that it is gastight. Prior to testing, the system shall be blown out, cleaned and cleared of all foreign material. Each joint shall be tested by means of an approved gas detector, soap and water, or an equivalent nonflammable solution. Testing shall be completed before any work is covered, enclosed, or concealed. All testing of piping systems shall be done with due regard for the safety of employees and the public during the test. Bulkheads, anchorage and bracing suitably designed to resist test pressures shall be installed if necessary. Oxygen shall not be used as a testing medium. #### 3.16.1 Pressure Tests Before appliances are connected, piping systems shall be filled with air or an inert gas and shall withstand a minimum pressure of 3 pounds gauge for a period of not less than 10 minutes as specified in NFPA 54 without showing any drop in pressure. Oxygen shall not be used. Pressure shall be measured with a mercury manometer, slope gauge, or an equivalent device so calibrated as to be read in increments of not greater than 0.1 pound. The source of pressure shall be isolated before the pressure tests are made. ## 3.16.2 Test With Gas Before turning gas under pressure into any piping, all openings from which gas can escape shall be closed. Immediately after turning on the gas, the piping system shall be checked for leakage by using a laboratory-certified gas meter, an appliance orifice, a manometer, or equivalent device. All testing shall conform to the requirements of NFPA 54. If leakage is recorded, the gas supply shall be shut off, the leak shall be repaired, and the tests repeated until all leaks have been stopped. # 3.16.3 Purging After testing is completed, and before connecting any appliances, all gas piping shall be fully purged. Piping shall not be purged into the combustion chamber of an appliance. The open end of piping systems being purged shall not discharge into confined spaces or areas where there are ignition sources unless the safety precautions recommended in NFPA 54 are followed. # 3.16.4 Labor, Materials and Equipment All labor, materials and equipment necessary for conducting the testing and purging shall be furnished by the Contractor. ## 3.17 PIPE COLOR CODE MARKING Color code marking of piping shall be as specified in Section 09900 PAINTING, GENERAL. -- End of Section -- #### SECTION 15400A # PLUMBING, GENERAL PURPOSE 02/01 #### PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # AIR CONDITIONING AND REFRIGERATION INSTITUTE (ARI) ARI 700 (1999) Specifications for Fluorocarbons and Other Refrigerants ARI 1010 (1994) Self-Contained, Mechanically Refrigerated Drinking-Water Coolers #### AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) ANSI Z21.10.3 (1998) Gas Water Heaters Vol. III, Storage Water Heaters with Input Ratings Above 75,000 Btu Per Hour, Circulating and Instantaneous Water Heaters ANSI Z21.22 (1986; Z21.22a) Relief Valves and Automatic Gas Shutoff Devices for Hot Water Supply Systems ANSI Z21.56 (1994; Z21.56a) Gas-Fired Pool Heaters # AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) ASTM A 47/A 47M (1999) Ferritic Malleable Iron Castings ASTM A 53/A 53M (1999b) Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless ASTM A 74 (1998) Cast Iron Soil Pipe and Fittings ASTM A 105/A 105M (1998) Carbon Steel Forgings for Piping Applications ASTM A 183 (1983; R 1998) Carbon Steel Track Bolts and Nuts ASTM A 193/A 193M (1999a) Alloy-Steel and Stainless Steel Bolting Materials for High-Temperature Service ASTM A 515/A 515M (1989; R 1997) Pressure Vessel Plates, Carbon Steel, for Intermediate- and | | Higher-Temperature Service | |-------------------|---| | ASTM A 516/A 516M | (1990; R 1996) Pressure Vessel Plates,
Carbon Steel, for Moderate- and
Lower-Temperature Service | | ASTM A 518/A 518M | (1999) Corrosion-Resistant High-Silicon
Iron Castings | | ASTM A 536 | (1984; R 1999el) Ductile Iron Castings | | ASTM A 733 | (1999) Welded and Seamless Carbon Steel
and Austenitic Stainless Steel Pipe Nipples | | ASTM A 888 | (1998el) Hubless Cast Iron Soil Pipe and
Fittings for Sanitary and Storm Drain,
Waste, and Vent Piping Applications | | ASTM B 32 | (1996) Solder Metal | | ASTM B 42 | (1998) Seamless Copper Pipe, Standard Sizes | | ASTM B 43 | (1998) Seamless Red Brass Pipe, Standard
Sizes | | ASTM B 75 | (1999) Seamless Copper Tube | | ASTM B 88 | (1999) Seamless Copper Water Tube | | ASTM B 88M | (1999) Seamless Copper Water Tube (Metric) | | | | | ASTM B 152 | (1997a) Copper Sheet, Strip, Plate, and
Rolled Bar | | ASTM B 152M | (1997a) Copper Sheet, Strip, Plate, and
Rolled Bar (Metric) | | ASTM B 306 | (1999) Copper Drainage Tube (DWV) | | ASTM B 370 | (1998) Copper Sheet and Strip for Building
Construction | | ASTM B 584 | (1998a) Copper Alloy Sand Castings for
General Applications | | ASTM B 813 | (1993) Liquid and Paste Fluxes for
Soldering Applications of Copper and
Copper Alloy Tube | | ASTM B 828 | (1998) Making Capillary Joints by
Soldering of Copper and Copper Alloy Tube
and Fittings | | ASTM C 564 | (1997) Rubber Gaskets for Cast Iron Soil
Pipe and Fittings | | ASTM C 920 | (1998) Elastomeric Joint Sealants | |-------------|--| | ASTM C 1053 | (1990; R 1995el) Borosilicate Glass Pipe
and Fittings for Drain, Waste, and Vent
(DWV) Applications |
 ASTM D 1785 | (1999) Poly(Vinyl Chloride) (PVC) Plastic
Pipe, Schedules 40, 80, and 120 | | ASTM D 2000 | (1999) Rubber Products in Automotive
Applications | | ASTM D 2235 | (1996a) Solvent Cement for
Acrylonitrile-Butadiene-Styrene (ABS)
Plastic Pipe and Fittings | | ASTM D 2239 | (1999) Polyethylene (PE) Plastic Pipe
(SIDR-PR) Based on Controlled Inside
Diameter | | ASTM D 2241 | (1999a) Poly(Vinyl Chloride) (PVC)
Pressure-Rated Pipe (SDR Series) | | ASTM D 2447 | (1999) Polyethylene (PE) Plastic Pipe,
Schedules 40 and 80, Based on Outside
Diameter | | ASTM D 2464 | (1999) Threaded Poly(Vinyl Chloride) (PVC)
Plastic Pipe Fittings, Schedule 80 | | ASTM D 2466 | (1999) Poly(Vinyl Chloride) (PVC) Plastic
Pipe Fittings, Schedule 40 | | ASTM D 2467 | (1999) Poly(Vinyl Chloride) (PVC) Plastic
Pipe Fittings, Schedule 80 | | ASTM D 2564 | (1996a) Solvent Cements for Poly(Vinyl
Chloride) (PVC) Plastic Piping Systems | | ASTM D 2657 | (1997) Heat Fusion Joining Polyolefin Pipe
and Fittings | | ASTM D 2661 | (1997ael) Acrylonitrile-Butadiene-Styrene
(ABS) Schedule 40 Plastic Drain, Waste,
and Vent Pipe and Fittings | | ASTM D 2665 | (1998) Poly(Vinyl Chloride) (PVC) Plastic
Drain, Waste, and Vent Pipe and Fittings | | ASTM D 2672 | (1996a) Joints for IPS PVC Pipe Using
Solvent Cement | | ASTM D 2683 | (1998) Socket-Type Polyethylene Fittings
for Outside Diameter-Controlled
Polyethylene Pipe and Tubing | | ASTM D 2737 | (1999) Polyethylene (PE) Plastic Tubing | |---------------------|--| | ASTM D 2822 | (1991; R 1997el) Asphalt Roof Cement | | ASTM D 2846/D 2846M | (1999) Chlorinated Poly(Vinyl Chloride)
(CPVC) Plastic Hot- and Cold-Water
Distribution Systems | | ASTM D 2855 | (1996) Making Solvent-Cemented Joints with Poly(Vinyl Chloride) (PVC) Pipe and Fittings | | ASTM D 2996 | (1995) Filament-Wound "Fiberglass"
(Glass-Fiber-Reinforced
Thermosetting-Resin) Pipe | | ASTM D 3035 | (1995) Polyethylene (PE) Plastic Pipe (DR-PR) Based on Controlled Outside Diameter | | ASTM D 3122 | (1995) Solvent Cements for Styrene-Rubber (SR) Plastic Pipe and Fittings | | ASTM D 3138 | (1995) Solvent Cements for Transition
Joints Between
Acrylonitrile-Butadiene-Styrene (ABS) and
Poly(Vinyl Chloride) (PVC) Non-Pressure
Piping Components | | ASTM D 3139 | (1998) Joints for Plastic Pressure Pipes
Using Flexible Elastomeric Seals | | ASTM D 3212 | (1996a) Joints for Drain and Sewer Plastic
Pipes Using Flexible Elastomeric Seals | | ASTM D 3261 | (1997) Butt Heat Fusion Polyethylene (PE)
Plastic Fittings for Polyethylene (PE)
Plastic Pipe and Tubing | | ASTM D 3308 | (1997) PTFE Resin Skived Tape | | ASTM D 3311 | (1994) Drain, Waste, and Vent (DWV)
Plastic Fittings Patterns | | ASTM D 4101 | (1999) Propylene Plastic Injection and Extrusion Materials | | ASTM E 1 | (1998) ASTM Thermometers | | ASTM F 409 | (1999a) Thermoplastic Accessible and
Replaceable Plastic Tube and Tubular
Fittings | | ASTM F 437 | (1999) Threaded Chlorinated Poly(Vinyl
Chloride) (CPVC) Plastic Pipe Fittings,
Schedule 80 | | ASTM F 438 | (1999) Socket-Type Chlorinated Poly(Vinyl
Chloride) (CPVC) Plastic Pipe Fittings,
Schedule 40 | |--|---| | ASTM F 439 | (1999) Socket-Type Chlorinated Poly(Vinyl
Chloride) (CPVC) Plastic Pipe Fittings,
Schedule 80 | | ASTM F 441/F 441M | (1999) Chlorinated Poly(Vinyl Chloride)
(CPVC) Plastic Pipe, Schedules 40 and 80 | | ASTM F 442/F 442M | (1999) Chlorinated Poly(Vinyl Chloride)
(CPVC) Plastic Pipe (SDR-PR) | | ASTM F 477 | (1999) Elastomeric Seals (Gaskets) for
Joining Plastic Pipe | | ASTM F 493 | (1997) Solvent Cements for Chlorinated Poly(Vinyl Chloride) (CPVC) Plastic Pipe and Fittings | | ASTM F 628 | (1999el) Acrylonitrile-Butadiene-Styrene
(ABS) Schedule 40 Plastic Drain, Waste,
and Vent Pipe with a Cellular Core | | ASTM F 877 | (2000) Standard Specification for
Crosslinked Polyethylene (PEX) Plastic
Hot- and Cold Water Distribution Systems | | ASTM F 891 | (1998el) Coextruded Poly(Vinyl Chloride)
(PVC) Plastic Pipe with a Cellular Core | | ASTM F 1290 | (1998a) Electrofusion Joining Polyolefin
Pipe and Fittings | | ASTM F 1760 | (1997) Coextruded Poly(Vinyl Chloride)
(PVC) Non-Pressure Plastuc Pipe Having
Reprocessed-Recycled Content | | AMERICAN SOCIETY OF HEA ENGINEERS (ASHRAE) | TING, REFRIGERATING AND AIR-CONDITIONING | | ASHRAE 34 | (1997) Number Designation and Safety
Classification of Refrigerants | | ASHRAE 90.1 | (1989; 90.1b; 90.1c; 90.1d; 90.1e; 90.1g; 90.1i; 90.1l-1995; 90.1m-1995; 90.1n-1997) Energy Efficient Design of New Buildings Except Low-Rise Residential Buildings | | ASME INTERNATIONAL (ASM | E) | | ASME A112.1.2 | (1991; R 1998) Air Gaps in Plumbing Systems | | ASME A112.6.1M | (1997) Supports for Off-the-Floor Plumbing Fixtures for Public Use | | ASME A112.14.1 | (1975; R 1998) Backwater Valves | | ASME A112.19.1M | (1994; R 1999) Enameled Cast Iron Plumbing Fixtures | |-----------------|--| | ASME A112.19.2M | (1998) Vitreous China Plumbing Fixtures | | ASME A112.19.3M | (1987; R 1996) Stainless Steel Plumbing
Fixtures (Designed for Residential Use) | | ASME A112.21.1M | (1991; R 1998) Floor Drains | | ASME A112.36.2M | (1991; R 1998) Cleanouts | | ASME B1.20.1 | (1983; R 1992) Pipe Threads, General
Purpose (Inch) | | ASME B16.3 | (1998) Malleable Iron Threaded Fittings | | ASME B16.4 | (1998) Gray Iron Threaded Fittings | | ASME B16.5 | (1996; B16.5a) Pipe Flanges and Flanged
Fittings NPS 1/2 thru NPS 24 | | ASME B16.12 | (1998) Cast Iron Threaded Drainage Fittings | | ASME B16.15 | (1985; R 1994) Cast Bronze Threaded
Fittings Classes 125 and 250 | | ASME B16.18 | (1984; R 1994) Cast Copper Alloy Solder
Joint Pressure Fittings | | ASME B16.21 | (1992) Nonmetallic Flat Gaskets for Pipe
Flanges | | ASME B16.22 | (1995; B16.22a1998) Wrought Copper and
Copper Alloy Solder Joint Pressure Fittings | | ASME B16.23 | (1992; Errata Jan 1994) Cast Copper Alloy
Solder Joint Drainage Fittings - DWV | | ASME B16.24 | (1991; R 1998) Cast Copper Alloy Pipe
Flanges, Class 150, 300, 400, 600, 900,
1500, and 2500, and Flanged Fittings,
Class 150 and 300 | | ASME B16.29 | (1994) Wrought Copper and Wrought Copper
Alloy Solder Joint Drainage Fittings - DWV | | ASME B16.34 | (1997) Valves - Flanged, Threaded, and
Welding End | | ASME B16.39 | (1998) Malleable Iron Threaded Pipe Unions
Classes 150, 250, and 300 | | ASME B31.1 | (1998) Power Piping | | ASME B31.5 | (1992; | B31.5a1994) | Refrigeration | Piping | |------------|--------|-------------|---------------|--------| |------------|--------|-------------|---------------|--------| ASME BPV IX (1998) Boiler and Pressure Vessel Code; Section IX, Welding and Brazing Qualifications ASME CSD-1 (1998) Controls and Safety Devices for Automatically Fired Boilers # AMERICAN SOCIETY OF SANITARY ENGINEERING (ASSE) | ASSE 1001 | (1990) Pipe Applied Atmospheric Type
Vacuum Breakers | |-----------|--| | ASSE 1002 | (1986) Water Closet Flush Tank Ball Cocks | | ASSE 1003 | (1995) Water Pressure Reducing Valves for
Domestic Water Supply Systems | | ASSE 1005 | (1986) Water Heater Drain Valves -
3/4-Inch Iron Pipe Size | | ASSE 1011 | (1995) Hose Connection Vacuum Breakers | | ASSE 1012 | (1995) Backflow Preventers with
Intermediate Atmospheric Vent | | ASSE 1013 | (1993) Reduced Pressure Principle Backflow
Preventers | | ASSE 1018 | (1986) Trap Seal Primer Valves Water
Supply Fed | | ASSE 1020 | (1998) Pressure Vacuum Breaker Assembly (Recommended for Outdoor Usage) | # AMERICAN WATER WORKS ASSOCIATION (AWWA) | AWWA EWW | (1999) Standard Methods for the
Examination of Water and Wastewater | |-----------|--| | AWWA C105 | (1993) Polyethylene Encasement for
Ductile-Iron Pipe Systems | | AWWA C203 | (1997; addenda C203a - 1999) Coal-Tar
Protective Coatings and Linings for Steel
Water Pipelines - Enamel and Tape -
Hot-Applied | | AWWA C606 | (1997) Grooved and Shouldered Joints | | AWWA C700 | (1995) Cold-Water Meters - Displacement
Type, Bronze Main Case | AWWA D100 (1996) Welded Steel Tanks for Water Storage AWWA M20 (1973) Manual: Water Chlorination Principles and Practices AMERICAN WELDING SOCIETY (AWS) AWS A5.8 (1992) Filler Metals for Brazing and Braze Welding AWS B2.2 (1991) Brazing Procedure and Performance Qualification CAST IRON SOIL PIPE INSTITUTE (CISPI) CISPI 301 (1997) Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications CISPI 310 (1997) Coupling for Use in Connection with Hubless Cast Iron Soil Pipe and Fittings for Sanitary and Storm Drain, Waste, and Vent Piping Applications CISPI HSN-85 (1985) Neoprene Rubber Gaskets for Hub and Spigot Cast Iron Soil Pipe and Fittings U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA) 10 CFR 430 Energy Conservation Program for Consumer Products PL 93-523 (1974; Amended 1986) Safe Drinking Water Act COPPER DEVELOPMENT ASSOCIATION (CDA) CDA Tube Handbook (1995) Copper Tube Handbook FOUNDATION FOR CROSS-CONNECTION CONTROL AND HYDRAULIC RESEARCH (FCCCHR) FCCCHR-01 (1993) Manual of Cross-Connection Control INTERNATIONAL ASSOCIATION OF
PLUMBING AND MECHANCIAL OFFICIALS (IAPMO) IAPMO Z124.5 (1997) Plastic Toilet (Water Closets) Seats INTERNATIONAL CODE COUNCIL (ICC) ICC CABO A117.1 (1998) Accessible and Usable Buildings and Facilities ICC Plumbing Code (2000) International Plumbing Code (IPC) MANUFACTURERS STANDARDIZATION SOCIETY OF THE VALVE AND FITTINGS INDUSTRY (MSS) | MSS SP-25 | (1998) Standard Marking System for Valves,
Fittings, Flanges and Unions | | |--|--|--| | MSS SP-44 | (1996) Steel Pipeline Flanges | | | MSS SP-58 | (1993) Pipe Hangers and Supports -
Materials, Design and Manufacture | | | MSS SP-67 | (1995) Butterfly Valves | | | MSS SP-69 | (1996) Pipe Hangers and Supports -
Selection and Application | | | MSS SP-70 | (1998) Cast Iron Gate Valves, Flanged and
Threaded Ends | | | MSS SP-71 | (1997) Cast Iron Swing Check Valves,
Flanges and Threaded Ends | | | MSS SP-72 | (1999) Ball Valves with Flanged or
Butt-Welding Ends for General Service | | | MSS SP-73 | (1991; R 1996) Brazing Joints for Copper
and Copper Alloy Pressure Fittings | | | MSS SP-78 | (1998) Cast Iron Plug Valves, Flanged and
Threaded Ends | | | MSS SP-80 | (1997) Bronze Gate, Globe, Angle and Check
Valves | | | MSS SP-83 | (1995) Class 3000 Steel Pipe Unions
Socket-Welding and Threaded | | | MSS SP-85 | (1994) Cast Iron Globe & Angle Valves,
Flanged and Threaded Ends | | | MSS SP-110 | (1996) Ball Valves Threaded,
Socket-Welding, Solder Joint, Grooved and
Flared Ends | | | PLUMBING-HEATING-COOLING CONTRACTORS NATIONAL ASSOCIATION (NAPHCC) | | | | NAPHCC Plumbing Code | (1996) National Standard Plumbing Code | | | NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) | | | | NFPA 31 | (1997; TIA 97-1) Installation of Oil
Burning Equipment | | | NFPA 54 | (1999) National Fuel Gas Code | | | NFPA 90A | (1999) Installation of Air Conditioning and Ventilating Systems | | | NSF INTERNATIONAL (NSF) | | | NSF 14 (1999) Plastics Piping Components and Related Materials NSF 61 (1999) Drinking Water System Components - Health Effects (Sections 1-9) PLASTIC PIPE AND FITTINGS ASSOCIATION (PPFA) PPFA-01 (1999) Plastic Pipe in Fire Resistive Construction PLUMBING AND DRAINAGE INSTITUTE (PDI) PDI WH 201 (1992) Water Hammer Arresters SOCIETY OF AUTOMOTIVE ENGINEERS INTERNATIONAL (SAE) SAE J 1508 (1997) Hose Clamps THE SOCIETY FOR PROTECTIVE COATINGS (SSPC) SSPC SP 5/NACE 1 (1994) White Metal Blast Cleaning UNDERWRITERS LABORATORIES (UL) UL 430 (1994; Rev thru Nov 1996) Waste Disposers #### 1.2 STANDARD PRODUCTS Specified materials and equipment shall be standard products of a manufacturer regularly engaged in the manufacture of such products. Specified equipment shall essentially duplicate equipment that has performed satisfactorily at least two years prior to bid opening. # 1.3 ELECTRICAL WORK Motors, motor controllers and motor efficiencies shall conform to the requirements of Section 16415A ELECTRICAL WORK, INTERIOR. Electrical motor-driven equipment specified herein shall be provided complete with motors. Equipment shall be rated at 60 Hz, single phase, ac unless otherwise indicated. Where a motor controller is not provided in a motor-control center on the electrical drawings, a motor controller shall be as indicated. Motor controllers shall be provided complete with properly sized thermal-overload protection in each ungrounded conductor, auxiliary contact, and other equipment, at the specified capacity, and including an allowable service factor. # 1.4 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-02 Shop Drawings Plumbing System. Detail drawings consisting of illustrations, schedules, performance charts, instructions, brochures, diagrams, and other information to illustrate the requirements and operations of each system. Detail drawings for the complete plumbing system including piping layouts and locations of connections; dimensions for roughing-in, foundation, and support points; schematic diagrams and wiring diagrams or connection and interconnection diagrams. Detail drawings shall indicate clearances required for maintenance and operation. Where piping and equipment are to be supported other than as indicated, details shall include loadings and proposed support methods. Mechanical drawing plans, elevations, views, and details, shall be drawn to scale. #### SD-03 Product Data Welding. A copy of qualified procedures and a list of names and identification symbols of qualified welders and welding operators. Plumbing Fixture Schedule. Catalog cuts of specified plumbing fixtures, valves, and related piping system and system location where installed. Plumbing System. Diagrams, instructions, and other sheets proposed for posting. Manufacturer's recommendations for the installation of bell and spigot and hubless joints for cast iron soil pipe. # SD-06 Test Reports Tests, Flushing and Disinfection; Domestic Water Piping. Test reports in booklet form showing all field tests performed to adjust each component and all field tests performed to prove compliance with the specified performance criteria, completion and testing of the installed system. Each test report shall indicate the final position of controls. ## SD-07 Certificates Bolts. Written certification by the bolt manufacturer that the bolts furnished comply with the specified requirements. The certification shall include illustrations of product-required markings, the date of manufacture, and the number of each type of bolt to be furnished based on this certification. ## SD-10 Operation and Maintenance Data Plumbing System. Copies of the operation manual outlining the step-by-step procedures required for system startup, operation and shutdown. The manual shall include the manufacturer's name, model number, service manual, parts list, and brief description of all equipment and their basic operating features. Six copies of the maintenance manual listing routine maintenance procedures, possible breakdowns and repairs. The manual shall include piping and equipment layout and simplified wiring and control diagrams of the system as installed. #### 1.5 PERFORMANCE REQUIREMENTS ## 1.5.1 Welding Piping shall be welded in accordance with qualified procedures using performance-qualified welders and welding operators. Procedures and welders shall be qualified in accordance with ASME BPV IX. ## 1.6 REGULATORY REQUIREMENTS Plumbing work shall be in accordance with ICC Plumbing Code. ## 1.7 PROJECT/SITE CONDITIONS The Contractor shall become familiar with details of the work, verify dimensions in the field, and advise the Contracting Officer of any discrepancy before performing any work. #### PART 2 PRODUCTS ## 2.1 MATERIALS Materials for various services shall be in accordance with TABLES I and II. Pipe schedules shall be selected based on service requirements. Pipe fittings shall be compatible with the applicable pipe materials. Plastic pipe, fittings, and solvent cement shall meet NSF 14 and shall be NSF listed for the service intended. Plastic pipe, fittings, and solvent cement used for potable hot and cold water service shall bear the NSF seal "NSF-PW." Polypropylene pipe and fittings shall conform to dimensional requirements of Schedule 40, Iron Pipe size. Pipe threads (except dry seal) shall conform to ASME B1.20.1. Grooved pipe couplings and fittings shall be from the same manufacturer. Material or equipment containing lead shall not be used in any potable water system. In line devices such as water meters, building valves, check valves, meter stops, valves, fittings and back flow preventers shall comply with PL 93-523 and NSF 61, Section 8. End point devices such as drinking water fountains, lavatory faucets, kitchen and bar faucets, residential ice makers, supply stops and end point control valves used to dispense water for drinking must meet the requirements of NSF 61, Section 9. Hubless cast-iron soil pipe shall not be installed underground, under concrete floor slabs, or in crawl spaces below kitchen floors. Plastic pipe shall not be installed in air plenums. Plastic pipe shall not be installed in a pressure piping system in buildings greater than three stories including any basement levels. # 2.1.1 Pipe Joint Materials Grooved pipe and hubless cast-iron soil pipe shall not be used under ground. Joints and gasket materials shall conform to the following: - a. Coupling for Cast-Iron Pipe: for hub and spigot type ASTM A 74, AWWA C606. For hubless type: CISPI 310 - b. Coupling for Steel Pipe: AWWA C606. - c. Couplings for Grooved Pipe: Ductile Iron ASTM A 536 (Grade 65-45-12) Malleable Iron ASTM A 47/A 47M, Grade 32510. - d. Flange Gaskets: Gaskets shall be made of non-asbestos material in accordance with ASME B16.21. Gaskets shall be flat, 1/16 inch thick, and contain Aramid fibers bonded with Styrene Butadiene Rubber (SBR) or Nitro Butadiene Rubber (NBR). Gaskets shall be the full face or self centering flat ring type. Gaskets used for hydrocarbon service shall be bonded with NBR. - e. Neoprene Gaskets for Hub and Cast-Iron Pipe and Fittings: CISPI HSN-85. - f. Brazing Material: Brazing material shall conform to AWS A5.8, BCuP-5. - g. Brazing Flux: Flux shall be in paste or liquid form appropriate for use with brazing material. Flux shall be as follows: lead-free; have a 100 percent flushable residue; contain slightly acidic reagents; contain potassium borides; and contain fluorides. - h. Solder Material: Solder metal shall conform to ASTM B 32. - i. Solder Flux: Flux shall be liquid form, non-corrosive, and conform to ASTM B
813, Standard Test 1. - j. PTFE Tape: PTFE Tape, for use with Threaded Metal or Plastic Pipe, ASTM D 3308. - k. Rubber Gaskets for Cast-Iron Soil-Pipe and Fittings (hub and spigot type and hubless type): ASTM C 564. - 1. Rubber Gaskets for Grooved Pipe: ASTM D 2000, maximum temperature 230 degrees F. - m. Flexible Elastomeric Seals: ASTM D 3139, ASTM D 3212 or ASTM F 477. - n. Bolts and Nuts for Grooved Pipe Couplings: Heat-treated carbon steel, ASTM A 183. - o. Solvent Cement for Transition Joints between ABS and PVC Nonpressure Piping Components: ASTM D 3138. - p. Plastic Solvent Cement for ABS Plastic Pipe: ASTM D 2235. - q. Plastic Solvent Cement for PVC Plastic Pipe: ASTM D 2564 and ASTM D 2855. - r. Plastic Solvent Cement for CPVC Plastic Pipe: ASTM F 493. - s. Flanged fittings including flanges, bolts, nuts, bolt patterns, etc., shall be in accordance with ASME B16.5 class 150 and shall have the manufacturer's trademark affixed in accordance with MSS SP-25. Flange material shall conform to ASTM A 105/A 105M. Blind flange material shall conform to ASTM A 516/A 516M cold service and ASTM A 515/A 515M for hot service. Bolts shall be high strength or intermediate strength with material conforming to ASTM A 193/A 193M. t. Plastic Solvent Cement for Styrene Rubber Plastic Pipe: ASTM D 3122 #### 2.1.2 Miscellaneous Materials Miscellaneous materials shall conform to the following: - a. Water Hammer Arrester: PDI WH 201. - b. Copper, Sheet and Strip for Building Construction: ASTM B 370. - c. Asphalt Roof Cement: ASTM D 2822. - d. Hose Clamps: SAE J 1508. - e. Supports for Off-The-Floor Plumbing Fixtures: ASME A112.6.1M. - f. Metallic Cleanouts: ASME A112.36.2M. - g. Plumbing Fixture Setting Compound: A preformed flexible ring seal molded from hydrocarbon wax material. The seal material shall be nonvolatile nonasphaltic and contain germicide and provide watertight, gastight, odorproof and verminproof properties. - h. Thermometers: ASTM E 1. ## 2.1.3 Pipe Insulation Material Insulation shall be as specified in Section 15080A THERMAL INSULATION FOR MECHANICAL SYSTEMS. 2.2 PIPE HANGERS, INSERTS, AND SUPPORTS Pipe hangers, inserts, and supports shall conform to MSS SP-58 and MSS SP-69. ## 2.3 VALVES Valves shall be provided on supplies to equipment and fixtures. Valves 2-1/2 inches and smaller shall be bronze with threaded bodies for pipe and solder-type connections for tubing. Valves 3 inches and larger shall have flanged iron bodies and bronze trim. Pressure ratings shall be based upon the application. Grooved end valves may be provided if the manufacturer certifies that the valves meet the performance requirements of applicable MSS standard. Valves shall conform to the following standards: Description Standard Butterfly Valves MSS SP-67 Cast-Iron Gate Valves, Flanged and Threaded Ends MSS SP-70 | Description Cast-Iron Swing Check Valves, Flanged and | Standard | |--|--| | Threaded Ends | MSS SP-71 | | Ball Valves with Flanged Butt-Welding Ends
for General Service | MSS SP-72 | | Ball Valves Threaded, Socket-Welding,
Solder Joint, Grooved and Flared Ends | MSS SP-110 | | Cast-Iron Plug Valves, Flanged and
Threaded Ends | MSS SP-78 | | Bronze Gate, Globe, Angle, and Check Valves | MSS SP-80 | | Steel Valves, Socket Welding and Threaded Ends | ASME B16.34 | | Cast-Iron Globe and Angle Valves, Flanged and Threaded Ends | MSS SP-85 | | Backwater Valves | ASME A112.14.1 | | Vacuum Relief Valves | ANSI Z21.22 | | Water Pressure Reducing Valves | ASSE 1003 | | Water Heater Drain Valves | ASSE 1005 | | Trap Seal Primer Valves | ASSE 1018 | | Temperature and Pressure Relief Valves
for Hot Water Supply Systems | ANSI Z21.22 | | Temperature and Pressure Relief Valves for Automatically Fired Hot | ASME CSD-1 | | Water Boilers | Safety Code No., Part CW,
Article 5 | # 2.3.1 Backwater Valves Backwater valves shall be either separate from the floor drain or a combination floor drain, P-trap, and backwater valve, as shown. Valves shall have cast-iron bodies with cleanouts large enough to permit removal of interior parts. Valves shall be of the flap type, hinged or pivoted, with revolving disks. Hinge pivots, disks, and seats shall be nonferrous metal. Disks shall be slightly open in a no-flow no-backwater condition. Cleanouts shall extend to finished floor and be fitted with threaded countersunk plugs. # 2.3.2 Wall Faucets Wall faucets with vacuum-breaker backflow preventer shall be brass with 3/4 inch male inlet threads, hexagon shoulder, and 3/4 inch hose connection. Faucet handle shall be securely attached to stem. # 2.3.3 Wall Hydrants Wall hydrants with vacuum-breaker backflow preventer shall have a nickel-brass or nickel-bronze wall plate or flange with nozzle and detachable key handle. A brass or bronze operating rod shall be provided within a galvanized iron casing of sufficient length to extend through the wall so that the valve is inside the building, and the portion of the hydrant between the outlet and valve is self-draining. A brass or bronze valve with coupling and union elbow having metal-to-metal seat shall be provided. Valve rod and seat washer shall be removable through the face of the hydrant. The hydrant shall have 3/4 inch exposed hose thread on spout and 3/4 inch male pipe thread on inlet. # 2.3.4 Relief Valves Water heaters and hot water storage tanks shall have a combination pressure and temperature (P&T) relief valve. The pressure relief element of a P&T relief valve shall have adequate capacity to prevent excessive pressure buildup in the system when the system is operating at the maximum rate of heat input. The temperature element of a P&T relief valve shall have a relieving capacity which is at least equal to the total input of the heaters when operating at their maximum capacity. Relief valves shall be rated according to ANSI Z21.22. Relief valves for systems where the maximum rate of heat input is less than 200,000 Btuh shall have 3/4 inch minimum inlets, and 3/4 inch outlets. Relief valves for systems where the maximum rate of heat input is greater than 200,000 Btuh shall have 1 inch minimum inlets, and 1 inch outlets. The discharge pipe from the relief valve shall be the size of the valve outlet. # 2.3.5 Thermostatic Mixing Valves Mixing valves, thermostatic type, pressure-balanced or combination thermostatic and pressure-balanced shall be line size and shall be constructed with rough or finish bodies either with or without plating. Each valve shall be constructed to control the mixing of hot and cold water and to deliver water at a desired temperature regardless of pressure or input temperature changes. The control element shall be of an approved type. The body shall be of heavy cast bronze, and interior parts shall be brass, bronze, corrosion-resisting steel or copper. The valve shall be equipped with necessary stops, check valves, unions, and sediment strainers on the inlets. Mixing valves shall maintain water temperature within 5 degrees F of any setting. # 2.4 FIXTURES Fixtures shall be water conservation type, in accordance with ICC Plumbing Code. Fixtures for use by the physically handicapped shall be in accordance with ICC CABO A117.1. Vitreous china, nonabsorbent, hard-burned, and vitrified throughout the body shall be provided. Porcelain enameled ware shall have specially selected, clear white, acid-resisting enamel coating evenly applied on surfaces. No fixture will be accepted that shows cracks, crazes, blisters, thin spots, or other flaws. Fixtures shall be equipped with appurtenances such as traps, faucets, stop valves, and drain fittings. Each fixture and piece of equipment requiring connections to the drainage system, except grease interceptors, shall be equipped with a trap. Brass expansion or toggle bolts capped with acorn nuts shall be provided for supports, and polished chromium-plated pipe, valves, and fittings shall be provided where exposed to view. Fixtures with the supply discharge below the rim shall be equipped with backflow preventers. Internal parts of flush and/or flushometer valves, shower mixing valves, shower head face plates, pop-up stoppers of lavatory waste drains, and pop-up stoppers and overflow tees and shoes of bathtub waste drains may contain acetal resin, fluorocarbon, nylon, acrylonitrile-butadiene-styrene (ABS) or other plastic material, if the material has provided satisfactory service under actual commercial or industrial operating conditions for not less than 2 years. Plastic in contact with hot water shall be suitable for 180 degrees F water temperature. Plumbing fixtures shall be as indicated in paragraph PLUMBING FIXTURE SCHEDULE. #### 2.5 BACKFLOW PREVENTERS Backflow preventers shall be approved and listed by the Foundation For Cross-Connection Control & Hydraulic Research. Reduced pressure principle assemblies, double check valve assemblies, atmospheric (nonpressure) type vacuum breakers, and pressure type vacuum breakers shall be tested, approved, and listed in accordance with FCCCHR-01. Backflow preventers with intermediate atmospheric vent shall conform to ASSE 1012. Reduced pressure principle backflow preventers shall conform to ASSE 1013. Hose connection vacuum breakers shall conform to ASSE 1011. Pipe applied atmospheric type vacuum breakers shall conform to ASSE 1001. Pressure vacuum breaker assembly shall conform to ASSE 1020. Air gaps in plumbing systems shall conform to ASME A112.1.2. #### 2.6 DRAINS #### 2.6.1 Floor Drains Floor and shower drains shall consist of a galvanized body, integral seepage pan, and adjustable perforated or slotted chromium-plated bronze, nickel-bronze, or nickel-brass strainer, consisting of grate and threaded collar. Floor drains shall be cast iron except where metallic waterproofing membrane is installed. Drains shall be of double drainage pattern for embedding in the floor
construction. The seepage pan shall have weep holes or channels for drainage to the drainpipe. The strainer shall be adjustable to floor thickness. A clamping device for attaching flashing or waterproofing membrane to the seepage pan without damaging the flashing or waterproofing membrane shall be provided when required. Drains shall be provided with threaded connection. Between the drain outlet and waste pipe, a neoprene rubber gasket conforming to ASTM C 564 may be installed, provided that the drain is specifically designed for the rubber gasket compression type joint. Floor and shower drains shall conform to ASME A112.21.1M. ## 2.6.1.1 Drains and Backwater Valves Drains and backwater valves installed in connection with waterproofed floors or shower pans shall be equipped with bolted-type device to securely clamp flashing. # 2.6.2 Sight Drains Sight drains shall consist of body, integral seepage pan, and adjustable strainer with perforated or slotted grate and funnel extension. The strainer shall have a threaded collar to permit adjustment to floor thickness. Drains shall be of double drainage pattern suitable for embedding in the floor construction. A clamping device for attaching flashing or waterproofing membrane to the seepage pan without damaging the flashing or membrane shall be provided for other than concrete construction. Drains shall have a galvanized heavy cast-iron body and seepage pan and chromium-plated bronze, nickel-bronze, or nickel-brass strainer and funnel combination. Drains shall be provided with threaded connection and with a separate cast-iron "P" trap, unless otherwise indicated. Drains shall be circular, unless otherwise indicated. The funnel shall be securely mounted over an opening in the center of the strainer. Minimum dimensions shall be as follows: Area of strainer and collar 36 square inches Height of funnel 3-3/4 inches Diameter of lower portion 2 inches of funnel Diameter of upper portion 4 inches of funnel ## 2.7 TRAPS Unless otherwise specified, traps shall be plastic per ASTM F 409 or copper-alloy adjustable tube type with slip joint inlet and swivel. Traps shall be without a cleanout. Tubes shall be copper alloy with walls not less than 0.032 inch thick within commercial tolerances, except on the outside of bends where the thickness may be reduced slightly in manufacture by usual commercial methods. Inlets shall have rubber washer and copper alloy nuts for slip joints above the discharge level. Swivel joints shall be below the discharge level and shall be of metal-to-metal or metal-to-plastic type as required for the application. Nuts shall have flats for wrench grip. Outlets shall have internal pipe thread, except that when required for the application, the outlets shall have sockets for solder-joint connections. The depth of the water seal shall be not less than $\,$ 2 inches. The interior diameter shall be not more than $\,$ $\,$ $\,$ 1/8 inch over or under the nominal size, and interior surfaces shall be reasonably smooth throughout. A copper alloy "P" trap assembly consisting of an adjustable "P" trap and threaded trap wall nipple with cast brass wall flange shall be provided for lavatories. The assembly shall be a standard manufactured unit and may have a rubber-qasketed swivel joint. #### 2.8 HOT-WATER STORAGE TANKS Hot-water storage tanks shall be constructed by one manufacturer, ASME stamped for the working pressure, and shall have the National Board (ASME) registration. The tank shall be cement-lined or glass-lined steel type in accordance with AWWA D100. The heat loss shall conform to TABLE III as determined by the requirements of ASHRAE 90.1. Each tank shall be equipped with a thermometer, conforming to ASTM E 1, Type I, Class 3, Range C, style and form as required for the installation, and with 7 inch scale. Thermometer shall have a separable socket suitable for a 3/4 inch tapped opening. Tanks shall be equipped with a pressure gauge 6 inch minimum diameter face. Insulation shall be as specified in Section 15080A THERMAL INSULATION FOR MECHANICAL SYSTEMS. Storage tank capacity shall be as shown. ## 2.9 COMPRESSED AIR SYSTEM #### 2.9.1 Air Compressors Air compressor unit shall be an existing unit, GFCI. # 2.9.2 Pressure Regulators The air system shall be provided with the necessary regulator valves to maintain the desired pressure for the installed equipment. Regulators shall be designed for a maximum inlet pressure of 125 psi and a maximum temperature of 200 degrees F. Regulators shall be single-seated, pilot-operated with valve plug, bronze body and trim or equal, and threaded connections. The regulator valve shall include a pressure gauge and shall be provided with an adjustment screw for adjusting the pressure differential from 0 to 125 psi. Regulator shall be sized as indicated. ## 2.10 DOMESTIC WATER SERVICE METER Cold water meter shall be of the positive displacement type conforming to AWWA C700. Meter register may be round or straight reading type, as provided by the local utility. Meter shall be provided with a pulse generator, remote readout register and all necessary wiring and accessories. #### PART 3 EXECUTION #### 3.1 GENERAL INSTALLATION REQUIREMENTS Piping located in air plenums shall conform to NFPA 90A requirements. Plastic pipe shall not be installed in air plenums. Piping located in shafts that constitute air ducts or that enclose air ducts shall be noncombustible in accordance with NFPA 90A. Installation of plastic pipe where in compliance with NFPA may be installed in accordance with PPFA-01. The plumbing system shall be installed complete with necessary fixtures, fittings, traps, valves, and accessories. A ball valve and drain shall be installed on the water service line inside the building approximately 6 inches above the floor from point of entry. Piping shall be connected to the exterior service lines or capped or plugged if the exterior service is not in place. Sewer and water pipes shall be laid in separate trenches, except when otherwise shown. Exterior underground utilities shall be at least 12 inches below the average local frost depth or as indicated on the drawings. If trenches are closed or the pipes are otherwise covered before being connected to the service lines, the location of the end of each plumbing utility shall be marked with a stake or other acceptable means. Valves shall be installed with control no lower than the valve body. # 3.1.1 Water Pipe, Fittings, and Connections ## 3.1.1.1 Utilities The piping shall be extended to fixtures, outlets, and equipment. The hot-water and cold-water piping system shall be arranged and installed to permit draining. The supply line to each item of equipment or fixture, except faucets, flush valves, or other control valves which are supplied with integral stops, shall be equipped with a shutoff valve to enable isolation of the item for repair and maintenance without interfering with operation of other equipment or fixtures. Supply piping to fixtures, faucets, hydrants, shower heads, and flushing devices shall be anchored to prevent movement. # 3.1.1.2 Cutting and Repairing The work shall be carefully laid out in advance, and unnecessary cutting of construction shall be avoided. Damage to building, piping, wiring, or equipment as a result of cutting shall be repaired by mechanics skilled in the trade involved. ## 3.1.1.3 Protection of Fixtures, Materials, and Equipment Pipe openings shall be closed with caps or plugs during installation. Fixtures and equipment shall be tightly covered and protected against dirt, water, chemicals, and mechanical injury. Upon completion of the work, the fixtures, materials, and equipment shall be thoroughly cleaned, adjusted, and operated. Safety guards shall be provided for exposed rotating equipment. # 3.1.1.4 Mains, Branches, and Runouts Piping shall be installed as indicated. Pipe shall be accurately cut and worked into place without springing or forcing. Structural portions of the building shall not be weakened. Aboveground piping shall run parallel with the lines of the building, unless otherwise indicated. Branch pipes from service lines may be taken from top, bottom, or side of main, using crossover fittings required by structural or installation conditions. Supply pipes, valves, and fittings shall be kept a sufficient distance from other work and other services to permit not less than 1/2 inch between finished covering on the different services. Bare and insulated water lines shall not bear directly against building structural elements so as to transmit sound to the structure or to prevent flexible movement of the lines. Water pipe shall not be buried in or under floors unless specifically indicated or approved. Changes in pipe sizes shall be made with reducing fittings. Use of bushings will not be permitted except for use in situations in which standard factory fabricated components are furnished to accommodate specific accepted installation practice. Change in direction shall be made with fittings, except that bending of pipe 4 inches and smaller will be permitted, provided a pipe bender is used and wide sweep bends are formed. The center-line radius of bends shall be not less than six diameters of the pipe. Bent pipe showing kinks, wrinkles, flattening, or other malformations will not be acceptable. # 3.1.1.5 Pipe Drains Pipe drains indicated shall consist of 3/4 inch hose bibb with renewable seat and gate valve ahead of hose bibb. At other low points, 3/4 inch brass plugs or caps shall be provided. Disconnection of the supply piping at the fixture is an acceptable drain. ## 3.1.1.6 Expansion and Contraction of Piping Allowance shall be made throughout for expansion and contraction of water pipe. Each hot-water and hot-water circulation riser shall have expansion loops or other provisions such as offsets, changes in direction, etc., where indicated and/or required. Risers shall be securely anchored as required or where indicated to force
expansion to loops. Branch connections from risers shall be made with ample swing or offset to avoid undue strain on fittings or short pipe lengths. Horizontal runs of pipe over 50 feet in length shall be anchored to the wall or the supporting construction about midway on the run to force expansion, evenly divided, toward the ends. Sufficient flexibility shall be provided on branch runouts from mains and risers to provide for expansion and contraction of piping. Flexibility shall be provided by installing one or more turns in the line so that piping will spring enough to allow for expansion without straining. If mechanical grooved pipe coupling systems are provided, the deviation from design requirements for expansion and contraction may be allowed pending approval of Contracting Officer. #### 3.1.1.7 Thrust Restraint Plugs, caps, tees, valves and bends deflecting 11.25 degrees or more, either vertically or horizontally, in waterlines 4 inches in diameter or larger shall be provided with thrust blocks, where indicated, to prevent movement. Thrust blocking shall be concrete of a mix not leaner than: 1 cement, 2-1/2 sand, 5 gravel; and having a compressive strength of not less than 2000 psi after 28 days. Blocking shall be placed between solid ground and the fitting to be anchored. Unless otherwise indicated or directed, the base and thrust bearing sides of the thrust block shall be poured against undisturbed earth. The side of the thrust block not subject to thrust shall be poured against forms. The area of bearing will be as shown. Blocking shall be placed so that the joints of the fitting are accessible for repair. Steel rods and clamps, protected by galvanizing or by coating with bituminous paint, shall be used to anchor vertical down bends into gravity thrust blocks. ## 3.1.1.8 Commercial-Type Water Hammer Arresters Commercial-type water hammer arresters shall be provided on hot- and cold-water supplies and shall be located as generally indicated, with precise location and sizing to be in accordance with PDI WH 201. Water hammer arresters, where concealed, shall be accessible by means of access doors or removable panels. Commercial-type water hammer arresters shall conform to PDI WH 201. Vertical capped pipe columns will not be permitted. # 3.1.2 Compressed Air Piping (Non-Oil Free) Compressed air piping shall be installed as specified for water piping and suitable for 125 psig working pressure. Compressed air piping shall have supply lines and discharge terminals legibly and permanently marked at both ends with the name of the system and the direction of flow. ## 3.1.3 Joints Installation of pipe and fittings shall be made in accordance with the manufacturer's recommendations. Mitering of joints for elbows and notching of straight runs of pipe for tees will not be permitted. Joints shall be made up with fittings of compatible material and made for the specific purpose intended. ## 3.1.3.1 Threaded Threaded joints shall have American Standard taper pipe threads conforming to ASME B1.20.1. Only male pipe threads shall be coated with graphite or with an approved graphite compound, or with an inert filler and oil, or shall have a polytetrafluoroethylene tape applied. # 3.1.3.2 Mechanical Couplings Grooved mechanical joints shall be prepared according to the coupling manufacturer's instructions. Pipe and groove dimensions shall comply with the tolerances specified by the coupling manufacturer. The diameter of grooves made in the field shall be measured using a "go/no-go" gauge, vernier or dial caliper, or narrow-land micrometer. Groove width and dimension of groove from end of the pipe shall be measured and recorded for each change in grooving tool setup to verify compliance with coupling manufacturer's tolerances. Grooved joints shall not be used in concealed locations. # 3.1.3.3 Unions and Flanges Unions, flanges and mechanical couplings shall not be concealed in walls, ceilings, or partitions. Unions shall be used on pipe sizes 2-1/2 inches and smaller; flanges shall be used on pipe sizes 3 inches and larger. #### 3.1.3.4 Grooved Mechanical Joints Grooves shall be prepared according to the coupling manufacturer's instructions. Grooved fittings, couplings, and grooving tools shall be products of the same manufacturer. Pipe and groove dimensions shall comply with the tolerances specified by the coupling manufacturer. The diameter of grooves made in the field shall be measured using a "go/no-go" gauge, vernier or dial caliper, narrow-land micrometer, or other method specifically approved by the coupling manufacturer for the intended application. Groove width and dimension of groove from end of pipe shall be measured and recorded for each change in grooving tool setup to verify compliance with coupling manufacturer's tolerances. Grooved joints shall not be used in concealed locations. # 3.1.3.5 Cast Iron Soil, Waste and Vent Pipe Bell and spigot compression and hubless gasketed clamp joints for soil, waste and vent piping shall be installed per the manufacturer's recommendations. # 3.1.3.6 Copper Tube and Pipe The tube or fittings shall not be annealed when making connections. - a. Brazed. Brazed joints shall be made in conformance with AWS B2.2, MSS SP-73, and CDA Tube Handbook with flux and are acceptable for all pipe sizes. Copper to copper joints shall include the use of copper-phosphorus or copper-phosphorus-silver brazing metal without flux. Brazing of dissimilar metals (copper to bronze or brass) shall include the use of flux with either a copper-phosphorus, copper-phosphorus-silver or a silver brazing filler metal. - b. Soldered. Soldered joints shall be made with flux and are only acceptable for piping 2 inches and smaller. Soldered joints shall conform to ASME B31.5 and CDA Tube Handbook. - c. Copper Tube Extracted Joint. An extracted mechanical joint may be made in copper tube. Joint shall be produced with an appropriate tool by drilling a pilot hole and drawing out the tube surface to form a collar having a minimum height of three times the thickness of the tube wall. To prevent the branch tube from being inserted beyond the depth of the extracted joint, dimpled depth stops shall be provided. Branch tube shall be notched for proper penetration into fitting to assure a free flow joint. Extracted joints shall be brazed in accordance with NAPHCC Plumbing Code using B-cup series filler metal in accordance with MSS SP-73. Soldered extracted joints will not be permitted. ## 3.1.3.7 Plastic Pipe Acrylonitrile-Butadiene-Styrene (ABS) pipe shall have joints made with solvent cement. PVC and CPVC pipe shall have joints made with solvent cement elastomeric, threading, (threading of Schedule 80 Pipe is allowed only where required for disconnection and inspection; threading of Schedule 40 Pipe is not allowed), or mated flanged. #### 3.1.3.8 Glass Pipe Joints for corrosive waste glass pipe and fittings shall be made with corrosion-resisting steel compression-type couplings with acrylonitrile rubber gaskets lined with polytetrafluoroethylene. #### 3.1.3.9 Corrosive Waste Plastic Pipe Joints for polyolefin pipe and fittings shall be made by mechanical joint or electrical fusion coil method in accordance with ASTM D 2657 and ASTM F 1290. Joints for filament-wound reinforced thermosetting resin pipe shall be made in accordance with manufacturer's instructions. Unions or flanges shall be used where required for disconnection and inspection. ## 3.1.3.10 Other Joint Methods #### 3.1.4 Dissimilar Pipe Materials Connections between ferrous and non-ferrous copper water pipe shall be made with dielectric unions or flange waterways. Dielectric waterways shall have temperature and pressure rating equal to or greater than that specified for the connecting piping. Waterways shall have metal connections on both ends suited to match connecting piping. Dielectric waterways shall be internally lined with an insulator specifically designed to prevent current flow between dissimilar metals. Dielectric flanges shall meet the performance requirements described herein for dielectric waterways. Connecting joints between plastic and metallic pipe shall be made with transition fitting for the specific purpose. # 3.1.5 Corrosion Protection for Buried Pipe and Fittings # 3.1.5.1 Cast Iron and Ductile Iron Pressure pipe shall have protective coating, a cathodic protection system, and joint bonding. Pipe, fittings, and joints shall have a protective coating. The protective coating shall be completely encasing polyethylene tube or sheet in accordance with AWWA C105. Joints and fittings shall be cleaned, coated with primer, and wrapped with tape. The pipe shall be cleaned, coated, and wrapped prior to pipe tightness testing. Joints and fittings shall be cleaned, coated, and wrapped after pipe tightness testing. Tape shall conform to AWWA C203 and shall be applied with a 50 percent overlap. Primer shall be as recommended by the tape manufacturer. #### 3.1.5.2 Steel Steel pipe, joints, and fittings shall be cleaned, coated with primer, and wrapped with tape. Pipe shall be cleaned, coated, and wrapped prior to pipe tightness testing. Joints and fittings shall be cleaned, coated, and wrapped after pipe tightness testing. Tape shall conform to AWWA C203 and shall be applied with a 50 percent overlap. Primer shall be as recommended by the tape manufacturer. # 3.1.6 Pipe Sleeves and Flashing Pipe sleeves shall be furnished and set in their proper and permanent location. # 3.1.6.1 Sleeve Requirements Pipes passing through concrete or masonry walls or concrete floors or roofs shall be provided with pipe sleeves fitted into place at the time of construction. Sleeves are not required for supply, drainage, waste and vent pipe passing through concrete slab on grade, except where penetrating a membrane waterproof floor. A modular mechanical type sealing assembly may be installed in lieu of a waterproofing clamping flange and caulking and sealing of annular
space between pipe and sleeve. The seals shall consist of interlocking synthetic rubber links shaped to continuously fill the annular space between the pipe and sleeve using galvanized steel bolts, nuts, and pressure plates. The links shall be loosely assembled with bolts to form a continuous rubber belt around the pipe with a pressure plate under each bolt head and each nut. After the seal assembly is properly positioned in the sleeve, tightening of the bolt shall cause the rubber sealing elements to expand and provide a watertight seal between the pipe and the sleeve. Each seal assembly shall be sized as recommended by the manufacturer to fit the pipe and sleeve involved. Sleeves shall not be installed in structural members, except where indicated or approved. Rectangular and square openings shall be as detailed. Each sleeve shall extend through its respective floor, or roof, and shall be cut flush with each surface, except for special circumstances. Pipe sleeves passing through floors in wet areas such as mechanical equipment rooms, lavatories, kitchens, and other plumbing fixture areas shall extend a minimum of 4 inches above the finished floor. Unless otherwise indicated, sleeves shall be of a size to provide a minimum of 1/4 inch clearance between bare pipe or insulation and inside of sleeve or between insulation and inside of sleeve. Sleeves in bearing walls and concrete slab on grade floors shall be steel pipe or cast-iron pipe. Sleeves in nonbearing walls or ceilings may be steel pipe, cast-iron pipe, galvanized sheet metal with lock-type longitudinal seam, or plastic. Except as otherwise specified, the annular space between pipe and sleeve, or between jacket over insulation and sleeve, shall be sealed as indicated with sealants conforming to ASTM C 920 and with a primer, backstop material and surface preparation as specified in Section 07900a JOINT SEALING. The annular space between pipe and sleeve, between bare insulation and sleeve or between jacket over insulation and sleeve shall not be sealed for interior walls which are not designated as fire rated. Sleeves through below-grade walls in contact with earth shall be recessed 1/2 inch from wall surfaces on both sides. Annular space between pipe and sleeve shall be filled with backing material and sealants in the joint between the pipe and concrete wall as specified above. Sealant selected for the earth side of the wall shall be compatible with dampproofing/waterproofing materials that are to be applied over the joint sealant. # 3.1.6.2 Flashing Requirements Pipes passing through roof shall be installed through a 16 ounce copper flashing, each within an integral skirt or flange. Flashing shall be suitably formed, and the skirt or flange shall extend not less than 8 inches from the pipe and shall be set over the roof or floor membrane in a solid coating of bituminous cement. The flashing shall extend up the pipe a minimum of 10 inches. For cleanouts, the flashing shall be turned down into the hub and caulked after placing the ferrule. Pipes passing through pitched roofs shall be flashed, using lead or copper flashing, with an adjustable integral flange of adequate size to extend not less than 8 inches from the pipe in all directions and lapped into the roofing to provide a watertight seal. The annular space between the flashing and the bare pipe or between the flashing and the metal-jacket-covered insulation shall be sealed as indicated. Flashing for dry vents shall be turned down into the pipe to form a waterproof joint. Pipes, up to and including 10 inches in diameter, passing through roof or floor waterproofing membrane may be installed through a cast-iron sleeve with caulking recess, anchor lugs, flashing-clamp device, and pressure ring with brass bolts. Flashing shield shall be fitted into the sleeve clamping device. Pipes passing through wall waterproofing membrane shall be sleeved as described above. A waterproofing clamping flange shall be installed. # 3.1.6.3 Optional Counterflashing Instead of turning the flashing down into a dry vent pipe, or caulking and sealing the annular space between the pipe and flashing or metal-jacket-covered insulation and flashing, counterflashing may be accomplished by utilizing the following: - a. A standard roof coupling for threaded pipe up to 6 inches in diameter. - b. A tack-welded or banded-metal rain shield around the pipe. #### 3.1.6.4 Pipe Penetrations of Slab on Grade Floors Where pipes, fixture drains, floor drains, cleanouts or similar items penetrate slab on grade floors, except at penetrations of floors with waterproofing membrane as specified in paragraphs Flashing Requirements and Waterproofing, a groove 1/4 to 1/2 inch wide by 1/4 to 3/8 inch deep shall be formed around the pipe, fitting or drain. The groove shall be filled with a sealant as specified in Section 07900a JOINT SEALING. #### 3.1.7 Fire Seal Where pipes pass through fire walls, fire-partitions, fire-rated pipe chase walls or floors above grade, a fire seal shall be provided. # 3.1.8 Supports #### 3.1.8.1 General Hangers used to support piping 2 inches and larger shall be fabricated to permit adequate adjustment after erection while still supporting the load. Pipe guides and anchors shall be installed to keep pipes in accurate alignment, to direct the expansion movement, and to prevent buckling, swaying, and undue strain. Piping subjected to vertical movement when operating temperatures exceed ambient temperatures shall be supported by variable spring hangers and supports or by constant support hangers. In the support of multiple pipe runs on a common base member, a clip or clamp shall be used where each pipe crosses the base support member. Spacing of the base support members shall not exceed the hanger and support spacing required for an individual pipe in the multiple pipe run. Threaded sections of rods shall not be formed or bent. # 3.1.8.2 Pipe Supports and Structural Bracing, Seismic Requirements Piping and attached valves shall be supported and braced to resist seismic loads. Structural steel required for reinforcement to properly support piping, headers, and equipment, but not shown, shall be provided. 3.1.8.3 Pipe Hangers, Inserts, and Supports Installation of pipe hangers, inserts and supports shall conform to MSS SP-58 and MSS SP-69, except as modified herein. - a. Types 5, 12, and 26 shall not be used. - b. Type 3 shall not be used on insulated pipe. - c. Type 18 inserts shall be secured to concrete forms before concrete is placed. Continuous inserts which allow more adjustment may be used if they otherwise meet the requirements for type 18 inserts. - d. Type 19 and 23 C-clamps shall be torqued per MSS SP-69 and shall have both locknuts and retaining devices furnished by the manufacturer. Field-fabricated C-clamp bodies or retaining devices are not acceptable. - e. Type 20 attachments used on angles and channels shall be furnished with an added malleable-iron heel plate or adapter. - f. Type 24 may be used only on trapeze hanger systems or on fabricated frames. - g. Type 39 saddles shall be used on insulated pipe 4 inches and larger when the temperature of the medium is 60 degrees F or higher. Type 39 saddles shall be welded to the pipe. - h. Type 40 shields shall: - (1) Be used on insulated pipe less than 4 inches. - (2) Be used on insulated pipe 4 inches and larger when the temperature of the medium is 60 degrees F or less. - (3) Have a high density insert for all pipe sizes. High density inserts shall have a density of 8 pcf or greater. - i. Horizontal pipe supports shall be spaced as specified in MSS SP-69 and a support shall be installed not over 1 foot from the pipe fitting joint at each change in direction of the piping. Pipe supports shall be spaced not over 5 feet apart at valves. Operating temperatures in determining hanger spacing for PVC or CPVC pipe shall be 120 degrees F for PVC and 180 degrees F for CPVC. Horizontal pipe runs shall include allowances for expansion and contraction. - j. Vertical pipe shall be supported at each floor, except at slab-on-grade, at intervals of not more than 15 feet nor more than 8 feet from end of risers, and at vent terminations. Vertical pipe risers shall include allowances for expansion and contraction. - k. Type 35 guides using steel, reinforced polytetrafluoroethylene (PTFE) or graphite slides shall be provided to allow longitudinal pipe movement. Slide materials shall be suitable for the system operating temperatures, atmospheric conditions, and bearing loads encountered. Lateral restraints shall be provided as needed. Where steel slides do not require provisions for lateral restraint the following may be used: - (1) On pipe 4 inches and larger when the temperature of the medium is 60 degrees F or higher, a Type 39 saddle, welded to the pipe, may freely rest on a steel plate. - (2) On pipe less than 4 inches a Type 40 shield, attached to the pipe or insulation, may freely rest on a steel plate. - (3) On pipe 4 inches and larger carrying medium less that 60 degrees F a Type 40 shield, attached to the pipe or insulation, may freely rest on a steel plate. - 1. Pipe hangers on horizontal insulated pipe shall be the size of the outside diameter of the insulation. The insulation shall be continuous through the hanger on all pipe sizes and applications. - m. Where there are high system temperatures and welding to piping is not desirable, the type 35 guide shall include a pipe cradle, welded to the guide structure and strapped securely to the pipe. The pipe shall be separated from the slide material by at least 4 inches or by an amount adequate for the insulation, whichever is greater. - n. Hangers and supports for plastic pipe shall not compress, distort, cut or abrade the piping, and shall allow free movement of pipe except where otherwise required in the control of expansion/contraction. #### 3.1.9 Welded Installation Plumbing pipe weldments shall be as indicated. Changes in
direction of piping shall be made with welding fittings only; mitering or notching pipe to form elbows and tees or other similar type construction will not be permitted. Branch connection may be made with either welding tees or forged branch outlet fittings. Branch outlet fittings shall be forged, flared for improvement of flow where attached to the run, and reinforced against external strains. Beveling, alignment, heat treatment, and inspection of weld shall conform to ASME B31.1. Weld defects shall be removed and repairs made to the weld, or the weld joints shall be entirely removed and rewelded. After filler metal has been removed from its original package, it shall be protected or stored so that its characteristics or welding properties are not affected. Electrodes that have been wetted or that have lost any of their coating shall not be used. # 3.1.10 Pipe Cleanouts Pipe cleanouts shall be the same size as the pipe except that cleanout plugs larger than 4 inches will not be required. A cleanout installed in connection with cast-iron soil pipe shall consist of a long-sweep 1/4 bend or one or two 1/8 bends extended to the place shown. An extra-heavy cast-brass or cast-iron ferrule with countersunk cast-brass head screw plug shall be caulked into the hub of the fitting and shall be flush with the floor. Cleanouts in connection with other pipe, where indicated, shall be T-pattern, 90-degree branch drainage fittings with cast-brass screw plugs, except plastic plugs shall be installed in plastic pipe. Plugs shall be the same size as the pipe up to and including 4 inches. Cleanout tee branches with screw plug shall be installed at the foot of soil and waste stacks, at the foot of interior downspouts, on each connection to building storm drain where interior downspouts are indicated, and on each building drain outside the building. Cleanout tee branches may be omitted on stacks in single story buildings with slab-on-grade construction or where less than 18 inches of crawl space is provided under the floor. Cleanouts on pipe concealed in partitions shall be provided with chromium plated bronze, nickel bronze, nickel brass or stainless steel flush type access cover plates. Round access covers shall be provided and secured to plugs with securing screw. Square access covers may be provided with matching frames, anchoring lugs and cover screws. Cleanouts in finished walls shall have access covers and frames installed flush with the finished wall. Cleanouts installed in finished floors subject to foot traffic shall be provided with a chrome-plated cast brass, nickel brass, or nickel bronze cover secured to the plug or cover frame and set flush with the finished floor. Heads of fastening screws shall not project above the cover surface. Where cleanouts are provided with adjustable heads, the heads shall be cast iron. #### 3.2 WATER HEATERS AND HOT WATER STORAGE TANKS #### 3.2.1 Relief Valves No valves shall be installed between a relief valve and its water heater or storage tank. The P&T relief valve shall be installed where the valve actuator comes in contact with the hottest water in the heater. Whenever possible, the relief valve shall be installed directly in a tapping in the tank or heater; otherwise, the P&T valve shall be installed in the hot-water outlet piping. A vacuum relief valve shall be provided on the cold water supply line to the hot-water storage tank or water heater and mounted above and within 6 inches above the top of the tank or water heater. #### 3.2.2 Installation of Gas- and Oil-Fired Water Heater Installation shall conform to NFPA 54 for gas fired and NFPA 31 for oil fired. Storage water heaters that are not equipped with integral heat traps and having vertical pipe risers shall be installed with heat traps directly on both the inlet and outlet. Circulating systems need not have heat traps installed. An acceptable heat trap may be a piping arrangement such as elbows connected so that the inlet and outlet piping make vertically upward runs of not less than 24 inches just before turning downward or directly horizontal into the water heater's inlet and outlet fittings. Commercially available heat traps, specifically designed by the manufacturer for the purpose of effectively restricting the natural tendency of hot water to rise through vertical inlet and outlet piping during standby periods may also be approved. # 3.2.3 Phenolic Resin Application Process The phenolic resin coating shall be applied at either the coil or coating manufacturer's factory. The hot water coil shall be chemically cleaned to remove any scale if present and to etch the metal surface. The exposed exterior surface of the coil shall be abrasively cleaned to white metal blast in accordance with SSPC SP 5/NACE 1. The exterior surface shall be coated with the three-component coating system in the following sequence and manner. For immediate and final cure times and temperature, the recommendations of the coating manufacturer shall be followed. - a. Wash Primer. One coat of wash primer shall be applied by flooding. - b. Pigmented Base Coat. Pigmented baking phenolic coating shall be applied in several coats by immersion or flooding to a dry film thickness of 4 to 6 mils. - c. Clear Top Coat. Clear non-pigmented baking phenolic top coat shall be applied in several coats by immersion or flooding. The final coat may be applied by spraying. The dry film thickness of the total coating system shall be between 5 and 7 mils. #### 3.2.4 Heat Traps Piping to and from each water heater and hot water storage tank shall be routed horizontally and downward a minimum of 2 feet before turning in an upward direction. #### 3.2.5 Connections to Water Heaters Connections of metallic pipe to water heaters shall be made with dielectric unions or flanges. #### 3.3 FIXTURES AND FIXTURE TRIMMINGS Polished chromium-plated pipe, valves, and fittings shall be provided where exposed to view. Angle stops, straight stops, stops integral with the faucets, or concealed type of lock-shield, and loose-key pattern stops for supplies with threaded, sweat or solvent weld inlets shall be furnished and installed with fixtures. Where connections between copper tubing and faucets are made by rubber compression fittings, a beading tool shall be used to mechanically deform the tubing above the compression fitting. Exposed traps and supply pipes for fixtures and equipment shall be connected to the rough piping systems at the wall, unless otherwise specified under the item. Floor and wall escutcheons shall be as specified. Drain lines and hot water lines of fixtures for handicapped personnel shall be insulated and do not require polished chrome finish. Plumbing fixtures and accessories shall be installed within the space shown. # 3.3.1 Fixture Connections Where space limitations prohibit standard fittings in conjunction with the cast-iron floor flange, special short-radius fittings shall be provided. Connections between earthenware fixtures and flanges on soil pipe shall be made gastight and watertight with a closet-setting compound or neoprene gasket and seal. Use of natural rubber gaskets or putty will not be permitted. Fixtures with outlet flanges shall be set the proper distance from floor or wall to make a first-class joint with the closet-setting compound or gasket and fixture used. # 3.3.2 Flushometer Valves Flushometer valves shall be secured to prevent movement by anchoring the long finished top spud connecting tube to wall adjacent to valve with approved metal bracket. Flushometer valves for water closets shall be installed 39 inches above the floor, except at water closets intended for use by the physically handicapped where flushometer valves shall be mounted at approximately 30 inches above the floor and arranged to avoid interference with grab bars. In addition, for water closets intended for handicap use, the flush valve handle shall be installed on the wide side of the enclosure. # 3.3.3 Height of Fixture Rims Above Floor Lavatories shall be mounted with rim 31 inches above finished floor. Wall-hung drinking fountains and water coolers shall be installed with rim 42 inches above floor. Installation of fixtures for use by the physically handicapped shall be in accordance with ICC CABO A117.1. # 3.3.4 Fixture Supports Fixture supports for off-the-floor lavatories, urinals, water closets, and other fixtures of similar size, design, and use, shall be of the chair-carrier type. The carrier shall provide the necessary means of mounting the fixture, with a foot or feet to anchor the assembly to the floor slab. Adjustability shall be provided to locate the fixture at the desired height and in proper relation to the wall. Support plates, in lieu of chair carrier, shall be fastened to the wall structure only where it is not possible to anchor a floor-mounted chair carrier to the floor slab. # 3.3.4.1 Support for Steel Stud Frame Partitions Chair carrier shall be used. The anchor feet and tubular uprights shall be of the heavy duty design; and feet (bases) shall be steel and welded to a square or rectangular steel tube upright. Wall plates, in lieu of floor-anchored chair carriers, shall be used only if adjoining steel partition studs are suitably reinforced to support a wall plate bolted to these studs. #### 3.3.4.2 Wall-Mounted Water Closet Gaskets Where wall-mounted water closets are provided, reinforced wax, treated felt, or neoprene gaskets shall be provided. The type of gasket furnished shall be as recommended by the chair-carrier manufacturer. #### 3.3.5 Backflow Prevention Devices Plumbing fixtures, equipment, and pipe connections shall not cross connect or interconnect between a potable water supply and any source of nonpotable water. Backflow preventers shall be installed where indicated and in accordance with ICC Plumbing Code at all other locations necessary to preclude a cross-connect or interconnect between a potable water supply and any nonpotable
substance. In addition backflow preventers shall be installed at all locations where the potable water outlet is below the flood level of the equipment, or where the potable water outlet will be located below the level of the nonpotable substance. Backflow preventers shall be located so that no part of the device will be submerged. Backflow preventers shall be of sufficient size to allow unrestricted flow of water to the equipment, and preclude the backflow of any nonpotable substance into the potable water system. Bypass piping shall not be provided around backflow preventers. Access shall be provided for maintenance and testing. Each device shall be a standard commercial unit. #### 3.3.6 Access Panels Access panels shall be provided for concealed valves and controls, or any item requiring inspection or maintenance. Access panels shall be of sufficient size and located so that the concealed items may be serviced, maintained, or replaced. Access panels shall be as specified in Section 05500a MISCELLANEOUS METAL. #### 3.3.7 Sight Drains Sight drains shall be installed so that the indirect waste will terminate 2 inches above the flood rim of the funnel to provide an acceptable air gap. # 3.3.8 Traps Each trap shall be placed as near the fixture as possible, and no fixture shall be double-trapped. Traps installed on cast-iron soil pipe shall be cast iron. Traps installed on steel pipe or copper tubing shall be recess-drainage pattern, or brass-tube type. Traps installed on plastic pipe may be plastic conforming to ASTM D 3311. Traps for acid-resisting waste shall be of the same material as the pipe. #### 3.4 VIBRATION-ABSORBING FEATURES Mechanical equipment, including compressors and pumps, shall be isolated from the building structure by approved vibration-absorbing features, unless otherwise shown. #### 3.5 IDENTIFICATION SYSTEMS #### 3.5.1 Identification Tags Identification tags made of brass, engraved laminated plastic, or engraved anodized aluminum, indicating service and valve number shall be installed on valves, except those valves installed on supplies at plumbing fixtures. Tags shall be 1-3/8 inch minimum diameter, and marking shall be stamped or engraved. Indentations shall be black, for reading clarity. Tags shall be attached to valves with No. 12 AWG, copper wire, chrome-plated beaded chain, or plastic straps designed for that purpose. # 3.5.2 Pipe Color Code Marking Color code marking of piping shall be as specified in Section 09900 PAINTING, GENERAL. # 3.5.3 Color Coding Scheme for Locating Hidden Utility Components Scheme shall be provided in buildings having suspended grid ceilings. The color coding scheme shall identify points of access for maintenance and operation of operable components which are not visible from the finished space and installed in the space directly above the suspended grid ceiling. The operable components shall include valves, dampers, switches, linkages and thermostats. The color coding scheme shall consist of a color code board and colored metal disks. Each colored metal disk shall be approximately 3/8 inch in diameter and secured to removable ceiling panels with fasteners. The fasteners shall be inserted into the ceiling panels so that the fasteners will be concealed from view. The fasteners shall be manually removable without tools and shall not separate from the ceiling panels when panels are dropped from ceiling height. Installation of colored metal disks shall follow completion of the finished surface on which the disks are to be fastened. The color code board shall have the approximate dimensions of $\ 3$ foot width, $\ 30$ inches height, and $\ 1/2$ inch thickness. The board shall be made of wood fiberboard and framed under glass or 1/16 inch transparent plastic cover. Unless otherwise directed, the color code symbols shall be approximately 3/4 inch in diameter and the related lettering in 1/2 inch high capital letters. The color code board shall be mounted and located in the mechanical or equipment room. #### 3.6 ESCUTCHEONS Escutcheons shall be provided at finished surfaces where bare or insulated piping, exposed to view, passes through floors, walls, or ceilings, except in boiler, utility, or equipment rooms. Escutcheons shall be fastened securely to pipe or pipe covering and shall be satin-finish, corrosion-resisting steel, polished chromium-plated zinc alloy, or polished chromium-plated copper alloy. Escutcheons shall be either one-piece or split-pattern, held in place by internal spring tension or setscrew. #### 3.7 PAINTING Painting of pipes, hangers, supports, and other iron work, either in concealed spaces or exposed spaces, is specified in Section 09900 PAINTING, GENERAL. #### 3.8 TESTS, FLUSHING AND DISINFECTION #### 3.8.1 Plumbing System The following tests shall be performed on the plumbing system in accordance with ICC Plumbing Code. - a. Drainage and Vent Systems Tests. - b. Building Sewers Tests. - c. Water Supply Systems Tests. # 3.8.1.1 Test of Backflow Prevention Assemblies Backflow prevention assembly shall be tested using gauges specifically designed for the testing of backflow prevention assemblies. Gauges shall be tested annually for accuracy in accordance with the University of Southern California's Foundation of Cross Connection Control and Hydraulic Research or the American Water Works Association Manual of Cross Connection (Manual M-14). Report form for each assembly shall include, as a minimum, the following: Data on Device Data on Testing Firm Type of Assembly Name Manufacturer Address Model Number Certified Tester Serial Number Certified Tester No. Size Date of Test Location Test Pressure Readings Serial Number and Test Data of If the unit fails to meet specified requirements, the unit shall be repaired and retested. # 3.8.1.2 Compressed Air Piping (Nonoil-Free) Piping systems shall be filled with oil-free dry air or gaseous nitrogen to 150 psig and hold this pressure for 2 hours with no drop in pressure. #### 3.8.2 Defective Work If inspection or test shows defects, such defective work or material shall be replaced or repaired as necessary and inspection and tests shall be repeated. Repairs to piping shall be made with new materials. Caulking of screwed joints or holes will not be acceptable. # 3.8.3 System Flushing #### 3.8.3.1 During Flushing Before operational tests or disinfection, potable water piping system shall be flushed with potable water. Sufficient water shall be used to produce a water velocity that is capable of entraining and removing debris in all portions of the piping system. This requires simultaneous operation of all fixtures on a common branch or main in order to produce a flushing velocity of approximately 4 fps through all portions of the piping system. In the event that this is impossible due to size of system, the Contracting Officer (or the designated representative) shall specify the number of fixtures to be operated during flushing. Contractor shall provide adequate personnel to monitor the flushing operation and to ensure that drain lines are unobstructed in order to prevent flooding of the facility. Contractor shall be responsible for any flood damage resulting from flushing of the system. Flushing shall be continued until entrained dirt and other foreign materials have been removed and until discharge water shows no discoloration. #### 3.8.3.2 After Flushing System shall be drained at low points. Strainer screens shall be removed, cleaned, and replaced. After flushing and cleaning, systems shall be prepared for testing by immediately filling water piping with clean, fresh potable water. Any stoppage, discoloration, or other damage to the finish, furnishings, or parts of the building due to the Contractor's failure to properly clean the piping system shall be repaired by the Contractor. When the system flushing is complete, the hot-water system shall be adjusted for uniform circulation. Flushing devices and automatic control systems shall be adjusted for proper operation. All faucets and drinking water fountains, to include any device considered as an end point device by NSF 61, Section 9, shall be flushed a minimum of 0.25 gallons per 24 hour period, ten times over a 14 day period. # 3.8.4 Operational Test Upon completion of flushing and prior to disinfection procedures, the Contractor shall subject the plumbing system to operating tests to demonstrate satisfactory functional and operational efficiency. Such operating tests shall cover a period of not less than 8 hours for each system and shall include the following information in a report with conclusion as to the adequacy of the system: - a. Time, date, and duration of test. - b. Water pressures at the most remote and the highest fixtures. - c. Operation of each fixture and fixture trim. - d. Operation of each valve, hydrant, and faucet. - e. Pump suction and discharge pressures. - f. Temperature of each domestic hot-water supply. - q. Operation of each floor and roof drain by flooding with water. - h. Operation of each vacuum breaker and backflow preventer. - Complete operation of each water pressure booster system, including pump start pressure and stop pressure. - j. Compressed air readings at each compressor and at each outlet. Each indicating instrument shall be read at 1/2 hour intervals. The report of the test shall be submitted in quadruplicate. The Contractor shall furnish instruments, equipment, and personnel required for the tests; the Government will furnish the necessary water and electricity. #### 3.8.5 Disinfection After operational tests are complete, the entire domestic hot- and cold-water distribution system shall be disinfected. System shall be flushed as specified, before introducing chlorinating material. The chlorinating material shall be hypochlorites or liquid chlorine. Water chlorination procedure shall be in accordance with AWWA M20. The chlorinating material shall be fed into the water piping system at a constant rate at a
concentration of at least 50 parts per million (ppm). A properly adjusted hypochlorite solution injected into the main with a hypochlorinator, or liquid chlorine injected into the main through a solution-feed chlorinator and booster pump, shall be used. The chlorine residual shall be checked at intervals to ensure that the proper level is maintained. Chlorine application shall continue until the entire main is filled. The water shall remain in the system for a minimum of 24 hours. Each valve in the system being disinfected shall be opened and closed several times during the contact period to ensure its proper disinfection. Following the 24-hour period, no less than 25 ppm chlorine residual shall remain in the system. Water tanks shall be disinfected by the addition of chlorine directly to the filling water. Following a 6 hour period, no less than 50 ppm chlorine residual shall remain in the tank. If after the 24 hour and 6 hour holding periods, the residual solution contains less than 25 ppm and 50 ppm chlorine respectively, flush the piping and tank with potable water, and repeat the above procedures until the required residual chlorine levels are satisfied. The system including the tanks shall then be flushed with clean water until the residual chlorine level is reduced to less than one part per million. During the flushing period each valve and faucet shall be opened and closed several times. Samples of water in disinfected containers shall be obtained from several locations selected by the Contracting Officer. The samples of water shall be tested for total coliform organisms (coliform bacteria, fecal coliform, streptococcal, and other bacteria) in accordance with AWWA EWW. The testing method used shall be either the multiple-tube fermentation technique or the membrane-filter technique. Disinfection shall be repeated until tests indicate the absence of coliform organisms (zero mean coliform density per 100 milliliters) in the samples for at least 2 full days. The system will not be accepted until satisfactory bacteriological results have been obtained. # 3.8.6 Flushing of Potable Water System As an option to the system flushing specified above, the potable water system system shall be flushed and conditioned until the residual level of lead is less than that specified by the base industrial hygienist. The water supply to the building shall be tested separately to ensure that any lead contamination found during potable water system testing is due to work being performed inside the building. #### 3.9 PLUMBING FIXTURE SCHEDULE #### P-1 WATER CLOSET: Siphon-jet, elongated bowl, top supply spud, ASME A112.19.2M, wall mounted. Gasket shall be wax type. Seat - IAPMO Z124.5, Type A, white plastic, elongated, open front. Flush Tank - An adequate quantity of water shall be provided to flush and clean the fixture served. The water supply to flush tanks equipped for manual flushing shall be controlled by a float valve or other automatic device designed to refill the tank after each discharge, and to completely shut off the water flow to the tank when the tank is filled to operational capacity. Water closets having their flush valve seat located below the flood level rim of the closet bowl shall have a ballcock installed within a sheath or in a separate and isolated compartment of the tank, both to have visible discharge onto the floor in case of failure. Provision shall be made to automatically supply water to the fixture so as to refill the trap seal after each flushing. The water supply to flush tanks equipped for automatic flushing shall be controlled by a suitable timing device. Ballcocks shall meet ASSE 1002. # P-2 WATER CLOSET HANDICAPPED: Height of top rim of bowl shall be in accordance with ICC CABO A117.1; other features are the same as P-1. #### P-3 URINAL: Wall hanging, with integral trap and extended shields, ASME A112.19.2M siphon jet washout. Top supply connection, back outlet. Flushometer Valve - Similar to Flushometer Valve for P-1. The maximum water use shall be 1 gallon per flush. #### P-5 LAVATORY: Manufacturer's standard sink depth, vitreous china ASME All2.19.2M, countertop, rectangular. Faucet - Faucets shall meet the requirements of NSF 61, Section 9. Faucets shall be center set type. Faucets shall have replaceable seats and washers. Faucets shall have metal replaceable cartridge control unit or metal cartridge units with diaphragm which can be replaced without special tools. Valves and handles shall be copper alloy. Connection between valve and spout for center-set faucet shall be of rigid metal tubing. Flow shall be limited to 0.25 gallon per cycle at a flowing water pressure of 80 psi if a metering device or fitting is used that limits the period of water discharge such as a foot switch or fixture occupancy sensor. If a metering device is not used, the flow shall be limited to 2.5 gpm at a flowing pressure of 80 psi. Handles - Lever type. Cast, formed, or drop forged copper alloy. Drain - Strainer shall be copper alloy or stainless steel Pop-up drain shall include stopper, lift rods, jam nut, washer, and tail piece. See paragraph FIXTURES for optional plastic accessories. #### P-7 KITCHEN SINK: Ledge back with holes for faucet and spout single bowl 24×21 inches stainless steel ASME A112.19.3M. Faucet and Spout - Faucets shall meet the requirements of NSF 61, Section 9. Cast or wrought copper alloy. Aerator shall have internal threads. Flow shall be limited to 0.25 gallon per cycle at a flowing water pressure of 80 psi if a metering device or fitting is used that limits the period of water discharge such as a foot switch or fixture occupancy sensor. If a metering device is not used, the flow shall be limited to 2.5 gpm at a flowing water pressure of 80 psi. Handle - Cast copper alloy, wrought copper alloy, or stainless steel. Single lever type. Drain Assembly - Plug, cup strainer, crossbars, jam nuts, washers, couplings, stopper, etc., shall be copper alloy or stainless steel. #### P-8 SERVICE SINK: Enameled cast iron ASME A112.19.1M, copper alloy or stainless steel ASME A112.19.3M corner, floor mounted 28 inches square, 6-3/4 inches deep. Faucet and Spout - Cast or wrought copper alloy, with top or bottom brace, with backflow preventer. Faucets shall have replaceable seat and the washer shall rotate onto the seat. Handles shall be lever type. Strainers shall have internal threads. Drain Assembly - Plug, cup strainer, crossbars, jam nuts, washers, couplings, stopper, etc., shall be copper alloy or stainless steel. Trap - Cast iron, minimum 3 inch diameter. #### P-15 WATER COOLER DRINKING FOUNTAINS: Drinking fountains shall meet the requirements of NSF 61, Section 9. Water cooler drinking fountains shall: be self contained, conform to ARI 1010, use one of the fluorocarbon gases conforming to ARI 700 and ASHRAE 34 which has an Ozone Depletion Potential of less than or equal to 0.05, have a capacity to deliver 8 gph of water at 50 degrees F with an inlet water temperature of 80 degrees F while residing in a room environment of 90 degrees F, and have self-closing valves. Self-closing valves shall have automatic stream regulators, have a flow control capability, have a push button actuation or have a cross-shaped index metal turn handle without a hood. Exposed surfaces of stainless steel shall have No. 4 general polish finish. Spouts shall provide a flow of water at least 4 inches high so as to allow the insertion of a cup or glass under the flow of water. Handicapped - Handicapped units shall be surface wall-mounted. The dimensions shall be 15 inches wide, 20 inches deep, with a back height of 6 to 8 inches. The unit shall clear the floor or ground by at least 8 inches. A clear knee space shall exist between the bottom of the bowl and the floor or ground of at least 27 inches and between the front edge of the bowl and the body of the unit of at least 8 inches. A 8 inch wide clear space shall exist on both sides of the unit. The spout height shall be no more than 36 inches above the floor or ground to the outlet. The spout shall be at the front of the unit and direct the water flow in a trajectory that is parallel or nearly parallel to the front of the unit. The bowl shall be 6-1/2 inches high, made of stainless steel and be for interior installation. # P-16 FOOD WASTE DISPOSER: Food waste disposers shall be in accordance with UL 430. # 3.10 PERFORMANCE OF WATER HEATING EQUIPMENT Standard rating condition terms are as follows: - EF = Energy factor, overall efficiency. - ET = Thermal efficiency with 70 degrees F delta T. - EC = Combustion efficiency, 100 percent flue loss when smoke = o (trace is permitted). - SL = Standby loss in W/sq. ft. based on 80 degrees F delta T, or in percent per hour based on nominal 90 degrees F delta T. - HL = Heat loss of tank surface area. - V = Storage volume in liters - 3.10.1 Storage Water Heaters - 3.10.1.1 Gas - a. Storage capacity of 100 gallons or less, and input rating of 75,000 Btu/h or less: minimum EF shall be 0.62-0.0019V per 10 CFR 430. - b. Storage capacity of more than 100 gallons or input rating more than 75,000 Btu/h: Et shall be 77 percent; maximum SL shall be 1.3+38/V, per ANSI Z21.10.3. # 3.11 TABLES # TABLE I PIPE AND FITTING MATERIALS FOR DRAINAGE, WASTE, AND VENT PIPING SYSTEMS | | | | | | ERVICE |
C | | |----|---|---|---|---|--------|-------|--| | It | em # Pipe and Fitting Materials | A | В | С | D | | | | 1 | Cast iron soil pipe and fittings, hub and spigot, ASTM A 74 with compression gaskets | Х | X | X | Х | Х | | | 2 | Cast iron soil pipe and fittings hubless, CISPI 301 and ASTM A 888 | | X | X | Х | | | | 3 | Cast iron drainage fittings, threaded, ASME B16.12 for use with Item 10 | X | | X | Х | | | | 4 | Cast iron screwed fittings (threaded) ASME B16.4 for
use with Item 10 | | | | Х | X | | | 5 | Grooved pipe couplings, ferrous and non-ferrous pipe ASTM A 536 and ASTM A 47/A 47M | Х | Х | | Х | Х | | | 6 | Ductile iron grooved joint fittings
for ferrous pipe ASTM A 536
and ASTM A 47/A 47M for use with
Item 5 | Х | X | | Х | Х | | | 7 | Bronze sand casting grooved joint pressure fittings for non-ferrous pipe ASTM B 584, for use with Item 5 | Х | Х | | Х | Х | | | 8 | Wrought copper grooved joint pressure pressure fittings for non-ferrous pipe ASTM B 75 C12200, ASTM B 152, ASTM B 152M, C11000, ASME B16.22 ASME B16.22 for use with Item 5 | X | X | | | | | | 9 | Malleable-iron threaded fittings, galvanized ASME B16.3 for use with Item 10 | | | | Х | X | | | 10 | Steel pipe, seamless galvanized,
ASTM A 53/A 53M, Type S, Grade B | Х | | | Х | X | | | 11 | Seamless red brass pipe, ASTM B 43 | | X | X | | | | | 12 | Bronzed flanged fittings,
ASME B16.24 for use
with Items 11 and 14 | | | | X | Х | | TABLE I PIPE AND FITTING MATERIALS FOR DRAINAGE, WASTE, AND VENT PIPING SYSTEMS | | | | | S | SERVIC | E | | |----------|---|---------|-------------|----|--------|---|---| | Ite | m # Pipe and Fitting Materials | A | В | С | D | E | F | | 13 | Cast copper alloy solder joint pressure fittings, ASME B16.18 for use with Item 14 | | | | X | X | | | 14 | Seamless copper pipe, ASTM B 42 | | | | X | | | | 15 | Cast bronze threaded fittings,
ASME B16.15 | | | | Х | Х | | | 16 | Copper drainage tube, (DWV), ASTM B 306 | Х* | X | Х* | Х | X | | | 17 | Wrought copper and wrought alloy solder-joint drainage fittings. ASME B16.29 | X | X | Х | Х | Х | | | 18 | Cast copper alloy solder joint drainage fittings, DWV, ASME B16.23 | X | X | Х | X | X | | | 19 | Acrylonitrile-Butadiene-Styrene (ABS) plastic drain, waste, and vent pipe and fittings ASTM D 2661, ASTM F 628 | X | Х | X | Х | X | Х | | 20 | Polyvinyl Chloride plastic drain,
waste and vent pipe and fittings,
ASTM D 2665,
ASTM F 891, (Sch 40)
ASTM F 1760 | X | Х | Х | X | Х | Х | | 21 | Process glass pipe and fittings,
ASTM C 1053 | | | | | | X | | 22
AS | High-silicon content cast iron pipe
and fittings (hub and spigot, and mechan
TM A 518/A 518M | nical j | X
joint) | , | | X | Х | | 23 | Polypropylene (PP) waste pipe and fittings, ASTM D 4101 | | | | | | Х | | 24 | Filament-wound reinforced thermosetting resin (RTRP) pipe, ASTM D 2996 | | | | | | X | | | | | | | | | | #### SERVICE: - A Underground Building Soil, Waste and Storm Drain - B Aboveground Soil, Waste, Drain In Buildings - C Underground Vent - D Aboveground Vent # TABLE I PIPE AND FITTING MATERIALS FOR DRAINAGE, WASTE, AND VENT PIPING SYSTEMS SERVICE Item # Pipe and Fitting Materials A B C D E F - E Interior Rainwater Conductors Aboveground - F Corrosive Waste And Vent Above And Belowground - * Hard Temper TABLE II PIPE AND FITTING MATERIALS FOR PRESSURE PIPING SYSTEMS | | AU CHAIAIAN DHIII DUA 3414 | | | | | |----|--|-----|-----|------|------| | | | | | VICE | | | | em No. Pipe and Fitting Materials | A | В | С | D | | 1 | | Х | | | | | | <pre>b. Same as "a" but not galvanized for use with Item 4b</pre> | | | X | | | 2 | Grooved pipe couplings, ferrous pipe
ASTM A 536 and
ASTM A 47/A 47M, non-ferrous
pipe, ASTM A 536
and ASTM A 47/A 47M, | х | X | Х | | | 3 | Ductile iron grooved joint fittings for ferrous pipe ASTM A 536 and ASTM A 47/A 47M, for use with Item 2 | Х | X | X | | | 4 | Steel pipe:
a. Seamless, galvanized,
ASTM A 53/A 53M, Type S, Grade B | Х | X | Х | Х | | | b. Seamless, black,ASTM A 53/A 53M,Type S, Grade B | | | X | | | 5 | Seamless red brass pipe,
ASTM B 43 | X | Х | | X | | 6 | Bronze flanged fittings,
ASME B16.24
for use with Items 5 and 7 | Х | X | | X | | 7 | Seamless copper pipe,
ASTM B 42 | X | X | | X | | 8 | Seamless copper water tube,
ASTM B 88, ASTM B 88M | X** | X** | X** | X*** | | 9 | Cast bronze threaded fittings,
ASME B16.15 for use
with Items 5 and 7 | X | X | | X | | 10 | Wrought copper and bronze solder-joint pressure fittings,
ASME B16.22 for
use with Items 5 and 7 | Х | X | Х | Х | | 11 | Cast copper alloy solder-joint pressure fittings, | X | Х | X | X | TABLE II PIPE AND FITTING MATERIALS FOR PRESSURE PIPING SYSTEMS | | | | SEI | RVICE | | |----|---|---|-----|-------|---| | | m No. Pipe and Fitting Materials | | | | D | | | ASME B16.18 for use with Items 8 and 9 | | | | | | 12 | Bronze and sand castings grooved
joint pressure fittings for non-
ferrous pipe ASTM B 584,
for use with Item 2 | X | X | Х | | | 13 | Polyethylene (PE) plastic pipe,
Schedules 40 and 80, based on
outside diameter
ASTM D 2447 | X | | | Х | | 14 | Polyethylene (PE) plastic pipe (SDR-PR), based on controlled outside diameter, ASTM D 3035 | X | | | Х | | 15 | Polyethylene (PE) plastic pipe (SIDR-PR), based on controlled inside diameter, ASTM D 2239 | X | | | Х | | 16 | Butt fusion polyethylene (PE) plastic pipe fittings, ASTM D 3261 for use with Items 14, 15, and 16 | X | | | X | | 17 | Socket-type polyethylene fittings
for outside diameter-controlled
polyethylene pipe,
ASTM D 2683
for use with Item 15 | X | | | Х | | 18 | Polyethylene (PE) plastic tubing,
ASTM D 2737 | X | | | X | | 19 | Chlorinated polyvinyl chloride (CPVC) plastic hot and cold water distribution system, ASTM D 2846/D 2846M | X | X | | Х | | 20 | Chlorinated polyvinyl chloride (CPVC) plastic pipe, Schedule 40 and 80, ASTM F 441/F 441M | Х | X | | Х | | 21 | Chlorinated polyvinyl chloride (CPVC) plastic pipe (SDR-PR) ASTM F 442/F 442M | X | X | | Х | | 22 | Threaded chlorinated polyvinyl chloride (chloride CPVC) plastic pipe fittings, | X | X | | Х | TABLE II PIPE AND FITTING MATERIALS FOR PRESSURE PIPING SYSTEMS | | | | SEI | RVICE | | |-----------|---|-----------|-----|-------|---| | | m No. Pipe and Fitting Materials | A | В | | | | | Schedule 80, ASTM F 437,
for use with Items 20, and 21 | | | | | | 23 | Socket-type chlorinated polyviny chloride (CPVC) plastic pipe fittings, Schedule 40, ASTM F 438 for use with Items 20, 21, and 22 | L x | X | | X | | 24 | Socket-type chlorinated polyviny chloride (CPVC) plastic pipe fits Schedule 80, ASTM F 439 for use with Items 20, 21, and 22 | cings | Х | | X | | 25 | Polyvinyl chloride (PVC) plastic
Schedules 40, 80, and 120,
ASTM D 1785 | pipe, X | | | X | | 26 | Polyvinyl chloride (PVC) pressure
pipe (SDR Series),
ASTM D 2241 | e-rated X | | | X | | 27 | Polyvinyl chloride (PVC) plastic fittings, Schedule 40, ASTM D 2466 | pipe X | | | X | | 28
for | Socket-type polyvinyl chloride (1) plastic pipe fittings, schedule 8 ASTM D 2467 use with Items 26 and 27 | | | | X | | 29 | Threaded polyvinyl chloride (PVC) plastic pipe fittings, schedule 8 ASTM D 2464 | | | | X | | 30 | Joints for IPS pvs pipe using sociement, ASTM D 2672 | lvent X | | | X | | 31 | Filament-wound reinforced thermosetting resin (RTRP) pipe, ASTM D 2996 | Х | X | | | | 32 | Steel pipeline flanges,
MSS SP-44 | X | X | | | | 33 | Fittings: brass or bronze;
ASME B16.15, and
ASME B16.18
ASTM B 828 | х | Х | | | | 34 | Carbon steel pipe unions, | X | Х | Х | | | | | | TABI | LE II | Ι | | | |------|-----|---------|-----------|-------|----------|--------|---------| | PIPE | AND | FITTING | MATERIALS | FOR | PRESSURE | PIPING | SYSTEMS | | | | | SERVI | CE | | |-----|--|---|-------|----|---| | Ite | m No. Pipe and Fitting Materials | A | В | С | D | | | socket-welding and threaded,
MSS SP-83 | | | | | | 35 | Malleable-iron threaded pipe unions ASME B16.39 | X | X | | | | 36 | Nipples, pipe threaded
ASTM A 733 | Х | Х | X | | | 37 | Crosslinked Polyethylene (PEX)
Plastic Pipe ASTM F 877. | X | | | X | - A Cold Water Aboveground - B Hot Water 180 degrees F Maximum Aboveground - C Compressed Air Lubricated - D Cold Water Service Belowground Indicated types are minimum wall thicknesses. - ** Type L Hard - *** Type K Hard temper with brazed joints only or type K-soft temper without joints in or under floors **** - In or under slab floors only brazed joints # TABLE III STANDARD RATING CONDITIONS AND MINIMUM PERFORMANCE RATINGS FOR WATER HEATING EQUIPMENT #### A. STORAGE WATER HEATERS | FUEL
PERFORM | STORAGE
CAPACITY
GALLONS
ANCE | INPUT
RATING | TEST PROCEDURE | REQUIRED | |-----------------|--|----------------------|-------------------------------|---| | Elect. | 120 max. | 12 kW max. | 10 CFR 430 EF | = 0.95-0.00132V
minimum | | Elect. | 120 min. | OR 12 kW min. | ASHRAE 90.1 SL
(Addenda B) | = 1.9 W/sq. ft.
maximum | | Gas | 100 max. | 75,000 Btu/h
max. | 10 CFR 430 EF | = 0.62-0.0019V
minimum | | Gas | 100 min. | OR 75,000 Btu/h | ANSI Z21.10.3 E | T = 77 percent;
SL = 1.3+38/V max. | | Oil | 50 max. | 105,000 Btu/h | 10 CFR 430 E | F = 0.59-0.0019V
minimum | | Oil | 51 min. | OR 105,000 Btu/h | 10 CFR 430 E | C = 83 percent;
SL = 1.3+38/V
maximum | - B. Unfired Hot Water Storage, instantaneous water heater, and pool heater. Volumes and inputs: maximum HL shall be 6.5 Btu/h/sq. ft. - C. Instantaneous Water Heater | Gas | All | All | ANSI Z21.10.3 | ET = 80 percent | |---------------|----------|-----|---------------|-----------------| | Oil | All | All | ANSI Z21.10.3 | EC = 83 percent | | D. Poo | l Heater | | | |
| Gas or
Oil | All | All | ANSI Z21.56 | ET = 78 percent | #### TERMS: - EF = Energy factor, overall efficiency. - ET = Thermal efficiency with 70 degrees F delta T. - EC = Combustion efficiency, 100 percent flue loss when smoke = 0 (trace is permitted). - SL = Standby loss in W/sq. ft. based on 80 degrees F delta T, or in percent per hour based on nominal 90 degrees F delta T. - HL = Heat loss of tank surface area - V = Storage volume in gallons - -- End of Section -- #### SECTION 15565A # HEATING SYSTEM; GAS-FIRED HEATERS 03/89 # PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. #### AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) ANSI Z21.66 (1996) Automatic Vent Damper Devices for Use with Gas-Fired Appliances ANSI Z83.8 (1996; Z83.8a) Gas Unit Heaters INTERNATIONAL APPROVAL SERVICES (IAS) IAS Directory (1999) IAS Directory of AGA & CGA Certified Appliances and Accessories NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA) NEMA MG 1 (1998) Motors and Generators NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) NFPA 54 (1999) National Fuel Gas Code NFPA 211 (2000) Chimneys, Fireplaces, Vents, and Solid Fuel-Burning Appliances UNDERWRITERS LABORATORIES (UL) UL Gas&Oil Dir (1999) Gas and Oil Equipment Directory #### 1.2 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: # SD-02 Shop Drawings Installation; G, ED Detail drawings consisting of illustrations, schedules, performance charts, instructions, brochures, diagrams, and other information to illustrate the requirements and operation of the system. Detail drawings for space heating equipment, controls, associated equipment, and for piping and wiring. Drawings shall show proposed layout and anchorage of equipment and appurtenances, and equipment relationship to other parts of the work including clearances for maintenance and operation. SD-03 Product Data SD-06 Test Reports Testing, Adjusting, and Balancing; G, ED Test reports shall be submitted in booklet form showing all field tests performed to adjust each component and all field tests performed to prove compliance with the specified performance criteria, upon completion and testing of the installed system. Each test report shall indicate the final position of controls. SD-10 Operation and Maintenance Data Instructions; G, ED Six complete copies of operating instructions outlining the step-by-step procedures required for system startup, operation and shutdown. The instructions shall include the manufacturer's name, model number, service manual, parts list, and brief description of all equipment and basic operating features. Six complete copies of maintenance instructions listing routine maintenance, possible breakdowns, repairs and troubleshooting guide. The instructions shall include simplified piping, wiring, and control diagrams for the system as installed. #### 1.3 GENERAL REQUIREMENTS #### 1.3.1 Nameplates Each major component of equipment shall have the manufacturer's name, address, type or style, model or serial number, and catalog number on a plate secured to the equipment. # 1.3.2 Equipment Guards Belts, pulleys, chains, gears, couplings, projecting setscrews, keys, and other rotating parts so located that any person may come in close proximity thereto shall be completely enclosed or guarded. High-temperature equipment and piping so located as to endanger personnel or create a fire hazard shall be guarded or covered with insulation of type specified for service. # 1.3.3 Verification of Dimensions The Contractor shall become thoroughly familiar with all details of the work, verify all dimensions in the field, and shall advise the Contracting Officer of any discrepancy before performing any work. # 1.4 DELIVERY AND STORAGE All equipment delivered and placed in storage shall be stored with protection from weather, humidity and temperature variations, dirt and dust, or other contaminants. #### PART 2 PRODUCTS #### 2.1 STANDARD PRODUCTS Material and equipment shall be standard products of a manufacturer regularly engaged in manufacturing of the products. Equipment shall essentially duplicate equipment that has been in satisfactory use at least 2 years prior to bid opening. #### 2.2 ELECTRICAL WORK Electrical motor driven equipment shall be provided complete with motors, motor starters, and controls. Motors shall conform to NEMA MG 1. Electrical equipment and wiring shall be in accordance with Section 16415A ELECTRICAL WORK, INTERIOR. Electrical characteristics shall be as specified or indicated. Unless otherwise indicated motors of 1 Hp and above shall be high efficiency type. Motor starters shall be provided complete with thermal overload protection and other appurtenances necessary for the motor control specified. Each motor shall be of sufficient size to drive the equipment at the specified capacity without exceeding the nameplate rating of the motor. Manual or automatic control and protective or signal devices required for the operation specified and any control wiring required for controls and devices specified, but not shown, shall be provided. #### 2.3 HEATERS #### 2.3.1 Unit Heaters and Air Curtain Heaters shall conform to requirements of ANSI Z83.8. Heat exchangers shall be stainless steel. Air discharge section shall be equipped with adjustable louvers. Fan shafts shall be either directly connected to the driving motor, or indirectly connected by multiple V-belt drive. Fans in one unit shall be of the same size. Heaters shall be power-vented type, suitable for sidewall vent discharge and single-wall-thickness vent piping. Heaters shall have automatic ignition. Heaters shall employ metered combustion air with enclosed draft diverter (no open flue collar). Heaters shall have minimum steady state thermal efficiencies of 80 percent at maximum rated capacity and 75 percent at minimum rated capacity that is provided and allowed by the controls. Heaters shall be provided with a space thermostat which controls both unit's fan and burner. #### 2.4 THERMOSTATS Thermostats shall be the adjustable electric or electronic type. Control wiring required to complete the space temperature control system shall be included. Thermostats shall have a 3 degree F differential and a set point range of 0 to 100 degrees F. Thermostats shall be the single stage type. #### 2.5 VENT PIPING Vent piping shall conform to the requirements of NFPA 54. Plastic material polyetherimide (PEI) and polyethersulfone (PES) are forbidden to be used for vent piping of combustion gases. #### 2.6 ELECTRIC AUTOMATIC VENT DAMPERS Electric automatic vent dampers shall conform to the requirements of ANSI Z21.66 and shall be provided in the vents of heaters using indoor air for combustion air. #### 2.7 INSULATION Insulation for piping and equipment and application shall be in accordance with Section 15080A THERMAL INSULATION FOR MECHANICAL SYSTEMS. #### 2.8 FACTORY FINISHES Equipment and component items, when fabricated from ferrous metal, shall be factory finished with the manufacturer's standard finish. #### PART 3 EXECUTION #### 3.1 INSTALLATION Equipment shall be installed as indicated and in accordance with the recommendations of the equipment manufacturer and the listing agency, except as otherwise specified. #### 3.1.1 Heating Equipment Heaters shall be installed with clearance to combustibles complying with minimum distances as determined by IAS Directory, UL Gas&Oil Dir and as indicated on each heater approval and listing plate. Heaters shall be independently supported from the building structure as indicated and shall not rely on support from suspended ceiling systems. #### 3.1.2 Vents Vent dampers, piping and structural penetrations shall be located as indicated. Vent damper installation shall conform to ANSI Z21.66. Vent pipes, where not connected to a masonry chimney conforming to NFPA 211, shall extend through the roof or an outside wall and shall terminate, in compliance with NFPA 54. Vents passing through waterproof membranes shall be provided with the necessary flashings to obtain waterproof installations. #### 3.1.3 Gas Piping Gas piping shall be connected as indicated and shall comply with the applicable requirements at Section 15190A GAS PIPING SYSTEMS. # 3.2 TESTING, ADJUSTING, AND BALANCING Testing, adjusting, and balancing shall be as specified in Section 15990A TESTING, ADJUSTING, AND BALANCING OF HVAC SYSTEMS. #### 3.3 Training The Contractor shall conduct a training course for the maintenance and operating staff. The training period of 16 hours normal working time shall start after the system is functionally complete but before the final acceptance tests. The training shall include all of the items contained in the approved operation and maintenance instructions as well as demonstrations of routine maintenance operations. The Contracting Officer shall be given at least two weeks advance notice of such training. -- End of Section -- # SECTION 15700A # UNITARY HEATING AND COOLING EQUIPMENT 01/01 # PART 1 GENERAL # 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # AIR CONDITIONING AND REFRIGERATION INSTITUTE (ARI) | ARI 270 | (1995) Sound Rating of Outdoor Unitary
Equipment | |--
---| | ARI 340/360 | (1993) Commercial and Industrial Unitary
Air-Conditioning and Heat Pump Equipment | | ARI 410 | (1991) Forced-Circulation Air-Cooling and Air-Heating Coils | | ARI 460 | (2000) Remote Mechanical-Draft Air-Cooled
Refrigerant Condensers | | ARI 500 | (1990) Variable Capacity Positive
Displacement Refrigerant Compressors and
Compressor Units for Air-Conditioning and
Heat Pump Applications | | ARI 700 | (1999) Specifications for Fluorocarbons and Other Refrigerants | | | | | AMERICAN SOCIETY FOR TH | ESTING AND MATERIALS (ASTM) | | AMERICAN SOCIETY FOR TH | ESTING AND MATERIALS (ASTM) (2000) Carbon Steel Bolts and Studs, 60 000 PSI Tensile Strength | | | (2000) Carbon Steel Bolts and Studs, 60 | | ASTM A 307 | (2000) Carbon Steel Bolts and Studs, 60
000 PSI Tensile Strength | | ASTM A 307 ASTM B 117 | (2000) Carbon Steel Bolts and Studs, 60
000 PSI Tensile Strength
(1997) Operating Salt Spray (Fog) Apparatus
(1998) Thermal and Acoustical Insulation | | ASTM A 307 ASTM B 117 ASTM C 1071 | <pre>(2000) Carbon Steel Bolts and Studs, 60 000 PSI Tensile Strength (1997) Operating Salt Spray (Fog) Apparatus (1998) Thermal and Acoustical Insulation (Glass Fiber, Duct Lining Material)</pre> | | ASTM A 307 ASTM B 117 ASTM C 1071 ASTM D 520 | <pre>(2000) Carbon Steel Bolts and Studs, 60 000 PSI Tensile Strength (1997) Operating Salt Spray (Fog) Apparatus (1998) Thermal and Acoustical Insulation (Glass Fiber, Duct Lining Material) (1984; R 1995el) Zinc Dust Pigment (2000a) Surface Burning Characteristics of</pre> | | ASTM A 307 ASTM B 117 ASTM C 1071 ASTM D 520 ASTM E 84 | <pre>(2000) Carbon Steel Bolts and Studs, 60 000 PSI Tensile Strength (1997) Operating Salt Spray (Fog) Apparatus (1998) Thermal and Acoustical Insulation (Glass Fiber, Duct Lining Material) (1984; R 1995el) Zinc Dust Pigment (2000a) Surface Burning Characteristics of Building Materials (1992; R 1997) Industrial Wire Cloth and</pre> | Conditioning: Viscous-Impingement Type, Cleanable AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE) ASHRAE 15 (1994; Errata 1994) Safety Code for Mechanical Refrigeration ASHRAE 34 (1997) Number Designation and Safety Classification of Refrigerants ASHRAE 52.1 (1992) Gravimetric and Dust-Spot Procedures for Testing Air-Cleaning Devices Used in General Ventilation for Removing Particulate Matter ASHRAE 127 (1988) Method of Testing for Rating Computer and Data Processing Room Unitary Air-Conditioners AMERICAN WELDING SOCIETY (AWS) AWS Z49.1 (1999) Safety in Welding and Cutting ASME INTERNATIONAL (ASME) ASME BPV VIII Div 1 (1998) Boiler and Pressure Vessel Code; Section VIII, Pressure Vessels Division 1 - Basic Coverage ASME BPV IX (1998) Boiler and Pressure Vessel Code; Section IX, Welding and Brazing Qualifications NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA) NEMA ICS 6 (1993) Industrial Control and Systems, Enclosures NEMA MG 1 (1998) Motors and Generators NEMA MG 2 (1989) Safety Standard for Construction and Guide for Selection, Installation, and Use of Electric Motors and Generators NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) NFPA 54 (1999) National Fuel Gas Code NFPA 70 (2002) National Electrical Code UNDERWRITERS LABORATORIES (UL) UL 586 (1996; Rev thru Aug 1999) High-Efficiency, Particulate, Air Filter Units UL 900 (1994; Rev thru Nov 1999) Test Performance of Air Filter Units UL 1995 (1995; Rev thru Aug 1999) Heating and Cooling Equipment #### 1.2 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-02 Shop Drawings Drawings; G, Drawings provided in adequate detail to demonstrate compliance with contract requirements. Drawings shall consist of: - a. Equipment layouts which identify assembly and installation details. - b. Plans and elevations which identify clearances required for maintenance and operation. - c. Wiring diagrams which identify each component individually and interconnected or interlocked relationships between components. - d. Foundation drawings, bolt-setting information, and foundation bolts prior to concrete foundation construction for equipment indicated or required to have concrete foundations. - e. Details, if piping and equipment are to be supported other than as indicated, which include loadings and type of frames, brackets, stanchions, or other supports. - f. Automatic temperature control diagrams and control sequences. - g. Installation details which includes the amount of factory set superheat and corresponding refrigerant pressure/temperature. SD-03 Product Data Unitary Equipment; G, Manufacturer's standard catalog data, at least 5 weeks prior to the purchase or installation of a particular component, highlighted to show material, size, options, performance charts and curves, etc. in adequate detail to demonstrate compliance with contract requirements. Data shall include manufacturer's recommended installation instructions and procedures. If vibration isolation is specified for a unit, vibration isolator literature shall be included containing catalog cuts and certification that the isolation characteristics of the isolators provided meet the manufacturer's recommendations. Data shall be submitted for each specified component. Posted Instructions; G, Posted instructions, at least 2 weeks prior to construction completion, including equipment layout, wiring and control diagrams, piping, valves and control sequences, and typed condensed operation instructions. The condensed operation instructions shall include preventative maintenance procedures, methods of checking the system for normal and safe operation, and procedures for safely starting and stopping the system. The posted instructions shall be framed under glass or laminated plastic and be posted where indicated by the Contracting Officer. Verification of Dimensions; G, A letter, at least 2 weeks prior to beginning construction, including the date the site was visited, conformation of existing conditions, and any discrepancies found. System Performance Tests; G, A schedule, at least 2 weeks prior to the start of related testing, for the system performance tests. The schedules shall identify the proposed date, time, and location for each test. Demonstrations; G, A schedule, at least 2 weeks prior to the date of the proposed training course, which identifies the date, time, and location for the training. #### SD-06 Test Reports Refrigerant Tests, Charging, and Start-Up; G, Six copies of each test containing the information described below in bound 8-1/2 x 11 inch booklets. Individual reports shall be submitted for the refrigerant system tests. - a. The date the tests were performed. - b. A list of equipment used, with calibration certifications. - c. Initial test summaries. - d. Repairs/adjustments performed. - e. Final test results. System Performance Tests; G, Six copies of the report provided in bound $8-1/2 \times 11$ inch booklets. The report shall document compliance with the specified performance criteria upon completion and testing of the system. The report shall indicate the number of days covered by the tests and any conclusions as to the adequacy of the system. The report shall also include the following information and shall be taken at least three different times at outside dry-bulb temperatures that are at least 5 degrees F apart: a. Date and outside weather conditions. - b. The load on the system based on the following: - (1) The refrigerant used in the system. - (2) Condensing temperature and pressure. - (3) Suction temperature and pressure. - (4) Ambient, condensing and coolant temperatures. - (5) Running current, voltage and proper phase sequence for each phase of all motors. - c. The actual on-site setting of operating and safety controls. - d. Thermostatic expansion valve superheat value as determined by field test. - e. Subcooling. - f. High and low refrigerant temperature switch set-points - g. Low oil pressure switch set-point. - h. Defrost system timer and thermostat set-points. - i. Moisture content. - j. Capacity control set-points. - k. Field data and adjustments which affect unit performance and energy consumption. - 1. Field adjustments and settings which were not permanently marked as an integral part of a device. #### SD-07 Certificates Unitary Equipment; G, Where the system, components, or equipment are specified to comply with requirements of ARI, ASHRAE, ASME, or UL, proof of such compliance shall be provided. The label or listing of the specified agency shall be acceptable evidence. In lieu of the label or listing, a written certificate from an approved, nationally recognized testing organization equipped to perform such services, stating that the items have been tested and conform to the requirements and testing methods of the specified agency may be submitted. When performance requirements of this project's drawings and specifications vary from standard ARI rating conditions, computer printouts, catalog, or other application data certified by ARI or a nationally recognized laboratory as described above shall be included. If ARI does not have a current certification program that encompasses such application data, the manufacturer may self certify that his application data complies with project performance requirements in accordance with the specified test standards. Service
Organization; G, A certified list of qualified permanent service organizations, which includes their addresses and qualifications, for support of the equipment. The service organizations shall be reasonably convenient to the equipment installation and be able to render satisfactory service to the equipment on a regular and emergency basis during the warranty period of the contract. #### SD-10 Operation and Maintenance Data Maintenance Manuals; G, Six complete copies of maintenance manual in bound $8-1/2 \times 11$ inch booklets listing routine maintenance procedures, possible breakdowns and repairs, and a trouble shooting guide. The manuals shall include piping and equipment layouts and simplified wiring and control diagrams of the system as installed. #### 1.3 SAFETY REQUIREMENTS Exposed moving parts, parts that produce high operating temperature, parts which may be electrically energized, and parts that may be a hazard to operating personnel shall be insulated, fully enclosed, guarded, or fitted with other types of safety devices. Safety devices shall be installed so that proper operation of equipment is not impaired. Welding and cutting safety requirements shall be in accordance with AWS Z49.1. #### 1.4 DELIVERY, STORAGE, AND HANDLING Stored items shall be protected from the weather, humidity and temperature variations, dirt and dust, or other contaminants. Proper protection and care of all material both before and during installation shall be the Contractor's responsibility. Any materials found to be damaged shall be replaced at the Contractor's expense. During installation, piping and similar openings shall be capped to keep out dirt and other foreign matter. #### 1.5 PROJECT/SITE CONDITIONS #### 1.5.1 Verification of Dimensions The Contractor shall become familiar with all details of the work, verify all dimensions in the field, and advise the Contracting Officer of any discrepancy before performing any work. # 1.5.2 Drawings Because of the small scale of the drawings, it is not possible to indicate all offsets, fittings, and accessories that may be required. The Contractor shall carefully investigate the plumbing, fire protection, electrical, structural and finish conditions that would affect the work to be performed and arrange such work accordingly, furnishing required offsets, fittings, and accessories to meet such conditions. # PART 2 PRODUCTS # 2.1 STANDARD COMMERCIAL PRODUCTS Materials and equipment shall be standard products of a manufacturer regularly engaged in the manufacturing of such products, which are of a similar material, design and workmanship. The standard products shall have been in satisfactory commercial or industrial use for 2 years prior to bid opening. The 2 year use shall include applications of equipment and materials under similar circumstances and of similar size. The 2 years experience shall be satisfactorily completed by a product which has been sold or is offered for sale on the commercial market through advertisements, manufacturer's catalogs, or brochures. Products having less than a 2 year field service record shall be acceptable if a certified record of satisfactory field operation, for not less than 6000 hours exclusive of the manufacturer's factory tests, can be shown. Products shall be supported by a service organization. System components shall be environmentally suitable for the indicated locations. #### 2.2 NAMEPLATES Major equipment including compressors, condensers, receivers, heat exchanges, fans, and motors shall have the manufacturer's name, address, type or style, model or serial number, and catalog number on a plate secured to the item of equipment. Plates shall be durable and legible throughout equipment life and made of anodized aluminum. Plates shall be fixed in prominent locations with nonferrous screws or bolts. #### 2.3 ELECTRICAL WORK Electrical equipment, motors, motor efficiencies, and wiring shall be in accordance with Section 16415A ELECTRICAL WORK, INTERIOR. Electrical motor driven equipment specified shall be provided complete with motors, motor starters, and controls. Electrical characteristics shall be as shown, and unless otherwise indicated, all motors of 1 horsepower and above with open, dripproof, totally enclosed, or explosion proof fan cooled enclosures, shall be high efficiency type. Field wiring shall be in accordance with manufacturer's instructions. Each motor shall conform to NEMA MG 1 and NEMA MG 2 and be of sufficient size to drive the equipment at the specified capacity without exceeding the nameplate rating of the motor. Motors shall be continuous duty with the enclosure specified. Motor starters shall be provided complete with thermal overload protection and other appurtenances necessary for the motor control indicated. Motors shall be furnished with a magnetic across-the-line or reduced voltage type starter as required by the manufacturer. Motor duty requirements shall allow for maximum frequency start-stop operation and minimum encountered interval between start and stop. Motors shall be sized for the applicable loads. Motor torque shall be capable of accelerating the connected load within 20 seconds with 80 percent of the rated voltage maintained at motor terminals during one starting period. Motor bearings shall be fitted with grease supply fittings and grease relief to outside of enclosure. Manual or automatic control and protective or signal devices required for the operation specified and any control wiring required for controls and devices specified, but not shown, shall be provided. # 2.4 UNITARY EQUIPMENT, PACKAGE SYSTEM Unit shall be an air-cooled factory assembled, weatherproof packaged unit as indicated. Unit shall be the air-conditioning type conforming to applicable Underwriters Laboratories (UL) standards including UL 1995. Unit shall be rated in accordance with ARI 340/360. Unit shall be provided with equipment as specified in paragraph "System Components". Evaporator or supply fans shall be double-width, double inlet, forward curved, backward inclined, or airfoil blade, centrifugal scroll type. Motors shall have open, dripproof enclosures. Condenser fans shall be manufacturer's standard for the unit specified and may be either propeller or centrifugal scroll type. Unit shall be provided with a factory operating charge of refrigerant and oil or a holding charge. Unit shipped with a holding charge shall be field charged with refrigerant and oil in accordance with manufacturer's recommendations. Outdoor unit shall produce a maximum ARI sound rating of 8.6 bels in accordance with ARI 270. #### 2.4.1 Air-to-Refrigerant Coils Air-to-refrigerant coils shall have copper tubes of 3/8 inch minimum diameter with copper or aluminum fins that are mechanically bonded or soldered to the tubes. Coils shall be protected with a minimum 3 mil thick coating. Casing shall be galvanized steel or aluminum. Contact of dissimilar metals shall be avoided. Coils shall be tested in accordance with ASHRAE 15 at the factory and be suitable for the working pressure of the installed system. Each coil shall be dehydrated and sealed after testing and prior to evaluation and charging. Each unit shall be provided with a factory operating charge of refrigerant and oil or a holding charge. Unit shipped with a holding charge shall be field charged. Separate expansion devices shall be provided for each compressor circuit. # 2.4.2 Evaporatively-Cooled Section #### 2.4.2.1 Pan Section The pan shall be watertight and be provided with drain, overflow, and make-up water connections. Standard pan accessories shall include circular access doors, a lift-out strainer of anti-vortexing design and a brass make-up valve with float ball. #### 2.4.2.2 Fan Section Fan shall be the centrifugal type in accordance with paragraph "Fans". Fan and fan motor shall not be located in the discharge airstream of the unit. Motors shall have enclosure and be suitable for the indicated service. The unit design shall prevent water from entering into the fan section. # 2.4.2.3 Condensing Coil Coils shall have copper tubes of 3/8 inch minimum diameter without fins. Coils shall be protected with a minimum 3 mil thick phenolic coating. Casing shall be galvanized steel or aluminum. Contact of dissimilar metals shall be avoided. Coils shall be tested in accordance with ASHRAE 15 at the factory and be suitable for the working pressure of the installed system. #### 2.4.2.4 Evaporator Controls Unit shall be provided with modulating capacity control dampers mounted in the discharge of the fan housing. On a decrease in refrigerant discharge pressure the dampers shall modulate to reduce the airflow across the condensing coil. Controls shall include a proportional acting pressure controller, a control transformer, motor actuator with linkages and end switches to cycle fan motor on and off. Cycling of a fan motor on and off shall be in accordance with the manufacturer. #### 2.4.3 Compressor Compressor shall be direct drive, semi-hermetic or hermetic reciprocating, or scroll type capable of operating at partial load conditions. Compressor shall be capable of continuous operation down to the lowest step of unloading as specified. Compressors of 10 tons and larger shall be provided with capacity reduction devices to produce automatic capacity reduction of at least 50 percent. If standard with the manufacturer, two or more compressors may be used in lieu of a single compressor with unloading capabilities, in which case the compressors shall operate in sequence, and each compressor shall have an independent refrigeration circuit through the condenser and evaporator. Compressors shall start in the unloaded position. Each compressor shall be provided with vibration isolators, crankcase heater, thermal overloads, high and low pressure safety cutoffs and protection against short cycling. # 2.4.4 Refrigeration Circuit Refrigerant containing components shall comply with ASHRAE 15 and be factory
tested, cleaned, dehydrated, charged, and sealed. Refrigerant charging valves and connections, and pumpdown valves shall be provided for each circuit. Filter-drier shall be provided in each liquid line and be reversible-flow type. Refrigerant flow control devices shall be an adjustable superheat thermostatic expansion valve with external equalizer matched to coil, capillary or thermostatic control, and a pilot solenoid controlled, leak-tight, four-way refrigerant flow reversing valve. #### 2.4.5 Unit Controls Unit shall be internally prewired with a 24 volt control circuit powered by an internal transformer. Terminal blocks shall be provided for power wiring and external control wiring. Unit shall have cutoffs for high and low pressure, low oil pressure for compressors with positive displacement oil pumps, and supply fan failure. Head pressure controls shall sustain unit operation with ambient temperature of 95. Adjustable-cycle timers shall prevent short-cycling. Multiple compressors shall be staged by means of a time delay. Unit shall be internally protected by fuses or a circuit breaker in accordance with UL 1995. Low cost cooling shall be made possible by means of a control circuit which will modulate dampers to provide 100 percent outside air while locking out compressors. #### 2.5 REMOTE CONDENSER OR CONDENSING UNIT Units with capacities less than 135,000 Btuh shall produce a maximum ARI sound rating of 8.6 bels when rated in accordance with ARI 270. Each remote condenser coil shall be fitted with a manual isolation valve and an access valve on the coil side. Saturated refrigerant condensing temperature shall not exceed 120 degrees F at 95 degrees F ambient. Unit shall be provided with low ambient condenser controls to ensure proper operation in an ambient temperature of 95 degrees F. Fan and cabinet construction shall be provided as specified in paragraph "System Components". Fan and condenser motors shall have open dripproof enclosures. # 2.5.1 Air-Cooled Condenser Unit shall be rated in accordance with ARI 460 and conform to the requirements of UL 1995. Unit shall be factory fabricated, tested, packaged, and self-contained. Unit shall be complete with casing, propeller or centrifugal type fans, heat rejection coils, connecting piping and wiring, and all necessary appurtenances. # 2.5.1.1 Connections Interconnecting refrigeration piping, electrical power, and control wiring between the condensing unit and the indoor unit shall be provided as required and as indicated. Electrical and refrigeration piping terminal connections between condenser and evaporator units shall be provided. # 2.5.1.2 Head Pressure Control and Liquid Subcooling Low ambient control for multi-circuited units serving more than one evaporator coil shall provide independent condenser pressure controls for each refrigerant circuit. Controls shall be set to produce a minimum of 95 degrees F saturated refrigerant condensing temperature. Unit shall be provided with a liquid subcooling circuit which shall ensure proper liquid refrigerant flow to the expansion device over the specified application range of the condenser. Unit shall be provide with liquid subcooling. Subcooling circuit shall be liquid sealed. ## 2.5.1.3 Condensing Coil Coils shall have nonferrous copper tubes of 3/8 inch minimum diameter with copper or aluminum fins that are mechanically bonded or soldered to the tubes. Coils shall be protected with a minimum 3 mil thick phenolic coating. Casing shall be galvanized steel or aluminum. Contact of dissimilar metals shall be avoided. Coils shall be tested in accordance with ASHRAE 15 at the factory and be suitable for the working pressure of the installed system. Each coil shall be dehydrated and sealed after testing and prior to evaluation and charging. Each unit shall be provided with a factory operating charge of refrigerant and oil or a holding charge. Unit shipped with a holding charge shall be field charged. Separate expansion devices shall be provided for each compressor circuit. #### 2.5.1.4 Unit Controls The control system shall be complete with required accessories for regulating condenser pressure by fan cycling, solid-state variable fan speed, modulating condenser coil or fan dampers, flooding the condenser, or a combination of the above. Unit mounted control panels or enclosures shall be constructed in accordance with applicable requirements of NFPA 70 and housed in NEMA ICS 6, Class 1 or 3A enclosures. Controls shall include control transformer, fan motor starters, solid-state speed control, time delay start-up, overload protective devices, interface with local and remote components, and intercomponent wiring to terminal block points. ## 2.5.2 Evaporative Condenser #### 2.5.2.1 Pan Section The pan shall be watertight and be provided with drain, overflow, and make-up water connections. Standard pan accessories shall include circular access doors, a lift-out strainer of anti-vortexing design and a brass make-up valve with float ball. #### 2.5.2.2 Fan Section Fan shall be the centrifugal type in accordance with paragraph "Fans". Fan and fan motor shall not be located in the discharge airstream of the unit. Motors shall have enclosure and be suitable for the indicated service. The condensing unit design shall prevent water from entering into the fan section. # 2.5.2.3 Condensing Coil Coils shall have copper tubes of 3/8 inch minimum diameter without fins. Coils shall be protected with a minimum 3 mil thick coating. Casing shall be galvanized steel or aluminum. Contact of dissimilar metals shall be avoided. Coils shall be tested in accordance with ASHRAE 15 at the factory and be suitable for the working pressure of the installed system. Each coil shall be dehydrated and sealed after testing and prior to evaluation and charging. Each unit shall be provided with a factory operating charge of refrigerant and oil or a holding charge. Unit shipped with a holding charge shall be field charged. ## 2.5.2.4 Unit Controls The evaporative condenser unit shall be provided with modulating capacity control dampers mounted in the discharge of the fan housing. On a decrease in refrigerant discharge pressure the dampers shall modulate to reduce the airflow through the evaporative condenser. Controls shall include a proportional acting pressure controller, a control transformer, motor actuator with linkages and end switches to cycle fan motor on and off. Cycling of a fan motor on and off shall be in accordance with the manufacturer. # 2.5.3 Compressor Unit shall be rated in accordance with ARI 500. Compressor shall be direct drive, semi-hermetic or hermetic reciprocating, or scroll type capable of operating at partial load conditions. Compressor shall be capable of continuous operation down to the lowest step of unloading as specified. Units 120,000 Btuh and larger shall be provided with capacity reduction devices to produce automatic capacity reduction of at least 50 percent. If standard with the manufacturer, two or more compressors may be used in lieu of a single compressor with unloading capabilities, in which case the compressors will operate in sequence, and each compressor shall have an independent refrigeration circuit through the condenser and evaporator. Each compressor shall start in the unloaded position. Each compressor shall be provided with vibration isolators, crankcase heater, thermal overloads, and high and low pressure safety cutoffs and protection against short cycling. ## 2.6 AIR-CONDITIONERS FOR ELECTRONIC DATA PROCESSING (EDP) SPACES Unit shall be an air-cooled, self-contained type air-conditioning unit. Unit shall be a split-system with a remote condenser. Unit shall be designed and constructed for automatic control of space conditions. Unit shall be in accordance with ASHRAE 127 and UL 1995. Unit shall be rated in accordance with ARI 340/360. ARI certification is not required. The system shall be designed and constructed for maximum reliability and ease of maintenance. Necessary redundancy, access to refrigeration circuits, means of troubleshooting, and malfunction alarms shall be provided. Unit shall be provided with necessary fans, air filters, coil frost protection, internal dampers, mixing boxes, supplemental heat, and cabinet construction as specified in paragraph "System Components". Evaporator or supply fans shall be double-width, double inlet, forward curved centrifugal scroll type. Condenser or outdoor fans shall be manufacturer's standard for unit specified and may be either propeller or centrifugal scroll type. Fan and condenser motors shall have open dripproof enclosures. Remote unit shall be as specified in paragraph REMOTE CONDENSER/CONDENSING UNIT. ## 2.6.1 Air-to-Refrigerant Coils Evaporator and condenser coils shall have copper or aluminum tubes of 3/8 inch minimum diameter with copper or aluminum fins that are mechanically bonded or soldered to the tubes. Coils shall be protected with a minimum 3 mil thick phenolic coating. Casing shall be galvanized steel or aluminum. Contact of dissimilar metals shall be avoided. Coils shall be tested in accordance with ASHRAE 15 at the factory and be suitable for the working pressure of the installed system. Each coil shall be dehydrated and sealed after testing and prior to evaluation and charging. Each unit shall be provided with a factory operating charge of refrigerant and oil or a holding charge. Units shipped with a holding charge shall be field charged. Separate expansion devices shall be provided for each compressor circuit. # 2.6.2 Compressor Compressor shall be direct drive, semi-hermetic or hermetic reciprocating, or scroll type capable of operating at partial load conditions. Compressor shall be capable of continuous operation down to the lowest step of unloading as specified. Compressors of 7-1/2 tons and larger shall be provided with capacity reduction devices to produce automatic capacity reduction of at least 50 percent. If standard with the
manufacturer, two or more compressors may be used in lieu of a single compressor with unloading capabilities, in which case the compressors will operate in sequence, and each compressor shall have an independent refrigeration circuit through the condenser and evaporator. Each compressor shall start in the unloaded position. Each compressor shall be provided with vibration isolators, crankcase heater, thermal overloads, and high and low pressure safety cutoffs and protection against short cycling. ## 2.6.3 Refrigeration Circuit Refrigerant-containing components shall comply with ASHRAE 15 and be factory tested, cleaned, dehydrated, charged, and sealed. Refrigerant charging valves and connections, and pumpdown valves shall be provided for each circuit. Filter-drier shall be provided in each liquid line and be reversible-flow type. Refrigerant flow control devices shall be an adjustable superheat thermostatic expansion valve with external equalizer matched to coil, capillary or thermostatic control, and a pilot solenoid controlled, leak-tight, four-way refrigerant flow reversing valve. A refrigerant suction line thermostatic control shall be provided to prevent freeze-up in event of loss of water flow during heating cycle. #### 2.6.4 Unit Controls A unit's basic functions and space ambient conditions shall be controllable at one station. A temperature and humidity strip-chart recorder, integral or external to the unit, readable to specified control accuracy, shall be provided, complete with cartridge ink and chart supply for 1 year of operation. # 2.6.4.1 Externally Accessible Controls The following controls shall be externally accessible: a. Start and stop total system functions. - b. Audible alarm silence. - c. Main power disconnect. #### 2.6.4.2 Status Indicators The following status indicators shall be externally visible: - a. Power On. - b. System On. - c. Malfunction. - d. Provision for remote alarm status indication. #### 2.6.4.3 Alarmed Conditions The following system status conditions shall be both audibly and visually alarmed: - a. Loss of air flow. - b. Dirty filters. - c. Compressor overload or lock-out (compressor high head pressure and low suction pressure). - d. High and low room temperature. - e. High humidity alarm at 55 percent relative humidity. ## 2.6.4.4 Space Temperature Space temperature shall be controlled within plus or minus 1-1/2 degrees F of the set point over a range of 60 to 90 degrees F with a set point of 72. Space relative humidity shall be controlled within plus or minus 5 percent of the set point over a range of 20 to 80 percent with a set point of 50 percent. # 2.6.4.5 Safety Controls Safety controls shall include the following: - a. Fused, unfused or line-break circuit breaker disconnects, as indicated or required. - b. Automatic pump-out or pump-down liquid flooding controls. - c. High refrigerant pressure cutout. - d. Low refrigerant pressure cutout where automatic pump-down is not provided. - e. Accessible hermetic and open compressor low oil pressure cutout. - f. Elapsed time meter for each compressor where load equalization is not incorporated. g. Lead and lag compressor selector switch, when compatible with system. ## 2.6.5 Cabinet Construction Cabinet shall be totally enclosed. Enclosure surfaces shall be pulsation free, with hinged and removable doors and panels for vertical side or front access to unit components. Routine maintenance access to compressor and system control components shall be possible without unit shut-down. Enclosure surfaces shall be thermally and acoustically insulated. Interior baffle and compartment surfaces shall be galvanized steel. Drain pans shall collect all condensate and be steel with external insulation as required. Surface mounting steel pads and vibration isolating pads shall be provided. Enclosure surfaces shall be prepared, primed and finished. Paint and finishes shall comply with the requirements specified in paragraph FACTORY COATING. Cabinets shall be fitted with integral or separable, adjustable and lockable jacks to support the units from the structural slab at the raised-floor elevation. ## 2.7 EQUIPMENT EFFICIENCY Unit shall have an efficiency of 90% . #### 2.8 UNITARY EQUIPMENT COMPONENTS # 2.8.1 Refrigerant and Oil Refrigerant shall be one of the fluorocarbon gases. Refrigerants shall have number designations and safety classifications in accordance with ASHRAE 34. Refrigerants shall meet the requirements of ARI 700 as a minimum. Refrigerants shall have an Ozone Depletion Potential (ODP) of less than or equal to 0.05. Contractor shall provide and install a complete charge of refrigerant for the installed system as recommended by the manufacturer. Except for factory sealed units, two complete charges of lubricating oil for each compressor crankcase shall be furnished. One charge shall be used during the system performance testing period. Following the satisfactory completion of the performance testing, the oil shall be drained and replaced with a second charge. Lubricating oil shall be of a type and grade recommended by the manufacturer for each compressor. Where color leak indicator dye is incorporated, charge shall be in accordance with manufacturer's recommendation. #### 2.8.2 Fans Fan wheel shafts shall be supported by either maintenance-accessible lubricated antifriction block-type bearings, or permanently lubricated ball bearings. Unit fans shall be selected to produce the cfm required at the fan total pressure. Motor starters, if applicable, shall be magnetic across-the-line type with a open dripproof enclosure. Thermal overload protection shall be of the manual or automatic-reset type. Fan wheels or propellers shall be constructed of aluminum or galvanized steel. Centrifugal fan wheel housings shall be of galvanized steel, and both centrifugal and propeller fan casings shall be constructed of aluminum or galvanized steel. Steel elements of fans, except fan shafts, shall be hot-dipped galvanized after fabrication or fabricated of mill galvanized steel. Mill-galvanized steel surfaces and edges damaged or cut during fabrication by forming, punching, drilling, welding, or cutting shall be recoated with an approved zinc-rich compound. Fan wheels or propellers shall be statically and dynamically balanced. Forward curved fan wheels shall be limited to 24 inches. Direct-drive fan motors shall be of the multiple-speed variety. Belt-driven fans shall have adjustable sheaves to provide not less than 150 percent fan-speed adjustment. The sheave size shall be selected so that the fan speed at the approximate midpoint of the sheave adjustment will produce the specified air quantity. Centrifugal scroll-type fans shall be provided with streamlined orifice inlet and V-belt drive. Each drive will be independent of any other drive. Propeller fans shall be V-belt drive type with adjustable pitch blades. V-belt driven fans shall be mounted on a corrosion protected drive shaft supported by either maintenance-accessible lubricated antifriction block-type bearings, or permanently lubricated ball bearings. Each drive will be independent of any other drive. Drive bearings shall be protected with water slingers or shields. V-belt drives shall be fitted with guards where exposed to contact by personnel and adjustable pitch sheaves. ## 2.8.3 Primary/Supplemental Heating #### 2.8.3.1 Water Coil Coil shall conform to the provisions of ARI 410. Coil shall be fin-and-tube type constructed of seamless copper tubes and aluminum fins mechanically bonded or soldered to tubes. Headers shall be constructed of cast iron, welded steel or copper. Coil shall be constructed to float within the casing to allow free expansion and contraction of tubing. Casing and tube support sheets shall not be lighter than 16 gauge galvanized steel formed to provide structural strength. When required, multiple tube supports shall be provided to prevent tube sag. Coil shall be circuited for suitable water velocity without excessive pressure drop and properly pitched for drainage where required or indicated. Each coil shall be tested at the factory under water at not less than 300 psi air pressure, tested hydrostatically after assembly of the unit and proved tight under a gauge pressure of 200 psi. Coil shall be suitable for use with water up to 250 degrees F. Coil shall allow complete coil drainage with a pitch of not less than 1/8 inch per foot slope to drain. # 2.8.3.2 Gas-Fired Heating Section Gas-fired heat exchanger shall be constructed of aluminized steel, ceramic coated cold-rolled steel or stainless steel suitable for natural gas fuel supply. Burner shall have direct spark or hot surface ignition. Valve shall include a pressure regulator. Combustion air shall be supplied with a centrifugal combustion air blower. Safety controls shall include a flame sensor and air pressure switch. Heater section shall be mounted to eliminate noise from expansion and contraction and shall be completely accessible for service. Gas equipment shall bear the AGA label for the type of service involved. Burner shall be in accordance with NFPA 54. #### 2.8.4 Air Filters Air filters shall be listed in accordance with requirements of UL 900, except high efficiency particulate air filters of 99.97 percent efficiency by the DOP Test Method shall be as listed under the label service and shall meet the requirements of UL 586. #### 2.8.4.1 Extended Surface Pleated Panel Filters Filters shall be 2 inch depth sectional type of the size indicated and shall have an average efficiency of 25 to 30 percent when tested in accordance with ASHRAE 52.1. Initial resistance at 500 feet per minute will not exceed 0.36 inches water gauge. Filters shall be UL Class 2. Media shall be nonwoven cotton and synthetic fiber mat. A wire support grid bonded to the media shall be attached to a moisture resistant fiberboard frame. Four edges of the filter media shall be bonded to the inside of the frame to prevent air bypass
and increase rigidity. # 2.8.4.2 Replaceable Media Filters Replaceable media filters shall be the dry-mediatype, of the size required to suit the application. Filtering media shall be not less than 2 inches thick fibrous glass media pad supported by a structural wire grid or woven wire mesh. Pad shall be enclosed in a holding frame of not less than 16 gauge galvanized steel, and equipped with quick-opening mechanism for changing filter media. The air flow capacity of the filter shall be based on net filter face velocity not exceeding 300 feet per minute, with initial resistance of 0.13 inches water gauge. Average efficiency shall be not less than 30 percent when tested in accordance with ASHRAE 52.1. #### 2.8.4.3 Sectional Cleanable Filters Cleanable filters shall conform to ASTM F 872, and be 2 inches thick. Viscous adhesive shall be provided in 5 gallon containers in sufficient quantity for 12 cleaning operations and not less than one quart for each filter section. Initial pressure drop for clean filters shall not exceed the applicable values listed in ASTM F 872. One washing and charging tank shall be provided for every 100 filter sections or fraction thereof. Each washing and charging unit shall consist of a tank and single drain rack mounted on legs. Drain rack shall be provided with dividers and partitions to properly support the filters in the draining position. # 2.8.5 Coil Frost Protection Each circuit shall be provided with a coil frost protection system which is a manufacturer's standard. The coil frost protection system shall use a temperature sensor in the suction line of the compressor to shut the compressor off when coil frosting occurs. Timers shall be used to prevent the compressor from rapid cycling. ## 2.8.6 Pressure Vessels # 2.8.6.1 Oil Separator Separator shall be the high efficiency type and be provided with removable flanged head for ease in removing float assembly and removable screen cartridge assembly. Pressure drop through a separator shall not exceed 10 psi during the removal of hot gas entrained oil. Connections to compressor shall be as recommended by the compressor manufacturer. Separator shall be provided with an oil float valve assembly or needle valve and orifice assembly, drain line shutoff valve, sight glass, filter for removal of all particulate sized 10 microns and larger, immersion heater, and strainer. ## 2.8.6.2 Oil Reservoir Reservoir capacity shall equal one charge of all connected compressors. Reservoir shall be provided with an external liquid gauge glass, plugged drain, and isolation valves. Vent piping between the reservoir and the suction header shall be provided with a 5 psi pressure differential relief valve. Reservoir shall be provided with the manufacturer's standard filter on the oil return line to the oil level regulators. ## 2.8.7 Internal Dampers Dampers shall be parallel blade type with renewable blade seals and be integral to the unitary unit. Damper provisions shall be provided for each outside air intake, exhaust, economizer, and mixing boxes. Dampers shall have automatic modulation and operate as specified. # 2.8.8 Mixing Boxes Mixing boxes shall match the base unit in physical size and shall include equally-sized openings, each capable of full air flow. Arrangement shall be as indicated. #### 2.8.9 Cabinet Construction Casings for the specified unitary equipment shall be constructed of galvanized steel or aluminum sheet metal and galvanized or aluminum structural members. Minimum thickness of single wall exterior surfaces shall be 18 gauge galvanized steel or 0.071 inch thick aluminum on units with a capacity above 20 tons and 20 gauge galvanized steel or 0.064 inch thick aluminum on units with a capacity less than 20 tons. Casing shall be fitted with lifting provisions, access panels or doors, fan vibration isolators, electrical control panel, corrosion-resistant components, structural support members, insulated condensate drip pan and drain, and internal insulation in the cold section of the casing. Where double-wall insulated construction is proposed, minimum exterior galvanized sheet metal thickness shall be 20 gauge. Provisions to permit replacement of major unit components shall be incorporated. Penetrations of cabinet surfaces, including the floor, shall be sealed. Unit shall be fitted with a drain pan which extends under all areas where water may accumulate. Drain pan shall be fabricated from Type 300 stainless steel, galvanized steel with protective coating as required, or an approved plastic material. Pan insulation shall be water impervious. Extent and effectiveness of the insulation of unit air containment surfaces shall prevent, within limits of the specified insulation, heat transfer between the unit exterior and ambient air, heat transfer between the two conditioned air streams, and condensation on surfaces. Insulation shall conform to ASTM C 1071. Paint and finishes shall comply with the requirements specified in paragraph FACTORY COATING. # 2.8.9.1 Outdoor Cabinet Outdoor cabinets shall be suitable for outdoor service with a weathertight, insulated and corrosion-protected structure. Cabinets constructed exclusively for indoor service which have been modified for outdoor service are not acceptable. ## 2.9 ACCESSORIES # 2.9.1 Purge System Refrigeration systems which operate at pressures below atmospheric pressure shall be provided with a purge system. Purge systems shall automatically remove air, water vapor, and non-condensible gases from the system's refrigerant. Purge systems shall condense, separate, and return all refrigerant back to the system. An oil separator shall be provided with the purge system if required by the manufacturer. Purge system shall not discharge to occupied areas, or create a potential hazard to personnel. Purge system shall include a purge pressure gauge, number of starts counter, and an elapsed time meter. Purge system shall include lights or an alarm which indicate excessive purge or an abnormal air leakage into the system. #### 2.9.2 Refrigerant Leak Detector Detector shall be the continuously-operating, halogen-specific type. Detector shall be appropriate for the refrigerant in use. Detector shall be specifically designed for area monitoring and shall include a single sampling pointinstalled where indicated. Detector design and construction shall be compatible with the temperature, humidity, barometric pressure and voltage fluctuations of the operating area. Detector shall have an adjustable sensitivity such that it can detect refrigerant at or above 3 parts per million (ppm). Detector shall be supplied factory-calibrated for the appropriate refrigerant(s). Detector shall be provided with an alarm relay output which energizes when the detector detects a refrigerant level at or above the TLV-TWA (or toxicity measurement consistent therewith) for the refrigerant in use. The detector's relay shall be capable of initiating corresponding alarms and ventilation system as indicated on the drawings. Detector shall be provided with a failure relay output that energizes when the monitor detects a fault in its operation. #### 2.9.3 Refrigerant Signs #### 2.9.3.1 Installation Identification Each new refrigeration system shall be provided with a refrigerant sign which indicates the following as a minimum: - a. Contractor's name - b. Refrigerant number and amount of refrigerant. - c. The lubricant identity and amount. - d. Field test pressure applied. # 2.9.3.2 Controls and Piping Identification Refrigerant systems containing more than 110 lb of refrigerant shall be provided with refrigerant signs which designate the following as a minimum: - a. Valves or switches for controlling the refrigerant flow and the refrigerant compressor. - b. Pressure limiting device(s). ## 2.9.4 Heat Recovery Devices # 2.9.4.1 Hot Air Reclaim Unit shall be a heat recovery, factory-fabricated, draw-through, central station type air conditioner in accordance with Section 15895A AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM. ## 2.9.5 Gaskets Gaskets shall conform to ASTM F 104 - classification for compressed sheet with nitrile binder and acrylic fibers for maximum 700 degrees F service. ## 2.9.6 Bolts and Nuts Bolts and nuts shall be in accordance with ASTM A 307. The bolt head shall be marked to identify the manufacturer and the standard with which the bolt complies in accordance with ASTM A 307. ## 2.9.7 Bird Screen Screen shall be in accordance with ASTM E 437, Type 1, Class 1, 2 by 2 mesh, 0.063 inch diameter aluminum wire or 0.031 inch diameter stainless steel wire. ## 2.10 FABRICATION ## 2.10.1 Factory Coating Unless otherwise specified, equipment and component items, when fabricated from ferrous metal, shall be factory finished with the manufacturer's standard finish, except that items located outside of buildings shall have weather resistant finishes that will withstand 500 hours exposure to the salt spray test specified in ASTM B 117 using a 5 percent sodium chloride solution. Immediately after completion of the test, the specimen shall show no signs of blistering, wrinkling, cracking, or loss of adhesion and no sign of rust creepage beyond 1/8 inch on either side of the scratch mark. Cut edges of galvanized surfaces where hot-dip galvanized sheet steel is used shall be coated with a zinc-rich coating conforming to ASTM D 520, Type I. # 2.10.2 Factory Applied Insulation Refrigeration equipment shall be provided with factory installed insulation on surfaces subject to sweating including the suction line piping. Where motors are the gas-cooled type, factory installed insulation shall be provided on the cold-gas inlet connection to the motor per manufacturer's standard practice. Factory insulated items installed outdoors are not required to be fire-rated. As a minimum, factory insulated items installed indoors shall have a flame spread index no higher than 75 and a smoke developed index no higher than 150. Factory
insulated items (no jacket) installed indoors and which are located in air plenums, in ceiling spaces, and in attic spaces shall have a flame spread index no higher than 25 and a smoke developed index no higher than 50. Flame spread and smoke developed indexes shall be determined by ASTM E 84. Insulation shall be tested in the same density and installed thickness as the material to be used in the actual construction. Material supplied by a manufacturer with a jacket shall be tested as a composite material. Jackets, facings, and adhesives shall have a flame spread index no higher than 25 and a smoke developed index no higher than 50 when tested in accordance with ASTM E 84. ## 2.11 SUPPLEMENTAL COMPONENTS/SERVICES ## 2.11.1 Refrigerant Piping Refrigerant piping for split-system unitary equipment shall be provided and installed in accordance with Section 15182A REFRIGERANT PIPING. #### 2.11.2 Ductwork Ductwork shall be provided and installed in accordance with Section 15895A AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM. ## PART 3 EXECUTION #### 3.1 INSTALLATION Work shall be performed in accordance with the manufacturer's published diagrams, recommendations, and equipment warranty requirements. Where equipment is specified to conform to the requirements of ASME BPV VIII Div 1 and ASME BPV IX, the design, fabrication, and installation of the system shall conform to ASME BPV VIII Div 1 and ASME BPV IX. # 3.1.1 Equipment Refrigeration equipment and the installation thereof shall conform to ASHRAE 15. Necessary supports shall be provided for all equipment, appurtenances, and pipe as required, including frames or supports for compressors, pumps, cooling towers, condensers, and similar items. Compressors shall be isolated from the building structure. If mechanical vibration isolators are not provided, vibration absorbing foundations shall be provided. Each foundation shall include isolation units consisting of machine and floor or foundation fastenings, together with intermediate isolation material. Other floor-mounted equipment shall be set on not less than a 6 inch concrete pad doweled in place. Concrete foundations for floor mounted pumps shall have a mass equivalent to three times the weight of the components, pump, base plate, and motor to be supported. In lieu of concrete pad foundation, concrete pedestal block with isolators placed between the pedestal block and the floor may be provided. Concrete pedestal block shall be of mass not less than three times the combined pump, motor, and base weights. Isolators shall be selected and sized based on load-bearing requirements and the lowest frequency of vibration to be isolated. Isolators shall limit vibration to 10 percent at lowest equipment rpm. Lines connected to pumps mounted on pedestal blocks shall be provided with flexible connectors. Foundation drawings, bolt-setting information, and foundation bolts shall be furnished prior to concrete foundation construction for all equipment indicated or required to have concrete foundations. Concrete for foundations shall be as specified in Section 03300 CAST-IN-PLACE STRUCTURAL CONCRETE. Equipment shall be properly leveled, aligned, and secured in place in accordance with manufacturer's instructions. #### 3.1.2 Mechanical Room Ventilation Mechanical ventilation systems shall be in accordance with Section 15895A AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM. # 3.1.3 Field Applied Insulation Field applied insulation shall be as specified in Section 15080A THERMAL INSULATION FOR MECHANICAL SYSTEMS, except as defined differently herein. #### 3.1.4 Field Painting Painting required for surfaces not otherwise specified, and finish painting of items only primed at the factory are specified in Section 09900 PAINTING, GENERAL. #### 3.2 CLEANING AND ADJUSTING Equipment shall be wiped clean, with all traces of oil, dust, dirt, or paint spots removed. Temporary filters shall be provided for all fans that are operated during construction, and new filters shall be installed after all construction dirt has been removed from the building. System shall be maintained in this clean condition until final acceptance. Bearings shall be properly lubricated with oil or grease as recommended by the manufacturer. Belts shall be tightened to proper tension. Control valves and other miscellaneous equipment requiring adjustment shall be adjusted to setting indicated or directed. Fans shall be adjusted to the speed indicated by the manufacturer to meet specified conditions. Testing, adjusting, and balancing shall be as specified in Section 15990A TESTING, ADJUSTING AND BALANCING OF HVAC SYSTEMS. # 3.3 REFRIGERANT TESTS, CHARGING, AND START-UP Split-system refrigerant piping systems shall be tested and charged as specified in Section 15182A REFRIGERANT PIPING. Packaged refrigerant systems which are factory charged shall be checked for refrigerant and oil capacity to verify proper refrigerant levels per manufacturer's recommendations. Following charging, packaged systems shall be tested for leaks with a halide torch or an electronic leak detector. # 3.3.1 Refrigerant Leakage If a refrigerant leak is discovered after the system has been charged, the leaking portion of the system shall immediately be isolated from the remainder of the system and the refrigerant pumped into the system receiver or other suitable container. Under no circumstances shall the refrigerant be discharged into the atmosphere. # 3.3.2 Contractor's Responsibility The Contractor shall, at all times during the installation and testing of the refrigeration system, take steps to prevent the release of refrigerants into the atmosphere. The steps shall include, but not be limited to, procedures which will minimize the release of refrigerants to the atmosphere and the use of refrigerant recovery devices to remove refrigerant from the system and store the refrigerant for reuse or reclaim. At no time shall more than 3 ounces of refrigerant be released to the atmosphere in any one occurrence. Any system leaks within the first year shall be repaired in accordance with the requirements herein at no cost to the Government including material, labor, and refrigerant if the leak is the result of defective equipment, material, or installation. ## 3.4 SYSTEM PERFORMANCE TESTS Before each refrigeration system is accepted, tests to demonstrate the general operating characteristics of all equipment shall be conducted by a registered professional engineer or an approved manufacturer's start-up representative experienced in system start-up and testing, at such times as directed. Tests shall cover a period of not less than 48 hours for each system and shall demonstrate that the entire system is functioning in accordance with the drawings and specifications. Corrections and adjustments shall be made as necessary and tests shall be re-conducted to demonstrate that the entire system is functioning as specified. Prior to acceptance, service valve seal caps and blanks over gauge points shall be installed and tightened. Any refrigerant lost during the system startup shall be replaced. If tests do not demonstrate satisfactory system performance, deficiencies shall be corrected and the system shall be retested. Tests shall be conducted in the presence of the Contracting Officer. Water and electricity required for the tests will be furnished by the Government. Any material, equipment, instruments, and personnel required for the test shall be provided by the Contractor. Field tests shall be coordinated with Section 15990A TESTING, ADJUSTING, AND BALANCING OF HVAC SYSTEMS. ## 3.5 DEMONSTRATIONS Contractor shall conduct a training course for the operating staff as designated by the Contracting Officer. The training period shall consist of a total 16 hours of normal working time and start after the system is functionally completed but prior to final acceptance tests. The field posted instructions shall cover all of the items contained in the approved operation and maintenance manuals as well as demonstrations of routine maintenance operations. -- End of Section -- #### SECTION 15895A # AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM 02/94 ## PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ## AIR CONDITIONING AND REFRIGERATION INSTITUTE (ARI) ARI 410 (1991) Forced-Circulation Air-Cooling and Air-Heating Coils ARI 430 (1989) Central-Station Air-Handling Units ARI Guideline D (1996) Application and Installation of Central Station Air-Handling Units AIR MOVEMENT AND CONTROL ASSOCIATION (AMCA) AMCA 210 (1985) Laboratory Methods of Testing Fans for Rating AMCA 300 (1996) Reverberant Room Method for Sound Testing of Fans AMERICAN BEARING MANUFACTURERS ASSOCIATION (ABMA) AFBMA Std 9 (1990) Load Ratings and Fatigue Life for Ball Bearings AFBMA Std 11 (1990) Load Ratings and Fatigue Life for Roller Bearings AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) ASTM A 47/A 47M (1999) Ferritic Malleable Iron Castings ASTM A 53/A 53M (1999b) Pipe, Steel, Black and Hot-Dipped, Zinc-Coated, Welded and Seamless ASTM A 106 (1999el) Seamless Carbon Steel Pipe for High-Temperature Service ASTM A 123/A 123M (2001) Zinc (Hot-Dip Galvanized) Coatings on Iron and Steel Products ASTM A 167 (1999) Stainless and Heat-Resisting Chromium-Nickel Steel Plate, Sheet, and | | Strip | |-------------------|---| | ASTM A 181/A 181M | (1995b) Carbon Steel, Forgings for
General-Purpose Piping | | ASTM A 183 | (1983; R 1998) Carbon Steel Track Bolts and Nuts | | ASTM A 193/A 193M | (1999a) Alloy-Steel and Stainless Steel
Bolting Materials for High-Temperature
Service | | ASTM A 234/A 234M | (1999) Piping Fittings of Wrought Carbon
Steel and Alloy Steel for
Moderate and
High Temperature Services | | ASTM A 536 | (1984; R 1999el) Ductile Iron Castings | | ASTM A 733 | (1999) Welded and Seamless Carbon Steel
and Austenitic Stainless Steel Pipe Nipples | | ASTM A 924/A 924M | (1999) General Requirements for Steel
Sheet, Metallic-Coated by the Hot-Dip
Process | | ASTM B 62 | (1993) Composition Bronze or Ounce Metal
Castings | | ASTM B 75 | (1999) Seamless Copper Tube | | ASTM B 88 | (1999) Seamless Copper Water Tube | | ASTM B 88M | (1999) Seamless Copper Water Tube (Metric) | | ASTM B 117 | (1997) Operating Salt Spray (Fog) Apparatus | | ASTM B 813 | (1993) Liquid and Paste Fluxes for
Soldering Applications of Copper and
Copper Alloy Tube | | ASTM C 916 | (1985; R 1996el) Adhesives for Duct
Thermal Insulation | | ASTM C 1071 | (1998) Thermal and Acoustical Insulation
(Glass Fiber, Duct Lining Material) | | ASTM D 520 | (1984; R 1995el) Zinc Dust Pigment | | ASTM D 1654 | (R 2000) Evaluation of Painted or Coated
Specimens Subjected to Corrosive
Environments | | ASTM D 2000 | (1999) Rubber Products in Automotive
Applications | | ASTM D 3359 | (1997) Measuring Adhesion by Tape Test | | ASTM E 84 | (2000a) Surface Burning Characteristics of Building Materials | | ASTM E 437 | (1992; R 1997) Industrial Wire Cloth and
Screens (Square Opening Series) | | |--|---|--| | ASTM F 1199 | (1988; R 1998) Cast (All Temperature and
Pressures) and Welded Pipe Line Strainers
(150 psig and 150 degrees F Maximum) | | | AMERICAN SOCIETY OF HEATING, REFRIGERATING AND AIR-CONDITIONING ENGINEERS (ASHRAE) | | | | ASHRAE 52.1 | (1992) Gravimetric and Dust-Spot
Procedures for Testing Air-Cleaning
Devices Used in General Ventilation for
Removing Particulate Matter | | | ASHRAE 68 | (1986) Laboratory Method of Testing
In-Duct Sound Power Measurement Procedures
for Fans | | | ASHRAE 70 | (1991) Method of Testing for Rating the
Performance of Air Outlets and Inlets | | | ASHRAE 84 | (1991) Method of Testing Air-to-Air Heat
Exchangers | | | ASME INTERNATIONAL (ASM | ME) | | | ASME B1.20.1 | (1983; R 1992) Pipe Threads, General
Purpose (Inch) | | | ASME B16.3 | (1998) Malleable Iron Threaded Fittings | | | ASME B16.5 | (1996; B16.5a) Pipe Flanges and Flanged
Fittings NPS 1/2 thru NPS 24 | | | ASME B16.9 | (1993) Factory-Made Wrought Steel
Buttwelding Fittings | | | ASME B16.11 | (1996) Forged Fittings, Socket-Welding and
Threaded | | | ASME B16.18 | (1984; R 1994) Cast Copper Alloy Solder
Joint Pressure Fittings | | | ASME B16.21 | (1992) Nonmetallic Flat Gaskets for Pipe
Flanges | | | ASME B16.22 | (1995; B16.22a1998) Wrought Copper and
Copper Alloy Solder Joint Pressure Fittings | | | ASME B16.26 | (1988) Cast Copper Alloy Fittings for Flared Copper Tubes | | | ASME B16.39 | (1998) Malleable Iron Threaded Pipe Unions
Classes 150, 250, and 300 | | | ASME B31.1 | (1998) Power Piping | | | ASME B40.1 | (1991) Gauges - Pressure Indicating Dial
Type - Elastic Element | | |--|--|--| | ASME BPV IX | (1998) Boiler and Pressure Vessel Code;
Section IX, Welding and Brazing
Qualifications | | | AMERICAN WATER WORKS ASSOCIATION (AWWA) | | | | AWWA C606 | (1997) Grooved and Shouldered Joints | | | AMERICAN WELDING SOCIET | Y (AWS) | | | AWS D1.1 | (2000) Structural Welding Code - Steel | | | MANUFACTURERS STANDARDI
INDUSTRY (MSS) | ZATION SOCIETY OF THE VALVE AND FITTINGS | | | MSS SP-25 | (1998) Standard Marking System for Valves,
Fittings, Flanges and Unions | | | MSS SP-58 | (1993) Pipe Hangers and Supports -
Materials, Design and Manufacture | | | MSS SP-69 | (1996) Pipe Hangers and Supports -
Selection and Application | | | MSS SP-70 | (1998) Cast Iron Gate Valves, Flanged and
Threaded Ends | | | MSS SP-71 | (1997) Cast Iron Swing Check Valves,
Flanges and Threaded Ends | | | MSS SP-72 | (1999) Ball Valves with Flanged or
Butt-Welding Ends for General Service | | | MSS SP-80 | (1997) Bronze Gate, Globe, Angle and Check
Valves | | | MSS SP-85 | (1994) Cast Iron Globe & Angle Valves,
Flanged and Threaded Ends | | | NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA) | | | | NEMA MG 1 | (1998) Motors and Generators | | | NATIONAL FIRE PROTECTION | N ASSOCIATION (NFPA) | | | NFPA 90A | (1999) Installation of Air Conditioning and Ventilating Systems | | SHEET METAL & AIR CONDITIONING CONTRACTORS' NATIONAL ASSOCIATION (SMACNA) SMACNA HVAC Duct Const Stds (1995; Addenda Nov 1997) HVAC Duct Construction Standards - Metal and Flexible | SMACNA Install Fire Damp HVAC | (1992) Fire, Smoke and Radiation Damper | | |--------------------------------|--|--| | | Installation Guide for HVAC Systems | | | SMACNA Leakage Test Mnl | (1985) HVAC Air Duct Leakage Test Manual | | | UNDERWRITERS LABORATORIES (UL) | | | | UL 181 | (1996; Rev Dec 1998) Factory-Made Air
Ducts and Air Connectors | | | UL 214 | (1997) Tests for Flame-Propagation of Fabrics and Films | | | UL 555 | (1999) Fire Dampers | | | UL 586 | (1996; Rev thru Aug 1999) High-Efficiency,
Particulate, Air Filter Units | | | UL 723 | (1996; Rev thru Dec 1998) Test for Surface
Burning Characteristics of Building
Materials | | | UL 900 | (1994; Rev thru Nov 1999) Test Performance of Air Filter Units | | | | | | | UL Bld Mat Dir | (1999) Building Materials Directory | | | UL Elec Const Dir | (1999) Electrical Construction Equipment
Directory | | | UL Fire Resist Dir | (1999) Fire Resistance Directory (2 Vol.) | | | | | | # 1.2 COORDINATION OF TRADES Ductwork, piping offsets, fittings, and accessories shall be furnished as required to provide a complete installation and to eliminate interference with other construction. ## 1.3 DELIVERY AND STORAGE Equipment delivered and placed in storage shall be stored with protection from the weather, humidity and temperature variations, dirt and dust, or other contaminants. #### 1.4 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-02 Shop Drawings Installation; G, Drawings shall consist of equipment layout including assembly and installation details and electrical connection diagrams; ductwork layout showing the location of all supports and hangers, typical hanger details, gauge reinforcement, reinforcement spacing rigidity classification, and static pressure and seal classifications; and piping layout showing the location of all guides and anchors, the load imposed on each support or anchor, and typical support details. Drawings shall include any information required to demonstrate that the system has been coordinated and will properly function as a unit and shall show equipment relationship to other parts of the work, including clearances required for operation and maintenance. ## SD-03 Product Data Components and Equipment; G, Manufacturer's catalog data shall be included with the detail drawings for the following items. The data shall be highlighted to show model, size, options, etc., that are intended for consideration. Data shall be adequate to demonstrate compliance with contract requirements for the following: - a. Piping Components - b. Ductwork Components - c. Air Systems Equipment - d. Air Handling Units - e. Energy Recovery Devices - f. Terminal Units Welding Procedures; G, A copy of qualified welding procedures, at least 2 weeks prior to the start of welding operations. Testing, Adjusting and Balancing; G, Proposed test schedules for hydrostatic test of piping, ductwork leak test, and performance tests, at least 2 weeks prior to the start of related testing. Field Training; G, Proposed schedule for field training, at least 2 weeks prior to the start of related training. #### SD-06 Test Reports Performance Tests; G, Test reports for the piping hydrostatic test, ductwork leak test, and performance tests in booklet form, upon completion of testing. Reports shall document phases of tests performed including initial test summary, repairs/adjustments made, and final test results. ## SD-07 Certificates Bolts; G, Written certification from the bolt manufacturer that the bolts furnished comply with the requirements of this specification. The certification shall include illustrations of product markings, and the number of each type of bolt to be furnished. # SD-10 Operation and Maintenance Data Operating and Maintenance Instructions; G, Six manuals listing step-by-step procedures required for system startup, operation, shutdown, and routine maintenance, at least 2 weeks prior to field training. The manuals shall include the manufacturer's name, model number, parts list, list of parts and tools that should be kept in stock by the owner for routine maintenance including the name of a local supplier, simplified wiring and controls diagrams, troubleshooting guide, and recommended service organization (including address and telephone number) for each item of equipment. Each service organization submitted shall be capable of providing 4hour onsite response to a service call on an emergency basis. #### PART 2 PRODUCTS #### 2.1 STANDARD PRODUCTS Components and equipment shall be standard products of a manufacturer regularly engaged in the manufacturing of products that are of a similar material, design and workmanship. The
standard products shall have been in satisfactory commercial or industrial use for 2 years before bid opening. The 2-year experience shall include applications of components and equipment under similar circumstances and of similar size. The 2 years must be satisfactorily completed by a product which has been sold or is offered for sale on the commercial market through advertisements, manufacturers' catalogs, or brochures. Products having less than a 2-year field service record will be acceptable if a certified record of satisfactory field operation, for not less than 6000 hours exclusive of the manufacturer's factory tests, can be shown. The equipment items shall be supported by a service organization. ## 2.2 ASBESTOS PROHIBITION Asbestos and asbestos-containing products shall not be used. ## 2.3 NAMEPLATES Equipment shall have a nameplate that identifies the manufacturer's name, address, type or style, model or serial number, and catalog number. # 2.4 EQUIPMENT GUARDS AND ACCESS Belts, pulleys, chains, gears, couplings, projecting setscrews, keys, and other rotating parts exposed to personnel contact shall be fully enclosed or guarded according to OSHA requirements. High temperature equipment and piping exposed to contact by personnel or where it creates a potential fire hazard shall be properly guarded or covered with insulation of a type specified. Ladders shall be provided where shown and shall be constructed according to Section 05500a MISCELLANEOUS METAL. #### 2.5 PIPING COMPONENTS # 2.5.1 Steel Pipe Steel pipe shall conform to ASTM A 53/A 53M, Schedule 40, Grade A or B, Type E or S. # 2.5.2 Joints and Fittings For Steel Pipe Joints shall be welded, flanged, threaded, or grooved as indicated. If not otherwise indicated, piping 1 inch and smaller shall be threaded; piping larger than 1 inch and smaller than 3 inches shall be either threaded, grooved, or welded; and piping 3 inches and larger shall be grooved, welded, or flanged. Rigid grooved mechanical joints and fittings may only be used in serviceable aboveground locations where the temperature of the circulating medium does not exceed 230 degrees F. Flexible grooved joints shall be used only as a flexible connector with grooved pipe system. Unless otherwise specified, grooved piping components shall meet the corresponding criteria specified for the similar welded, flanged, or threaded component specified herein. The manufacturer of each fitting shall be permanently identified on the body of the fitting according to MSS SP-25. ## 2.5.2.1 Welded Joints and Fittings Welded fittings shall conform to ASTM A 234/A 234M, and shall be identified with the appropriate grade and marking symbol. Butt-welded fittings shall conform to ASME B16.9. Socket-welded fittings shall conform to ASME B16.11. # 2.5.2.2 Flanged Joints and Fittings Flanges shall conform to ASTM A 181/A 181M and ASME B16.5, Class 150. Gaskets shall be nonasbestos compressed material according to ASME B16.21, 1/16 inch thickness, full face or self-centering flat ring type. The gaskets shall contain aramid fibers bonded with styrene butadiene rubber (SBR) or nitrile butadiene rubber (NBR). Bolts, nuts, and bolt patterns shall conform to ASME B16.5. Bolts shall be high or intermediate strength material conforming to ASTM A 193/A 193M. ## 2.5.2.3 Threaded Joints and Fittings Threads shall conform to ASME B1.20.1. Unions shall conform to ASME B16.39, Class 150. Nipples shall conform to ASTM A 733. Malleable iron fittings shall conform to ASME B16.3, type as required to match piping. # 2.5.2.4 Dielectric Unions and Flanges Dielectric unions shall have the tensile strength and dimensional requirements specified. Unions shall have metal connections on both ends threaded to match adjacent piping. Metal parts of dielectric unions shall be separated with a nylon insulator to prevent current flow between dissimilar metals. Unions shall be suitable for the required operating pressures and temperatures. Dielectric flanges shall provide the same pressure ratings as standard flanges and provide complete electrical isolation. # 2.5.2.5 Grooved Mechanical Joints and Fittings Joints and fittings shall be designed for not less than 125 psig service and shall be the product of the same manufacturer. Fitting and coupling houses shall be malleable iron conforming to ASTM A 47/A 47M, Grade 32510; ductile iron conforming to ASTM A 536, Grade 65-45-12; or steel conforming to ASTM A 106, Grade B or ASTM A 53/A 53M. Gaskets shall be molded synthetic rubber with central cavity, pressure responsive configuration and shall conform to ASTM D 2000 Grade No. 2CA615A15B44F17Z for circulating medium up to 230 degrees F or Grade No. M3BA610A15B44Z for circulating medium up to 200 degrees F. Grooved joints shall conform to AWWA C606. Coupling nuts and bolts shall be steel and shall conform to ASTM A 183. #### 2.5.3 Copper Tube Copper tube shall conform to ASTM B 88, and ASTM B 88M, Type K or L. ## 2.5.4 Joints and Fittings For Copper Tube Wrought copper and bronze solder-joint pressure fittings shall conform to ASME B16.22 and . ASTM B 75. Cast copper alloy solder-joint pressure fittings shall conform to ASME B16.18. Cast copper alloy fittings for flared copper tube shall conform to ASME B16.26 and ASTM B 62. Brass or bronze adapters for brazed tubing may be used for connecting tubing to flanges and to threaded ends of valves and equipment. Extracted brazed tee joints produced with an acceptable tool and installed as recommended by the manufacturer may be used. #### 2.5.5 Valves Valves shall be Class 125 and shall be suitable for the intended application. Valves shall meet the material, fabrication and operating requirements of ASME B31.1. Chain operators shall be provided for valves located 10 feet or higher above the floor. Valves in sizes larger than 1 inch and used on steel pipe systems, may be provided with rigid grooved mechanical joint ends. Such grooved end valves shall be subject to the same requirements as rigid grooved mechanical joints and fittings and, shall be provided by the same manufacturer as the grooved pipe joint and fitting system. #### 2.5.5.1 Gate Valves Gate valves 2-1/2 inches and smaller shall conform to MSS SP-80 and shall be bronze with rising stem and threaded, solder, or flanged ends. Gate valves 3 inches and larger shall conform to MSS SP-70 and shall be cast iron with bronze trim, outside screw and yoke, and flanged or threaded ends. # 2.5.5.2 Globe Valves Globe valves 2-1/2 inches and smaller shall conform to MSS SP-80, bronze, threaded, soldered, or flanged ends. Globe valves 3 inches and larger shall conform to MSS SP-85 and shall be cast iron with bronze trim and flanged, or threaded ends. #### 2.5.5.3 Check Valves Check valves 2-1/2 inches and smaller shall conform to MSS SP-80 and shall be bronze with threaded, soldered, or flanged ends. Check valves 3 inches and larger shall conform to MSS SP-71and shall be cast iron with bronze trim and flanged or threaded ends. # 2.5.5.4 Angle Valves Angle valves 2-1/2 inches and smaller shall conform to MSS SP-80 and shall be bronze with threaded, soldered, or flanged ends. Angle valves 3 inches and larger shall conform to MSS SP-85 and shall be cast iron with bronze trim and flanged, or threaded ends. ## 2.5.5.5 Ball Valves Ball valves 1/2 inch and larger shall conform to MSS SP-72, and shall be ductile iron or bronze with threaded, soldered, or flanged ends. # 2.5.5.6 Butterfly Valves Butterfly valves shall be 2 flange or lug wafer type, and shall be bubble-tight at 150 psig. Valve bodies shall be cast iron, malleable iron, or steel. ASTM A 167, Type 404 or Type 316, corrosion resisting steel stems, bronze or corrosion resisting steel discs, and synthetic rubber seats shall be provided. Valves smaller than 8 inches shall have throttling handles with a minimum of seven locking positions. Valves in insulated lines shall have extended neck to accommodate insulation thickness. # 2.5.5.7 Balancing Valves Balancing valves 2 inches or smaller shall be bronze with NPT connections for black steel pipe and brazed connections for copper tubing. Valves 1 inch or larger may be all iron with threaded or flanged ends. The valves shall have a square head or similar device and an indicator arc and shall be designed for 250 degrees F. Iron valves shall be lubricated, nonlubricated, or tetrafluoroethylene resin-coated plug valves. In lieu of plug valves, ball valves may be used. Where indicated, automatic flow control valves may be provided to maintain constant flow, and shall be designed to be sensitive to pressure differential across the valve to provide the required opening. Valves shall be selected for the flow required and provided with a permanent nameplate or tag carrying a permanent record of the factory-determined flow rate and flow control pressure levels. Valves shall control the flow within 5 percent of the tag rating. Valves shall be suitable for the maximum operating pressure of 125 psig or 150 percent of the system operating pressure, whichever is the greater. Where the available system pressure is not adequate to provide the minimum pressure differential that still allows flow control, the system pump head capability shall be appropriately increased. Where flow readings are provided by remote or portable meters, valve bodies shall be provided with tapped openings and pipe extensions with shutoff valves outside of pipe insulation. The pipe extensions shall be provided with quick connecting hose fittings for a portable meter to measure the pressure differential across the automatic flow control valve. A portable meter furnished with accessory kit as recommended by the automatic valve manufacturer shall be provided. Automatic flow control valve specified may be substituted for venturi tubes or orifice plate flow measuring devices. #### 2.5.5.8 Air Vents Manual air vents shall be brass or bronze valves or cocks suitable for pressure rating of piping system and
furnished with threaded plugs or caps. Automatic air vents shall be float type, cast iron, stainless steel, or forged steel construction, suitable for pressure rating of piping system. #### 2.5.6 Strainers Strainer shall be in accordance with ASTM F 1199, except as modified herein. Strainer shall be the cleanable, basket or "Y" type, the same size as the pipeline. The strainer bodies shall be fabricated of cast iron with bottoms drilled, and tapped. The bodies shall have arrows clearly cast on the sides indicating the direction of flow. Each strainer shall be equipped with removable cover and sediment screen. The screen shall be made of minimum 22 gauge corrosion-resistant steel, with small perforations numbering not less than 400 per square inch to provide a net free area through the basket of at least 3.3 times that of the entering pipe. The flow shall be into the screen and out through the perforations. #### 2.5.7 Backflow Preventers Backflow preventers shall be according to Section 15400A PLUMBING, GENERAL PURPOSE. ## 2.5.8 Flexible Pipe Connectors Flexible pipe connectors shall be designed for 125 psi or 150 psi service as appropriate for the static head plus the system head, and 250 degrees F, 230 degrees F for grooved end flexible connectors. The flexible section shall be constructed of rubber, tetrafluoroethylene resin, or corrosion-resisting steel, bronze, monel, or galvanized steel. The flexible section shall be suitable for intended service with end connections to match adjacent piping. Flanged assemblies shall be equipped with limit bolts to restrict maximum travel to the manufacturer's standard limits. Unless otherwise indicated, the length of the flexible connectors shall be as recommended by the manufacturer for the service intended. Internal sleeves or liners, compatible with circulating medium, shall be provided when recommended by the manufacturer. Covers to protect the bellows shall be provided where indicated. ## 2.5.9 Pressure Gauges Gauges shall conform to ASME B40.1 and shall be provided with throttling type needle valve or a pulsation dampener and shut-off valve. Gauge shall be a minimum of 3-1/2 inches in diameter and shall have a range from 0 psig to approximately 1.5 times the maximum system working pressure. # 2.5.10 Thermometers Thermometers shall have brass, malleable iron, or aluminum alloy case and frame, clear protective face, permanently stabilized glass tube with indicating-fluid column, white face, black numbers, and a 9 inch scale, and shall have rigid stems with straight, angular, or inclined pattern. #### 2.5.11 Escutcheons Escutcheons shall be chromium-plated iron or chromium-plated brass, either one piece or split pattern, held in place by internal spring tension or setscrews. # 2.5.12 Pipe Hangers, Inserts, and Supports Pipe hangers, inserts, and supports shall conform to MSS SP-58 and MSS SP-69. ## 2.5.13 Insulation Shop and field applied insulation shall be as specified in Section 15080A THERMAL INSULATION FOR MECHANICAL SYSTEMS. #### 2.5.14 Condensate Drain Lines Condensate drainage shall be provided for each item of equipment that generates condensate as specified for drain, waste, and vent piping systems in Section 15400A PLUMBING, GENERAL PURPOSE. #### 2.6 ELECTRICAL WORK Electrical motor-driven equipment specified shall be provided complete with motor, motor starter, and controls. Unless otherwise specified, electric equipment, including wiring and motor efficiencies, shall be according to Section 16415A ELECTRICAL WORK, INTERIOR. Electrical characteristics and enclosure type shall be as shown. Unless otherwise indicated, motors of 1 hp and above shall be high efficiency type. Motor starters shall be provided complete with thermal overload protection and other appurtenances necessary. Each motor shall be according to NEMA MG 1 and shall be of sufficient size to drive the equipment at the specified capacity without exceeding the nameplate rating of the motor. Manual or automatic control and protective or signal devices required for the operation specified, and any control wiring required for controls and devices, but not shown, shall be provided. Where two-speed or variable-speed motors are indicated, solid-state variable-speed controller may be provided to accomplish the same function. Solid-state variable-speed controllers shall be utilized for motors rated 10 hp or less. Adjustable frequency drives shall be used for larger motors. # 2.7 DUCTWORK COMPONENTS # 2.7.1 Metal Ductwork All aspects of metal ductwork construction, including all fittings and components, shall comply with SMACNA HVAC Duct Const Stds unless otherwise specified. Elbows shall be radius type with a centerline radius of 1-1/2 times the width or diameter of the duct where space permits. Otherwise, elbows having a minimum radius equal to the width or diameter of the duct or square elbows with factory fabricated turning vanes may be used. Static pressure Class 1/2, 1, and 2 inch w.g. ductwork shall meet the requirements of Seal Class C. Class 3 through 10 inch shall meet the requirements of Seal Class A. Sealants shall conform to fire hazard classification specified in Section 15080A THERMAL INSULATION FOR MECHANICAL SYSTEMS. Pressure sensitive tape shall not be used as a sealant. Spiral lock seam duct, and flat oval shall be made with duct sealant and locked with not less than 3 equally spaced drive screws or other approved methods indicated in SMACNA HVAC Duct Const Stds. The sealant shall be applied to the exposed male part of the fitting collar so that the sealer will be on the inside of the joint and fully protected by the metal of the duct fitting. One brush coat of the sealant shall be applied over the outside of the joint to at least 2 inch band width covering all screw heads and joint gap. Dents in the male portion of the slip fitting collar will not be acceptable. Outdoor air intake ducts and plenums shall be fabricated with watertight soldered or brazed joints and seams. # 2.7.1.1 Transitions Diverging air flow transitions shall be made with each side pitched out a maximum of 15 degrees, for an included angle of 30 degrees. Transitions for converging air flow shall be made with each side pitched in a maximum of 30 degrees, for an included angle of 60 degrees, or shall be as indicated. Factory-fabricated reducing fittings for systems using round duct sections when formed to the shape of the ASME short flow nozzle, need not comply with the maximum angles specified. ## 2.7.1.2 Metallic Flexible Duct Metallic type duct shall be single-ply two-ply aluminum. Duct shall be of corrugated/interlocked, folded and knurled type seam construction, bendable without damage through 180 degrees with a throat radius equal to 1/2 duct diameter. Duct shall conform to UL 181and shall be rated for positive or negative working pressure of 15 inches water gauge at 350 degrees F when duct is aluminum, and 650 degrees F when duct is galvanized steel or stainless steel. ## 2.7.1.3 Insulated Nonmetallic Flexible Duct Runouts Flexible duct runouts shall be used only where indicated. Runout length shall be as shown on the drawings, but shall in no case exceed 10 feet. Runouts shall be preinsulated, factory fabricated, and shall comply with NFPA 90A and UL 181. Either field or factory applied vapor barrier shall be provided. Where coil induction or high velocity units are supplied with vertical air inlets, a streamlined and vaned and mitered elbow transition piece shall be provided for connection to the flexible duct or hose. The last elbow to these units, other than the vertical air inlet type, shall be a die-stamped elbow and not a flexible connector. Insulated flexible connectors may be used as runouts. The insulated material and vapor barrier shall conform to the requirements of Section 15080A THERMAL INSULATION FOR MECHANICAL SYSTEMS. The insulation material surface shall not be exposed to the air stream. # 2.7.1.4 General Service Duct Connectors A flexible duct connector approximately 6 inches in width shall be provided where sheet metal connections are made to fans or where ducts of dissimilar metals are connected. For round/oval ducts, the flexible material shall be secured by stainless steel or zinc-coated, iron clinch-type draw bands. For rectangular ducts, the flexible material locked to metal collars shall be installed using normal duct construction methods. The composite connector system shall comply with UL 214 and be classified as "flame-retarded fabrics" in UL Bld Mat Dir. #### 2.7.2 Ductwork Accessories # 2.7.2.1 Duct Access Doors Access doors shall be provided in ductwork and plenums where indicated and at all air flow measuring primaries, automatic dampers, fire dampers, coils, thermostats, and other apparatus requiring service and inspection in the duct system, and unless otherwise shown, shall conform to SMACNA HVAC Duct Const Stds. Access doors shall be provided upstream and downstream of air flow measuring primaries and heating and cooling coils. Doors shall be minimum 15 x 18 inches, unless otherwise shown. Where duct size will not accommodate this size door, the doors shall be made as large as practicable. Doors 24×24 inches or larger shall be provided with fasteners operable from both sides. Doors in insulated ducts shall be the insulated type. # 2.7.2.2 Fire Dampers Fire dampers shall be 1-1/2 hour fire rated unless otherwise indicated. Fire dampers shall conform to the requirements of NFPA 90A and UL 555. The Contractor shall perform the fire damper test as outlined in NFPA 90A. A pressure relief damper shall be provided upstream of the fire damper. If the ductwork connected to the fire damper is to be insulated then this pressure relief damper shall be factory insulated. Fire dampers shall be automatic operating type and shall have a dynamic rating suitable for the maximum air velocity and pressure differential to which it will be subjected. Fire dampers shall be approved for
the specific application, and shall be installed according to their listing. Fire dampers shall be equipped with a steel sleeve or adequately sized frame installed in such a manner that disruption of the attached ductwork, if any, will not impair the operation of the damper. Sleeves or frames shall be equipped with perimeter mounting angles attached on both sides of the wall or floor opening. Ductwork in fire-rated floor-ceiling or roof-ceiling assembly systems with air ducts that pierce the ceiling of the assemblies shall be constructed in conformance with UL Fire Resist Dir. Fire dampers shall be curtain type with damper blades in the air stream. Dampers shall not reduce the duct or the air transfer opening cross-sectional area. Dampers shall be installed so that the centerline of the damper depth or thickness is located in the centerline of the wall, partition or floor slab depth or thickness. Unless otherwise indicated, the installation details given in SMACNA Install Fire Damp HVAC and in manufacturer's instructions for fire dampers shall be followed. # 2.7.2.3 Splitters and Manual Balancing Dampers Splitters and manual balancing dampers shall be furnished with accessible operating mechanisms. Where operators occur in finished portions of the building, operators shall be chromium plated with all exposed edges rounded. Splitters shall be operated by quadrant operators or 3/16 inch rod brought through the side of the duct with locking setscrew and bushing. Two rods are required on splitters over 8 inches. Manual volume control dampers shall be operated by locking-type quadrant operators. Dampers and splitters shall be 2 gauges heavier than the duct in which installed. Unless otherwise indicated, multileaf dampers shall be opposed blade type with maximum blade width of 12 inches. Access doors or panels shall be provided for all concealed damper operators and locking setscrews. Unless otherwise indicated, the locking-type quadrant operators for dampers, when installed on ducts to be thermally insulated, shall be provided with stand-off mounting brackets, bases, or adapters to provide clearance between the duct surface and the operator not less than the thickness of the insulation. Stand-off mounting items shall be integral with the operator or standard accessory of the damper manufacturer. Volume dampers shall be provided where indicated. #### 2.7.2.4 Air Deflectors and Branch Connections Air deflectors shall be provided at duct mounted supply outlets, at takeoff or extension collars to supply outlets, at duct branch takeoff connections, and at 90 degree elbows, as well as at locations as indicated on the drawings or otherwise specified. Conical branch connections or 45 degree entry connections may be used in lieu of deflectors or extractors for branch connections. All air deflectors, except those installed in 90 degree elbows, shall be provided with an approved means of adjustment. Adjustment shall be made from easily accessible means inside the duct or from an adjustment with sturdy lock on the face of the duct. When installed on ducts to be thermally insulated, external adjustments shall be provided with stand-off mounting brackets, integral with the adjustment device, to provide clearance between the duct surface and the adjustment device not less than the thickness of the thermal insulation. Air deflectors shall be factory-fabricated units consisting of curved turning vanes or louver blades designed to provide uniform air distribution and change of direction with minimum turbulence or pressure loss. Air deflectors shall be factory or field assembled. Blade air deflectors, also called blade air extractors, shall be approved factory fabricated units consisting of equalizing grid and adjustable blade and lock. Adjustment shall be easily made from the face of the diffuser or by position adjustment and lock external to the duct. Stand-off brackets shall be provided on insulated ducts and are described herein. Fixed air deflectors, also called turning vanes, shall be provided in 90 degree elbows. ## 2.7.3 Duct Sleeves, Framed Prepared Openings, Closure Collars #### 2.7.3.1 Duct Sleeves Duct sleeves shall be provided for round ducts 15 inches in diameter or less passing through floors, walls, ceilings, or roof, and installed during construction of the floor, wall, ceiling, or roof. Round ducts larger than 15 inches in diameter and square, rectangular, and oval ducts passing through floors, walls, ceilings, or roof shall be installed through framed prepared openings. The Contractor shall be responsible for the proper size and location of sleeves and prepared openings. Sleeves and framed openings are also required where grilles, registers, and diffusers are installed at the openings. Framed prepared openings shall be fabricated from 20 gauge galvanized steel, unless otherwise indicated. Where sleeves are installed in bearing walls or partitions, black steel pipe, ASTM A 53/A 53M, Schedule 20 shall be used. Sleeve shall provide 1 inch clearance between the duct and the sleeve or 1 inch clearance between the insulation and the sleeve for insulated ducts. # 2.7.3.2 Framed Prepared Openings Openings shall have 1 inch clearance between the duct and the opening or 1 inch clearance between the insulation and the opening for insulated ducts. #### 2.7.3.3 Closure Collars Collars shall be fabricated of galvanized sheet metal not less than 4 inches wide, unless otherwise indicated, and shall be installed on exposed ducts on each side of walls or floors where sleeves or prepared openings are provided. Collars shall be installed tight against surfaces. Collars shall fit snugly around the duct or insulation. Sharp edges of the collar around insulated duct shall be ground smooth to preclude tearing or puncturing the insulation covering or vapor barrier. Collars for round ducts 15 inches in diameter or less shall be fabricated from 20 gauge galvanized steel. Collars for round ducts larger than 15 inches and square, and rectangular ducts shall be fabricated from 18 gaugegalvanized steel. Collars shall be installed with fasteners on maximum 6 inch centers, except that not less than 4 fasteners shall be used. # 2.7.4 Sound Attenuation Equipment #### a. Acoustical Duct Liner: Acoustical duct lining shall be fibrous glass designed exclusively for lining ductwork and shall conform to the requirements of ASTM C 1071, Type I and II. Liner composition may be uniform density, graduated density, or dual density, as standard with the manufacturer. Lining shall be coated, not less than 1 inch thick. Where acoustical duct liner is used, liner or combination of liner and insulation applied to the exterior of the ductwork shall be the thermal equivalent of the insulation specified in Section 15080 A THERMAL INSULATION FOR MECHANICAL SYSTEMS. Duct sizes shown shall be increased to compensate for the thickness of the lining used. In lieu of sheet metal duct with field-applied acoustical lining, acoustically equivalent lengths of fibrous glass duct or factory fabricated double-walled internally insulated duct with perforated liner may be provided. Net insertion loss value, static pressure drop, and air flow velocity capacity data shall be certified by a nationally recognized independent acoustical laboratory. # 2.7.5 Diffusers, Registers, and Grilles Units shall be factory-fabricated of steel, corrosion-resistant steel, or aluminum and shall distribute the specified quantity of air evenly over space intended without causing noticeable drafts, air movement faster than 50 fpm in occupied zone, or dead spots anywhere in the conditioned area. Outlets for diffusion, spread, throw, and noise level shall be as required for specified performance. Performance shall be certified according to ASHRAE 70. Inlets and outlets shall be sound rated and certified according to ASHRAE 70. Sound power level shall be as indicated. Diffusers and registers shall be provided with volume damper with accessible operator, unless otherwise indicated; or if standard with the manufacturer, an automatically controlled device will be acceptable. Volume dampers shall be opposed blade type for all diffusers and registers, except linear slot diffusers. Linear slot diffusers shall be provided with round or elliptical balancing dampers. Where the inlet and outlet openings are located less than 7 feet above the floor, they shall be protected by a grille or screen according to NFPA 90A. ## 2.7.5.1 Diffusers Diffuser types shall be as indicated. Ceiling mounted units shall be furnished with anti-smudge devices, unless the diffuser unit minimizes ceiling smudging through design features. Diffusers shall be provided with air deflectors of the type indicated. Air handling troffers or combination light and ceiling diffusers shall conform to the requirements of UL Elec Const Dir for the interchangeable use as cooled or heated air supply diffusers or return air units. Ceiling mounted units shall be installed with rims tight against ceiling. Sponge rubber gaskets shall be provided between ceiling and surface mounted diffusers for air leakage control. Suitable trim shall be provided for flush mounted diffusers. Duct collar connecting the duct to diffuser shall be airtight and shall not interfere with volume controller. Return or exhaust units shall be similar to supply diffusers. # 2.7.5.2 Registers and Grilles Units shall be four-way directional-control type, except that return and exhaust registers may be fixed horizontal or vertical louver type similar in appearance to the supply register face. Registers shall be provided with sponge-rubber gasket between flanges and wall or ceiling. Wall supply registers shall be installed at least 6 inches below the ceiling unless otherwise indicated. Return and exhaust registers shall be located 6 inches above the floor unless otherwise indicated. Four-way directional control may be achieved by a grille face which can be rotated in 4 positions or by
adjustment of horizontal and vertical vanes. Grilles shall be as specified for registers, without volume control damper. #### 2.7.6 Bird Screens and Frames Bird screens shall conform to ASTM E 437, No. 2 mesh, aluminum stainless steel. Aluminum screens shall be rated "medium-light". Stainless steel screens shall be rated "light". Frames shall be removable type, or stainless steel or extruded aluminum. ## 2.8 AIR SYSTEMS EQUIPMENT #### 2.8.1 Fans Fans shall be tested and rated according to AMCA 210. Fans may be connected to the motors either directly or indirectly with V-belt drive. V-belt drives shall be designed for not less than 120 percent of the connected driving capacity. Motor sheaves shall be variable pitch for 15 hp and below and fixed pitch as defined by ARI Guideline D. Variable pitch sheaves shall be selected to drive the fan at a speed which will produce the specified capacity when set at the approximate midpoint of the sheave adjustment. When fixed pitch sheaves are furnished, a replaceable sheave shall be provided when needed to achieve system air balance. Motors for V-belt drives shall be provided with adjustable rails or bases. Removable metal quards shall be provided for all exposed V-belt drives, and speed-test openings shall be provided at the center of all rotating shafts. Fans shall be provided with personnel screens or guards on both suction and supply ends, except that the screens need not be provided, unless otherwise indicated, where ducts are connected to the fan. Fan and motor assemblies shall be provided with vibration-isolation supports or mountings as indicated. Vibration-isolation units shall be standard products with published loading ratings. Each fan shall be selected to produce the capacity required at the fan static pressure indicated. Sound power level shall be as indicated. The sound power level values shall be obtained according to AMCA 300. Standard AMCA arrangement, rotation, and discharge shall be as indicated. # 2.8.1.1 Centrifugal Type Power Roof Ventilators Fans shall be direct driven with backward inclined, non-overloading wheel. Motor compartment housing shall be hinged or removable and weatherproof, constructed of heavy gauge aluminum. Fans shall be provided with birdscreen, disconnect switch, gravity dampers, and roof curb. Motors enclosure shall be dripproof type. # 2.8.2 Coils Coils shall be fin-and-tube type constructed of seamless copper tubes and copper fins mechanically bonded or soldered to the tubes. Copper tube wall thickness shall be a minimum of 0.020 inches. Copper fins shall be 0.0045 inch minimum thickness. Casing and tube support sheets shall be not lighter than 16 gauge galvanized steel, formed to provide structural strength. When required, multiple tube supports shall be provided to prevent tube sag. Each coil shall be tested at the factory under water at not less than 400 psi air pressure and shall be suitable for 200 psi working pressure. Coils shall be mounted for counterflow service. Coils shall be rated and certified according to ARI 410. ## 2.8.2.1 Direct-Expansion Coils Direct-expansion coils shall be suitable for the refrigerant involved. Suction headers shall be seamless copper tubing or seamless or resistance welded steel tube with copper connections. Supply headers shall consist of a distributor which shall distribute the refrigerant through seamless copper tubing equally to all circuits in the coil. Tubes shall be circuited to ensure minimum pressure drop and maximum heat transfer. Circuiting shall permit refrigerant flow from inlet to suction outlet without causing oil slugging or restricting refrigerant flow in coil. Each coil to be field installed shall be completely dehydrated and sealed at the factory upon completion of pressure tests. #### 2.8.3 Air Filters Air filters shall be listed according to requirements of UL 900, except high efficiency particulate air filters of 99.97 percent efficiency by the DOP Test method shall be as listed under the Label Service and shall meet the requirements of UL 586. # 2.8.3.1 Extended Surface Nonsupported Pocket Filters Filters shall be 12 inch depth, sectional, replaceable dry media type of the size indicated and shall have an average efficiency of 90 to 95 percent when tested according to ASHRAE 52.1. Initial resistance at 500 feet per minute shall not exceed 0.45 inches water gauge. Filters shall be UL Class 1. Media shall be fibrous glass, supported in the air stream by a wire or non-woven synthetic backing and secured to a galvanized steel metal header. Pockets shall not sag or flap at anticipated air flows. Each filter shall be installed with an extended surface pleated panel filter as a prefilter in a factory preassembled, side access housing or a factory-made sectional frame bank, as indicated. # 2.8.3.2 Replaceable Media Filters Replaceable media filters shall be the dry-media type, of the size required to suit the application. Filtering media shall be not less than 2 inches thick fibrous glass media pad supported by a structural wire grid or woven wire mesh. Pad shall be enclosed in a holding frame of not less than 16 gauge galvanized steel, and equipped with quick-opening mechanism for changing filter media. The air flow capacity of the filter shall be based on net filter face velocity not exceeding 300 feet per minute, with initial resistance of 0.13 inches water gauge. Average efficiency shall be not less than 30 percent when tested according to ASHRAE 52.1. # 2.8.3.3 Holding Frames Frames shall be fabricated from not lighter than 16 gauge sheet steel with rust-inhibitor coating. Each holding frame shall be equipped with suitable filter holding devices. Holding frame seats shall be gasketed. All joints shall be airtight. # 2.8.3.4 Filter Gauges Filter gauges shall be dial type, diaphragm actuated draft and shall be provided for all filter stations, including those filters which are furnished as integral parts of factory fabricated air handling units. Gauges shall be at least 3-7/8 inches in diameter, shall have white dials with black figures, and shall be graduated in 0.01 inch, and shall have a minimum range of 1 inch beyond the specified final resistance for the filter bank on which each gauge is applied. Each gauge shall incorporate a screw operated zero adjustment and shall be furnished complete with two static pressure tips with integral compression fittings, two molded plastic vent valves, two 5 foot minimum lengths of 1/4 inch diameter aluminum tubing, and all hardware and accessories for gauge mounting. ## 2.9 AIR HANDLING UNITS ## 2.9.1 Field-Fabricated Air Handling Units Built-up units shall be as specified in paragraph DUCTWORK COMPONENTS. Fans, coils spray-coil dehumidifiers, and air filters shall be as specified in paragraph AIR SYSTEMS EQUIPMENT for types indicated. # 2.9.2 Factory-Fabricated Air Handling Units Units shall be single-zone draw-through type as indicated. Units shall include fans, coils, airtight insulated casing, prefilters, secondary filter sections, adjustable V-belt drives, belt guards for externally mounted motors, access sections where indicated, mixing box vibration-isolators, and appurtenances required for specified operation. Vibration isolators shall be as indicated. Each air handling unit shall have physical dimensions suitable to fit space allotted to the unit and shall have the capacity indicated. Air handling unit shall have published ratings based on tests performed according to ARI 430. ## 2.9.2.1 Casings Casing sections shall be 2 inch double wall type constructed of a minimum 18 gauge galvanized steel, or 18 gauge steel outer casing protected with a corrosion resistant paint finish according to paragraph FACTORY PAINTING. Inner casing of double-wall units shall be minimum 20 gauge solid galvanized steel. Casing shall be designed and constructed with an integral structural steel frame such that exterior panels are non-load bearing. Exterior panels shall be individually removable. Removal shall not affect the structural integrity of the unit. Casings shall be provided with inspection doors, access sections, and access doors as indicated. Inspection and access doors shall be insulated, fully gasketed, double-wall type, of a minimum 18 gauge outer and 20 gauge inner panels. Doors shall be rigid and provided with heavy duty hinges and latches. Inspection doors shall be a minimum 12 inches wide by 12 inches high. Access doors shall be minimum 24 inches wide and shall be the full height of the unit casing or a minimum of 6 ft., whichever is less. Access Sections shall be according to paragraph AIR HANDLING UNITS. Drain pan shall be double-bottom type constructed of 16 gauge stainless steel, pitched to the drain connection. Drain pans shall be constructed water tight, treated to prevent corrosion, and designed for positive condensate drainage. When 2 or more cooling coils are used, with one stacked above the other, condensate from the upper coils shall not flow across the face of lower coils. Intermediate drain pans or condensate collection channels and downspouts shall be provided, as required to carry condensate to the unit drain pan out of the air stream and without moisture carryover. Each casing section handling conditioned air shall be insulated with not less than 1 inch thick, 1-1/2 pound density coated fibrous glass material having a thermal conductivity not greater than 0.23 Btu/hr-sf-F. Factory applied fibrous glass insulation shall conform to ASTM C 1071, except that the minimum thickness and density requirements do not apply, and shall meet the requirements of NFPA 90A. Foam-type insulation is not acceptable. Foil-faced insulation shall not be an acceptable substitute for use on double-wall access doors and inspections doors and casing sections. Duct liner material, coating, and adhesive shall conform to fire-hazard requirements specified in Section 15080A THERMAL INSULATION FOR MECHANICAL SYSTEMS. Exposed insulation edges and
joints where insulation panels are butted together shall be protected with a metal nosing strip or shall be coated to conform to meet erosion resistance requirements of ASTM C 1071. A latched and hinged inspection door, shall be provided in the fan and coil sections. Additional inspection doors, access doors and access sections shall be provided where indicated. ## 2.9.2.2 Heating and Cooling Coils Coils shall be provided as specified in paragraph AIR SYSTEMS EQUIPMENT, for types indicated. # 2.9.2.3 Cooling Coils, Spray Type Cooling coils shall be of the copper finned direct expansion type as specified in paragraph AIR SYSTEMS EQUIPMENT furnished complete with water sprays. All horizontal units and vertical units with coil face velocities of 550 fpm or above, shall be provided with moisture eliminators. Sprays shall have all bronze, brass, or stainless steel centrifugal type nozzles, with removable caps designed and arranged for uniform wetting of the entire coil face area. Nozzles shall be supplied by standard weight galvanized steel piping and a centrifugal type circulating pump furnished as an integral part of the unit. Eliminators shall be not lighter than 24 gauge corrosion-resistant steel, removable for maintenance and coil inspection. No water shall carry over into the fan section or supply ducts from the air handling unit provided with or without eliminators. #### 2.9.2.4 Air Filters Air filters shall be as specified in paragraph AIR SYSTEMS EQUIPMENT for types and thickness indicated. #### 2.9.2.5 Fans Fans shall be double-inlet, centrifugal type with each fan in a separate scroll. Fans and shafts shall be dynamically balanced prior to installation into air handling unit, then the entire fan assembly shall be statically and dynamically balanced at the factory after it has been installed in the air handling unit. Fans shall be mounted on steel shafts accurately ground and finished. Fan bearings shall be sealed against dust and dirt and shall be precision self-aligning ball or roller type. Bearing life shall be L50 rated at not less than 200,000 hours as defined by AFBMA Std 9 and AFBMA Std 11. Bearings shall be permanently lubricated or lubricated type with lubrication fittings readily accessible at the drive side of the unit. Bearings shall be supported by structural shapes, or die formed sheet structural members, or support plates securely attached to the unit casing. Bearings may not be fastened directly to the unit sheet metal casing. Fans and scrolls shall be furnished with coating indicated. Fans shall be driven by a unit-mounted or a floor-mounted motor connected to fans by V-belt drive complete with belt guard for externally mounted motors. Belt guards shall be the three sided enclosed type with solid or expanded metal face. Belt drives shall be designed for not less than a 1.3 service factor based on motor nameplate rating. Motor sheaves shall be variable pitch for 25 hp and below and fixed pitch above 25 hp as defined by ARI Guideline D. Where fixed sheaves are required, variable pitch sheaves may be used during air balance, but shall be replaced with an appropriate fixed sheave after air balance is completed. Variable pitch sheaves shall be selected to drive the fan at a speed that will produce the specified capacity when set at the approximate midpoint of the sheave adjustment. Motors for V-belt drives shall be provided with adjustable bases. Fan motors shall have open splashproof enclosures. Motor starters shall be across-the-line type with enclosure suitable for the installation location. Unit fan or fans shall be selected to produce the required capacity at the fan static pressure. Sound power level shall be as indicated. The sound power level values shall be obtained according to AMCA 300 or ASHRAE 68. ## 2.9.2.6 Access Sections and Filter/Mixing Boxes Access sections shall be provided where indicated and shall be furnished with access doors as shown. Access sections and filter/mixing boxes shall be constructed in a manner identical to the remainder of the unit casing and shall be equipped with access doors. Mixing boxes shall be designed to minimize air stratification and to promote thorough mixing of the air streams. # 2.9.2.7 Diffuser Sections Diffuser sections shall be furnished between the discharge of all supply fans and filter sections of those units with high efficiency filters located immediately downstream of the air handling unit fan section. Diffuser sections shall be fabricated by the unit manufacturer in a manner identical to the remainder of the unit casing, shall be designed to be airtight under positive static pressures up to 8 inches water gauge, and shall have an access door on each side for inspection purposes. Diffuser section shall contain a perforated diffusion plate, fabricated of galvanized steel, Type 316 stainless steel, aluminum, or steel treated for corrosion with manufacturer's standard corrosion-resisting finish. The diffusion plate shall be designed to accomplish uniform air flow across the down-stream coil while reducing the higher fan outlet velocity to within plus or minus 5 percent of the required face velocity of the downstream component. ## 2.9.2.8 Dampers Dampers shall be as specified in paragraph CONTROLS. # 2.10 TERMINAL UNITS - 2.10.1 Variable Air Volume (VAV) and Dual Duct Terminal Units - 2.10.1.1 Variable Volume, Single Duct, Fan-Powered Variable volume, single duct, fan-powered terminal units shall be provided with a calibrated air volume sensing device, air valve or damper, actuator, fan and motor, and accessory relays. Units shall control primary air volume to within plus or minus 5 percent of each air set point as determined by the thermostat with variations in inlet pressure from 3/4 to 6 inch water gauge. Unit fan shall be centrifugal, direct-driven, double-inlet type with forward curved blades. Fan motor shall be either single speed with speed controller or three-speed, permanently lubricated, permanent split-capacitor type. Fan/motor assembly shall be isolated from the casing to minimize vibration transmission. Fan control shall be factory furnished and wired into the unit control system. A factory-mounted pressure switch shall be furnished to operate the unit fan whenever pressure exists at the unit primary air inlet or when the control system fan operates. #### 2.10.1.2 Reheat Units a. Hot Water Coils: Hot-water coils shall be fin-and-tube type constructed of seamless copper tubes and copper or aluminum fins mechanically bonded or soldered to the tubes. Headers shall be constructed of cast iron, welded steel or copper. Casing and tube support sheets shall be 16 gauge, galvanized steel, formed to provide structural strength. Tubes shall be correctly circuited for proper water velocity without excessive pressure drop and they shall be drainable where required or indicated. At the factory, each coil shall be tested at not less than 250 psi air pressure and shall be suitable for 200 psi working pressure. Drainable coils shall be installed in the air handling units with a pitch of not less than 1/8 inch per foot of tube length toward the drain end. Coils shall conform to the provisions of ARI 410. #### 2.11 ENERGY RECOVERY DEVICES #### 2.11.1 Rotary Wheel Unit shall be a factory fabricated and tested assembly for air-to-air energy recovery by transfer of sensible heat from exhaust air to supply air stream. Device performance shall be according to ASHRAE 84. Device shall deliver an energy transfer effectiveness of not less than 70 percent with cross-contamination not in excess of 1.0 percent of exhaust airflow rate at system design differential pressure, including purging sector if provided with wheel. Exchange media shall be chemically inert, moisture-resistant, fire-retardant, laminated, nonmetallic material which complies with NFPA 90A. Exhaust and supply streams shall be isolated by seals which are static, field adjustable, and replaceable. Chain drive mechanisms shall be fitted with ratcheting torque limiter or slip-clutch protective device. Enclosure shall be fabricated from galvanized steel and shall include maintenance access provisions. Recovery control and rotation failure provisions shall be as indicated. #### 2.12 FACTORY PAINTING Units which are not of galvanized construction according to ASTM A 123/A 123M or ASTM A 924/A 924M shall be factory painted with a corrosion resisting paint finish. Internal and external ferrous metal surfaces shall be cleaned, phosphatized and coated with a paint finish which has been tested according to ASTM B 117, ASTM D 1654, and ASTM D 3359. Evidence of satisfactory paint performance for a minimum of 125 hours for units to be installed indoors and 500 hours for units to be installed outdoors shall be submitted. Rating of failure at the scribe mark shall be not less than 6, average creepage not greater than 1/8 inch. Rating of the inscribed area shall not be less than 10, no failure. On units constructed of galvanized steel which have been welded, exterior surfaces of welds or welds that have burned through from the interior shall receive a final shop docket of zinc-rich protective paint according to ASTM D 520 Type I. ## PART 3 EXECUTION #### 3.1 INSTALLATION Work shall be installed as shown and according to the manufacturer's diagrams and recommendations. ## 3.1.1 Piping Pipe and fitting installation shall conform to the requirements of ASME B31.1. Pipe shall be cut accurately to measurements established at the jobsite, and worked into place without springing or forcing, completely clearing all windows, doors, and other openings. Cutting or other weakening of the building structure to facilitate piping installation will not be permitted without written approval. Pipe or tubing shall be cut square, shall have burrs removed by reaming, and shall permit free expansion and contraction without causing damage to the building structure, pipe, joints, or hangers. Changes in direction shall be made
with fittings, except that bending of pipe 4 inches and smaller will be permitted, provided a pipe bender is used and wide sweep bends are formed. The centerline radius of bends shall not be less than 6 diameters of the pipe. Bent pipe showing kinks, wrinkles, flattening, or other malformations will not be accepted. Horizontal supply mains shall pitch down in the direction of flow as indicated. The grade shall be not less than 1 inch in 40 feet. Reducing fittings shall be used for changes in pipe sizes. Open ends of pipelines and equipment shall be capped or plugged during installation to keep dirt or other foreign materials out of the system. Pipe not otherwise specified shall be uncoated. Connections to appliances shall be made with malleable iron unions for steel pipe 2-1/2 inch or less in diameter, and with flanges for pipe 3 inches and larger. Connections between ferrous and copper piping shall be electrically isolated from each other with dielectric unions or flanges. All piping located in air plenums shall conform to NFPA 90A requirements. Pipe and fittings installed in inaccessible conduits or trenches under concrete floor slabs shall be welded. #### 3.1.1.1 Joints - a. Threaded Joints: Threaded joints shall be made with tapered threads and made tight with a stiff mixture of graphite and oil or polytetrafluoroethylene tape or equivalent thread joint compound or material, applied to the male threads only. - b. Soldered Joints: Joints in copper tubing shall be cut square with ends reamed, and all filings and dust wiped from interior of pipe. Joints shall be soldered with 95/5 solder or brazed with silver solder applied and drawn through the full fitting length. Care shall be taken to prevent annealing of tube or fittings when making connections. Joints 2-1/2 inch and larger shall be made with heat uniformly around the entire circumference of the joint with a multi-flame torch. Connections in floor slabs shall be brazed. Excess solder shall be wiped from joint before solder hardens. Solder flux shall be liquid or paste form, non-corrosive and conform to ASTM B 813. c. Welded Joints: Welding shall be according to qualified procedures using qualified welders and welding operators. Procedures and welders shall be qualified according to ASME BPV IX. Welding procedures qualified by others and welders and welding operators qualified by another operator may be permitted by ASME B31.1. Structural members shall be welded according to Division 5. All welds shall be permanently identified by imprinting the welder's or welding operator's assigned symbol adjacent to the weld. Welded joints shall be fusion welded unless otherwise required. Changes in direction of piping shall be made with welding fittings only; mitering or notching pipe to form elbows and tees or other similar type construction will not be permitted. Branch connections may be made with either welding tees or branch outlet fittings. Branch outlet fittings shall be forged, flared for improvement of flow where attached to the run, and reinforced against external strains. Beveling, alignment, heat treatment and inspection of weld shall conform to ASME B31.1. Weld defects shall be removed and repairs made to the weld, or the weld joints shall be entirely removed and rewelded. Electrodes shall be stored and dried according to AWS D1.1 or as recommended by the manufacturer. Electrodes that have been wetted or that have lost any of their coating shall not be used. # 3.1.1.2 Grooved Mechanical Joints Grooves shall be prepared according to the coupling manufacturer's instructions. Pipe and groove dimensions shall comply with the tolerances specified by the coupling manufacturer. The diameter of grooves made in the field shall be measured using a "go/no-go" gauge, vernier or dial caliper, or narrow-land micrometer. Groove width and dimension of groove from end of pipe shall be measured and recorded for each change in grooving tool setup to verify compliance with coupling manufacturer's tolerances. Grooved joints shall not be used in concealed locations. # 3.1.1.3 Flanges and Unions Except where copper tubing is used, union or flanged joints shall be provided in each line immediately preceding the connection to each piece of equipment or material requiring maintenance such as coils, pumps, control valves, and other similar items. # 3.1.2 Supports # 3.1.2.1 General Hangers used to support piping 2 inches and larger shall be fabricated to permit adequate adjustment after erection while still supporting the load. Pipe guides and anchors shall be installed to keep pipes in accurate alignment, to direct the expansion movement, and to prevent buckling, swaying, and undue strain. Piping subjected to vertical movement when operating temperatures exceed ambient temperatures shall be supported by variable spring hangers and supports or by constant support hangers. ## 3.1.2.2 Seismic Requirements (Pipe Supports and Structural Bracing) Piping and attached valves shall be supported and braced to resist seismic loads. Structural steel required for reinforcement to properly support piping, headers, and equipment but not shown shall be provided under this section. Material used for support shall be as specified under Division 5. # 3.1.2.3 Pipe Hangers, Inserts and Supports Pipe hangers, inserts, and supports shall conform to MSS SP-58 and MSS SP-69, except as modified herein. Types 5, 12, and 26 shall not be used. - a. Hangers: Type 3 shall not be used on insulated piping. - b. Inserts: Type 18 inserts shall be secured to concrete forms before concrete is placed. Continuous inserts which allow more adjustment may be used if they otherwise meet the requirements for Type 18 inserts. - c. C-Clamps: Type 19 and 23 C-clamps shall be torqued per MSS SP-69 and have both locknuts and retaining devices, furnished by the manufacturer. Field-fabricated C-clamp bodies or retaining devices are not acceptable. - d. Angle Attachments: Type 20 attachments used on angles and channels shall be furnished with an added malleable-iron heel plate or adapter. - e. Hangers: Type 24 may be used only on trapeze hanger systems or on fabricated frames. - f. Type 39 saddles shall be used on all insulated pipe 4 inches and larger when the temperature of the medium is above 60 degrees F. Type 39 saddles shall be welded to the pipe. - g. Type 40 shields shall: - (1) be used on all insulated pipes less than 4 inches. - (2) be used on all insulated pipes 4 inches and larger when the temperature of the medium is 60 degrees or less. - (3) have a high density insert for pipe 2 inches and larger, and for smaller pipe when the insulation shows signs of being visibly compressed, or when the insulation or jacket shows visible signs of distortion at or near the type 40 shield. High density inserts shall have a density of 9 pcf or greater. - h. Horizontal Pipe Supports: Horizontal pipe supports shall be spaced as specified in MSS SP-69 and a support shall be installed not over 1 foot from the pipe fitting joint at each change in direction of the piping. Pipe supports shall be spaced not over 5 feet apart at valves. - i. Vertical Pipe Supports: Vertical pipe shall be supported at each floor, except at slab-on-grade, and at intervals of not more than 15 feet, not more than 8 feet from end of risers, and at vent terminations. j. Insulated Pipe: Insulation on horizontal pipe shall be continuous through hangers for hot and cold piping. Other requirements on insulated pipe are specified in Section 15080A THERMAL INSULATION FOR MECHANICAL SYSTEMS. #### 3.1.3 Pipe Sleeves Sleeves shall not be installed in structural members except where indicated or approved. Rectangular and square openings shall be as detailed. Each sleeve shall extend through its respective wall, floor, or roof, and shall be cut flush with each surface. Pipes passing through concrete or masonry wall or concrete floors or roofs shall be provided with pipe sleeves fitted into place at the time of construction. Unless otherwise indicated, sleeves shall provide a minimum of 1/4 inch all-around clearance between bare pipe and sleeves or between jacket over insulation and sleeves. Sleeves in bearing walls, waterproofing membrane floors, and wet areas shall be steel pipe or cast iron pipe. Sleeves in non-bearing walls, floors, or ceilings may be steel pipe, cast iron pipe, galvanized sheet metal with lock-type longitudinal seam and of the metal thickness indicated, or moisture resistant fiber or plastic. Except in pipe chases or interior walls, the annular space between pipe and sleeve or between jacket over insulation and sleeve, in non-fire rated walls, shall be sealed as indicated and specified in Section 07900a JOINT SEALING. Pipes passing through wall waterproofing membrane shall be sleeved as specified above, and a waterproofing clamping flange shall be installed as indicated. ## 3.1.3.1 Roof and Floor Sleeves Pipes passing through roof or floor waterproofing membrane shall be installed through a 17-ounce copper sleeve or a 0.032 inch thick aluminum sleeve, each within an integral skirt or flange. Flashing sleeve shall be suitably formed, and skirt or flange shall extend not less than 8 inches from the pipe and shall be set over the roof or floor membrane in a troweled coating of bituminous cement. Unless otherwise shown, the flashing sleeve shall extend up the pipe a minimum of 2 inches above highest floor level or a minimum of 10 inches above the roof. The annular space between the flashing sleeve and the bare pipe or between the flashing sleeve and the metal-jacket-covered insulation shall be sealed as indicated. Pipes up to and including 10 inches in diameter passing through roof or floor waterproofing membrane may be installed through a cast iron sleeve with caulking recess, anchor lugs, flashing clamp device, and pressure ring with brass bolts. Waterproofing membrane shall be clamped into place and sealant shall be placed in the caulking recess. In lieu
of a waterproofing clamping flange and caulking and sealing of annular space between pipe and sleeve or conduit and sleeve, a modular mechanical type sealing assembly may be installed. Seals shall consist of interlocking synthetic rubber links shaped to continuously fill the annular space between the pipe/conduit and sleeve with corrosion protected carbon steel bolts, nuts, and pressure plates. Links shall be loosely assembled with bolts to form a continuous rubber belt around the pipe with a pressure plate under each bolt head and each nut. After the seal assembly is properly positioned in the sleeve, tightening of the bolt shall cause the rubber sealing elements to expand and provide a watertight seal between the pipe/conduit and the sleeve. Each seal assembly shall be sized as recommended by the manufacturer to fit the pipe/conduit and sleeve involved. # 3.1.3.2 Fire Seal Where pipes pass through firewalls, fire partitions, or floors, a fire seal shall be provided. ## 3.1.3.3 Escutcheons Escutcheons shall be provided at finished surfaces where exposed piping, bare or insulated, passes through floors, walls, or ceilings except in boiler, utility, or equipment rooms. Where sleeves project slightly from floors, special deep-type escutcheons shall be used. Escutcheons shall be secured to pipe or pipe covering. #### 3.1.4 Condensate Drain Lines Water seals shall be provided in the condensate drain from all units. The depth of each seal shall be 2 inches plus the number of inches, measured in water gauge, of the total static pressure rating of the unit to which the drain is connected. Water seals shall be constructed of 2 tees and an appropriate U-bend with the open end of each tee plugged. Pipe cap or plug cleanouts shall be provided where indicated. Drains indicated to connect to the sanitary waste system shall be connected by an indirect waste fitting. Air conditioner drain lines shall be insulated as specified in Section 15080A THERMAL INSULATION FOR MECHANICAL SYSTEMS. #### 3.1.5 Air Vents and Drains #### 3.1.5.1 Vents Air vents shall be provided at high points, on water coils, and where indicated to ensure adequate venting of the piping system. #### 3.1.5.2 Drains Drains shall be provided at low points and where indicated to ensure complete drainage of the piping. Drains shall be accessible, and shall consist of nipples and caps or plugged tees unless otherwise indicated. #### 3.1.6 Valves Isolation gate or ball valves shall be installed on each side of each piece of equipment such as pumps, heaters, heating or cooling coils, and other similar items, at the midpoint of all looped mains, and at any other points indicated or required for draining, isolating, or sectionalizing purposes. Isolation valves may be omitted where balancing cocks are installed to provide both balancing and isolation functions. Each valve except check valves shall be identified. Valves in horizontal lines shall be installed with stems horizontal or above. #### 3.1.7 Access Panels Access panels shall be provided for concealed valves, vents, controls, dampers, and items requiring inspection or maintenance. Access panels shall be of sufficient size and located so that the concealed items may be serviced and maintained or completely removed and replaced. Access panels shall be as specified in Section 05500a MISCELLANEOUS METALS. # 3.1.8 Flexible Connectors Pre-insulated flexible connectors and flexible duct shall be attached to other components in accordance with the latest printed instructions of the manufacturer to ensure a vapor tight joint. Hangers, when required to suspend the connectors, shall be of the type recommended by the connector or duct manufacturer and shall be provided at the intervals recommended. ## 3.1.9 Sleeved and Framed Openings Space between the sleeved or framed opening and the duct or the duct insulation shall be packed for fire rated penetrations. For non-fire rated penetrations, the space shall be packed as specified in Section 07900a JOINT SEALING. #### 3.1.10 Metal Ductwork Installation shall be according to SMACNA HVAC Duct Const Stds unless otherwise indicated. Duct supports for sheet metal ductwork shall be according to SMACNA HVAC Duct Const Stds, unless otherwise specified. Friction beam clamps indicated in SMACNA HVAC Duct Const Stds shall not be used. Risers on high velocity ducts shall be anchored in the center of the vertical run to allow ends of riser to move due to thermal expansion. Supports on the risers shall allow free vertical movement of the duct. Supports shall be attached only to structural framing members and concrete slabs. Supports shall not be anchored to metal decking unless a means is provided and approved for preventing the anchor from puncturing the metal decking. Where supports are required between structural framing members, suitable intermediate metal framing shall be provided. Where C-clamps are used, retainer clips shall be provided. # 3.1.11 Acoustical Duct Lining Lining shall be applied in cut-to-size pieces attached to the interior of the duct with nonflammable fire resistant adhesive conforming to ASTM C 916, Type I, NFPA 90A, UL 723, and ASTM E 84. Top and bottom pieces shall lap the side pieces and shall be secured with welded pins, adhered clips of metal, nylon, or high impact plastic, and speed washers or welding cup-head pins installed according to SMACNA HVAC Duct Const Stds. Welded pins, cup-head pins, or adhered clips shall not distort the duct, burn through, nor mar the finish or the surface of the duct. Pins and washers shall be flush with the surfaces of the duct liner and all breaks and punctures of the duct liner coating shall be sealed with the nonflammable, fire resistant adhesive. Exposed edges of the liner at the duct ends and at other joints where the lining will be subject to erosion shall be coated with a heavy brush coat of the nonflammable, fire resistant adhesive, to prevent delamination of glass fibers. Duct liner may be applied to flat sheet metal prior to forming duct through the sheet metal brake. Lining at the top and bottom surfaces of the duct shall be additionally secured by welded pins or adhered clips as specified for cut-to-size pieces. Other methods indicated in SMACNA HVAC Duct Const Stds to obtain proper installation of duct liners in sheet metal ducts, including adhesives and fasteners, will be acceptable. ## 3.1.12 Dust Control To prevent the accumulation of dust, debris and foreign material during construction, temporary dust control protection shall be provided. The distribution system (supply and return) shall be protected with temporary seal-offs at all inlets and outlets at the end of each day's work. Temporary protection shall remain in place until system is ready for startup. ## 3.1.13 Insulation Thickness and application of insulation materials for ductwork, piping, and equipment shall be according to Section 15080A THERMAL INSULATION FOR MECHANICAL SYSTEMS. Outdoor air intake ducts and plenums shall be externally insulated up to the point where the outdoor air reaches the conditioning unit. #### 3.1.14 Duct Test Holes Holes with closures or threaded holes with plugs shall be provided in ducts and plenums as indicated or where necessary for the use of pitot tube in balancing the air system. Extensions, complete with cap or plug, shall be provided where the ducts are insulated. # 3.1.15 Power Roof Ventilator Mounting Foamed 1/2 inch thick, closed-cell, flexible elastomer insulation shall cover width of roof curb mounting flange. Where wood nailers are used, holes shall be pre-drilled for fasteners. # 3.1.16 Power Transmission Components Adjustment V-belts and sheaves shall be tested for proper alignment and tension prior to operation and after 72 hours of operation at final speed. Belts on drive side shall be uniformly loaded, not bouncing. Alignment of direct driven couplings shall be to within 50 percent of manufacturer's maximum allowable range of misalignment. ## 3.2 FIELD PAINTING AND COLOR CODE MARKING Finish painting of items only primed at the factory, surfaces not specifically noted otherwise, and color code marking for piping shall be as specified in Section 09900 PAINTING, GENERAL. # 3.3 PIPING HYDROSTATIC TEST After cleaning, water piping shall be hydrostatically tested at a pressure equal to 150 percent of the total system operating pressure for period of time sufficient to inspect every joint in the system and in no case less than 2 hours. Leaks shall be repaired and piping retested until test is successful. No loss of pressure will be allowed. Leaks shall be repaired by re-welding or replacing pipe or fittings. Caulking of joints will not be permitted. Concealed and insulated piping shall be tested in place before covering or concealing. ## 3.4 DUCTWORK LEAK TEST Ductwork leak test shall be performed for the entire air distribution and exhaust system, including fans, coils, filters, etc. Test procedure, apparatus, and report shall conform to SMACNA Leakage Test Mnl. The maximum allowable leakage rate is 5% cfm. Ductwork leak test shall be completed with satisfactory results prior to applying insulation to ductwork exterior. # 3.5 CLEANING AND ADJUSTING Pipes shall be cleaned free of scale and thoroughly flushed of foreign matter. A temporary bypass shall be provided for water coils to prevent flushing water from passing through coils. Strainers and valves shall be thoroughly cleaned. Prior to testing and balancing, air shall be removed from water systems by operating the air vents. Temporary measures, such as piping the overflow from vents to a collecting vessel shall be taken to avoid water damage during the venting process. Air vents shall be plugged or capped after the system has been vented. Inside of air terminal units, ducts, plenums, and casing shall be thoroughly cleaned of debris and blown free of small particles of rubbish and dust and then shall be vacuum cleaned before installing outlet faces.
Equipment shall be wiped clean, with traces of oil, dust, dirt, or paint spots removed. Temporary filters shall be provided prior to startup of all fans that are operated during construction, and new filters shall be installed after all construction dirt has been removed from the building, and the ducts, plenums, casings, and other items specified have been vacuum cleaned. System shall be maintained in this clean condition until final acceptance. Bearings shall be properly lubricated with oil or grease as recommended by the manufacturer. Belts shall be tightened to proper tension. Control valves and other miscellaneous equipment requiring adjustment shall be adjusted to setting indicated or directed. Fans shall be adjusted to the speed indicated by the manufacturer to meet specified conditions. # 3.6 TESTING, ADJUSTING, AND BALANCING Testing, adjusting, and balancing shall be as specified in Section 15990A TESTING, ADJUSTING AND BALANCING OF HVAC SYSTEMS. Testing, adjusting, and balancing shall begin only when the air supply and distribution, including controls, has been completed, with the exception of performance tests. ## 3.7 PERFORMANCE TESTS After testing, adjusting, and balancing has been completed as specified, each system shall be tested as a whole to see that all items perform as integral parts of the system and temperatures and conditions are evenly controlled throughout the building. Corrections and adjustments shall be made as necessary to produce the conditions indicated or specified. Capacity tests and general operating tests shall be conducted by an experienced engineer. Tests shall cover a period of not less than 2 days for each system and shall demonstrate that the entire system is functioning according to the specifications. Coincidental chart recordings shall be made at points indicated on the drawings for the duration of the time period and shall record the temperature at space thermostats or space sensors, the humidity at space humidistats or space sensors and the ambient temperature and humidity in a shaded and weather protected area. ## 3.8 FIELD TRAINING The Contractor shall conduct a training course for operating and maintenance personnel as designated by the Contracting Officer. Training shall be provided for a period of 32 hours of normal working time and shall start after the system is functionally complete but prior to the performance tests. The field instruction shall cover all of the items contained in the approved Operating and Maintenance Instructions. -- End of Section -- #### SECTION 15951A # DIRECT DIGITAL CONTROL FOR HVAC 06/98 #### PART 1 GENERAL ## 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. AIR MOVEMENT AND CONTROL ASSOCIATION (AMCA) AMCA Std 500 (11989; Rev994) Test Methods for Louvers, Dampers and Shutters AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) ANSI C12.1 (1995) Code for Electricity Metering AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) ASTM A 269 (1996) Seamless and Welded Austenitic Stainless Steel Tubing for General Service ASTM B 88 (1999) Seamless Copper Water Tube ASTM B 88M (1999) Seamless Copper Water Tube (Metric) ASTM D 635 (1997) Rate of Burning and/or Extent and Time of Burning of Self-Supporting Plastics in a Horizontal Position ASTM D 1693 (1997a) Environmental Stress-Cracking of Ethylene Plastics ASME INTERNATIONAL (ASME) ASME B40.1 (1991) Gauges - Pressure Indicating Dial Type - Elastic Element ELECTRONIC INDUSTRIES ALLIANCE (EIA) EIA ANSI/EIA/TIA 232-F (1991) Interface Between Data Technical Equipment and Data Circuit-Terminating Equipment Employing Serial Binary Data Interchange INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE) IEEE C62.41 (1991; R 1995) Surge Voltages in Low-Voltage AC Power Circuits IEEE Std 142 (1991) IEEE Recommended Practice for Grounding of Industrial and Commercial Power Systems # NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION (NEMA) NEMA 250 (1991) Enclosures for Electrical Equipment (1000 Volts Maximum) NEMA ICS 1 (1993) Industrial Control and Systems NEMA ST 1 (1988) Specialty Transformers (Except General-Purpose Type) NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) NFPA 70 (2002) National Electrical Code NFPA 90A (1999) Installation of Air Conditioning and Ventilating Systems #### UNDERWRITERS LABORATORIES (UL) UL 94 (1996; Rev thru Jul 1998) Tests for Flammability of Plastic Materials for Parts in Devices and Appliances UL 268A (1998) Smoke Detectors for Duct Application UL 508 (1999) Industrial Control Equipment #### 1.2 GENERAL REQUIREMENTS The direct digital control (DDC) shall be a complete system suitable for the heating, ventilating and air-conditioning (HVAC) system. # 1.2.1 Nameplates, Lens Caps, and Tags Nameplates and lens caps bearing legends as shown and tags bearing device-unique identifiers as shown shall have engraved or stamped characters. A plastic or metal tag shall be mechanically attached directly to each device or attached by a metal chain or wire. Each airflow measurement station shall have a tag showing flow rate range for signal output range, duct size, and identifier as shown. ## 1.2.2 Verification of Dimensions After becoming familiar with all details of the work, the Contractor shall verify all dimensions in the field, and shall advise the Contracting Officer of any discrepancy before performing any work. #### 1.2.3 Drawings Because of the small scale of the drawings, it is not possible to indicate all offsets, fittings, and accessories that may be required. The Contractor shall carefully investigate the mechanical, electrical, and finish conditions that could affect the work to be performed, shall arrange such work accordingly, and shall furnish all work necessary to meet such conditions. # 1.2.4 Power-Line Surge Protection Equipment connected to ac circuits shall be protected from power-line surges. Equipment protection shall meet the requirements of IEEE C62.41. Fuses shall not be used for surge protection. ## 1.2.5 Surge Protection for Transmitter and Control Wiring DDC system control-panel equipment shall be protected against surges induced on control and transmitter wiring installed outside and as shown. The equipment protection shall be tested in the normal mode and in the common mode, using the following two waveforms: - a. A 10-microsecond by 1,000-microsecond waveform with a peak voltage of 1,500 volts and a peak current of 60 amperes. - b. An eight microsecond by 20-microsecond waveform with a peak voltage of 1,000 volts and a peak current of 500 amperes. # 1.2.6 System Overall Reliability Requirement The system shall be configured and installed to yield a mean time between failure (MTBF) of at least 40,000 hours. Each DDC controller shall be designed, configured, installed and programmed to provide for stand alone operation with minimal performance degradation on failure of other system components to which it is connected or with which it communicates. # 1.2.7 DDC System Network Accessibility Where the systems to be controlled by the DDC system are located in multiple mechanical rooms, each mechanical room shall have at least one communication port for the portable workstation/tester. DDC controllers shall be located in the same room as the equipment being controlled or in an adjacent space which has direct access to the equipment room. # 1.2.8 System Accuracy and Display The system shall maintain an end-to-end accuracy for one year from sensor to operator's console display for the applications specified and shall display the value as specified. Each temperature shall be displayed and printed to nearest 0.1 degree F. ## 1.2.8.1 Space Temperature Space temperature with a range of 50 to 85 degrees F plus or minus 0.75 degree F for conditioned space; 30 to 130 degrees F plus or minus 1 degree F for unconditioned space. # 1.2.8.2 Duct Temperature Duct temperature with a range of $\ 40$ to 140 degrees F plus or minus $\ 2$ degrees F. # 1.2.8.3 Outside Air Temperature Outside air (OA) temperature with a range of minus 30 to plus 130 degrees F plus or minus $\, 2 \,$ degrees F; with a subrange of $\, 30 \,$ to $\, 100 \,$ degrees F plus or minus $\, 1 \,$ degree F. ## 1.2.8.4 Water Temperature Water temperature with a range of 30 to 100 degrees F plus or minus 0.75 degree F; the range of 100 to 250 degrees F plus or minus 2 degrees F; and water temperatures for the purpose of performing Btu calculations using differential temperatures to plus or minus 0.5 degree F using matched sensors. #### 1.2.8.5 High Temperature High temperature with a range of $\ 200 \ \text{to} \ 500 \ \text{degrees} \ \text{F} \ \text{plus} \ \text{or minus} \ 2.0 \ \text{degrees} \ \text{F}.$ ## 1.2.8.6 Relative Humidity Relative humidity, within a range of 20 to 80 percent, plus or minus 6.0 percent of range (display and print to nearest 1.0 percent). #### 1.2.8.7 Pressure Pressure with a range for the specific application plus or minus 2.0 percent of range (display and print to nearest psi.) #### 1.2.8.8 Flow Flow with a range for the specific application plus or minus 3.0 percent of range, and flows for the purpose of thermal calculations to plus or minus 2.0 percent of actual flow (display and print to nearest unit, such as gallons per minute). ## 1.2.8.9 KWh and kW Demand KWh and kW demand with a range for the specific application plus or minus 1.0 percent of reading (display and print to nearest kWh or kW). # 1.2.8.10 Analog Value Input An analog value input to the system's equipment via an AI with a maximum error of 0.50 percent of range, not including the sensor or transmitter error. This accuracy shall be maintained over the specified environmental conditions. ## 1.3 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G"
designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: ## SD-02 Shop Drawings HVAC Control System; G, ED Drawings shall be on 34 by 22 inch sheets in the form and arrangement shown. The drawings shall use the same abbreviations, symbols, nomenclature and identifiers shown. Each control system element on a drawing shall have a unique identifier as shown. The HVAC Control System Drawings shall be delivered together as a complete submittal. Deviations must be approved by the Contracting Officer. Drawings shall be submitted along with Submittal SD-01, Data. a. HVAC Control System Drawings shall include the following: Sheet One: Drawing Index, HVAC Control System Legend. Sheet Two: Valve Schedule, Damper Schedule. Sheet Four: Control System Schematic and Equipment Schedule. Sheet Five: Sequence of Operation and Data Terminal Strip Layout. Sheet Six: Control Loop Wiring Diagrams. Sheet Seven: Motor Starter and Relay Wiring Diagram. Sheet Eight: Communication Network and Block Diagram. Sheet Nine: DDC Panel Installation and Block Diagram. (Repeat Sheets Four through Seven for each AHU System.) - b. The HVAC Control System Drawing Index shall show the name and number of the building, military site, State or other similar designation, and Country. The Drawing Index shall list HVAC Control System Drawings, including the drawing number, sheet number, drawing title, and computer filename when used. The HVAC Control System Legend shall show generic symbols and the name of devices shown on the HVAC Control System Drawings. - c. The valve schedule shall include each valve's unique identifier, size, flow coefficient Cv, pressure drop at specified flow rate, spring range, positive positioner range, actuator size, close-off pressure data, dimensions, and access and clearance requirements data. Valve schedules may be submitted in advance but shall be included in the complete submittal. - d. The damper schedule shall contain each damper's and each actuator's identifier, nominal and actual sizes, orientation of axis and frame, direction of blade rotation, spring ranges, operation rate, positive positioner ranges, locations of actuators and damper end switches, arrangement of sections in multi-section dampers, and methods of connecting dampers, actuators, and linkages. The Damper Schedule shall include the maximum leakage rate at the operating static-pressure differential. The Damper Schedule shall contain actuator selection data supported by calculations of the torque required to move and seal the dampers, access and clearance requirements. Damper schedules may be submitted in advance but shall be included in the complete submittal. - e. The compressed air station schematic diagram shall show all equipment, including: compressor with motor horsepower and voltage; starter; isolators; manual bypasses; tubing sizes; drain piping and drain traps; reducing valves; dryer; and data on manufacturer's names and model numbers, mounting, access, and clearance requirements. Air Compressor and air dryer data shall include calculations of the air consumption of all current-to-pneumatic transducers and of any other control system devices to be connected to the compressed air station, and the compressed air supply dewpoint temperature at 20 psig. Compressed air station schematic drawings shall be submitted for each compressed air station. - f. The HVAC control system schematics shall be in the form shown, and shall show all control and mechanical devices associated with the HVAC system. A system schematic drawing shall be submitted for each HVAC system. - g. The HVAC control system equipment Schedule shall be in the form shown. All devices shown on the drawings having unique identifiers shall be referenced in the equipment schedule. Information to be included in the equipment schedule shall be the control loop, device unique identifier, device function, setpoint, input range, and additional important parameters (i.e., output range). An equipment schedule shall be submitted for each HVAC system. - h. The HVAC control system sequence of operation shall reflect the language and format of this specification, and shall refer to the devices by their unique identifiers as shown. No operational deviations from specified sequences will be permitted without prior written approval of the Contracting Officer. Sequences of operation shall be submitted for each HVAC control system including each type of terminal unit control system. - i. The HVAC control system wiring diagrams shall be functional wiring diagrams which show the interconnection of conductors and cables to HVAC control panel terminal blocks and to the identified terminals of devices, starters and package equipment. The wiring diagrams shall show necessary jumpers and ground connections. The wiring diagrams shall show the labels of all conductors. Sources of power required for HVAC control systems and for packaged equipment control systems shall be identified back to the panel board circuit breaker number, HVAC system control panel, magnetic starter, or packaged equipment control circuit. Each power supply and transformer not integral to a controller, starter, or packaged equipment shall be shown. The connected volt-ampere load and the power supply volt-ampere rating shall be shown. Wiring diagrams shall be submitted for each HVAC control system. # SD-03 Product Data Equipment Compliance Booklet; G, ED The HVAC Control System Equipment Compliance Booklet (ECB) shall be in booklet form and indexed, with numbered tabs separating the information on each device. It shall consist of, but not be limited to, data sheets and catalog cuts which document compliance of all devices and components with the specifications. The ECB shall be indexed in alphabetical order by the unique identifiers. Devices and components which do not have unique identifiers shall follow the devices and components with unique identifiers and shall be indexed in alphabetical order according to their functional name. The ECB shall include a Bill of Materials for each HVAC Control System. The Bill of Materials shall function as the Table of Contents for the ECB and shall include the device's unique identifier, device function, manufacturer, model/part/catalog number used for ordering, and tab number where the device information is located in the ECB. The ECB shall be submitted along with Submittal SD-04, Drawings. ## Commissioning Procedures; G, ED Six copies of the HVAC control system commissioning procedures, in booklet form and indexed, 60 days prior to the scheduled start of commissioning. Commissioning procedures shall be provided for each HVAC control system, and for each type of terminal unit control system. The Commissioning procedures shall reflect the format and language of this specification, and refer to devices by their unique identifiers as shown. The Commissioning procedures shall be specific for each HVAC system, and shall give detailed step-by-step procedures for commissioning of the system. - a. The Commissioning procedures shall include detailed, product specific set-up procedures, configuration procedures, adjustment procedures, and calibration procedures for each device. Where the detailed product specific commissioning procedures are included in manufacturer supplied manuals, reference may be made in the HVAC control system commissioning procedures to the manuals. - b. An HVAC control system commissioning procedures equipment list shall be included that lists the equipment to be used to accomplish commissioning. The list shall include manufacturer name, model number, equipment function, the date of the latest calibration, and the results of the latest calibration. Performance Verification Test Procedures; G, ED Six copies of the HVAC Control System Performance Verification Test Procedures, in booklet form and indexed, 60 days before the Contractor's scheduled test dates. The performance verification test procedures shall refer to the devices by their unique identifiers as shown, shall explain, step-by-step, the actions and expected results that will demonstrate that the HVAC control system performs in accordance with the sequences of operation, and other contract documents. An HVAC control system performance verification test equipment list shall be included that lists the equipment to be used during performance verification testing. The list shall include manufacturer name, model number, equipment function, the date of the latest calibration, and the results of the latest calibration. Training; G, ED An outline for the HVAC control system training course with a proposed time schedule. Approval of the planned training schedule shall be obtained from the Government at least 60 days prior to the start of the training. Six copies of HVAC control system training course material 30 days prior to the scheduled start of the training course. The training course material shall include the operation manual, maintenance and repair manual, and paper copies of overheads used in the course. # SD-06 Test Reports Commissioning Report; G, ED Six copies of the HVAC Control System Commissioning Report, in booklet form and indexed, within 30 days after completion of the system commissioning. The commissioning report shall include data collected during the HVAC control system commissioning procedures and shall follow the format of the commissioning procedures. The commissioning report shall include all configuration checksheets with final values listed for all parameters, setpoints, P, I, D setting constants, calibration data for all devices, results of adjustments, and results of testing. Performance Verification Test; G, ED Six copies of the HVAC Control System Performance Verification Test Report, in booklet form and indexed, within 30 days after completion of the test. The HVAC control system performance
verification test report shall include data collected during the HVAC control system performance verification test. The original copies of all data gathered during the performance verification test shall be turned over to the Government after Government approval of the test results. ## SD-10 Operation and Maintenance Data Operation Manual; G, ED Maintenance and Repair Manual; G, ED Six copies of the HVAC Control System Operation Manual, for each HVAC control system, 30 days before the date scheduled for the training course. # 1.4 DELIVERY AND STORAGE Products shall be stored with protection from the weather, humidity and temperature variations, dirt and dust, and other contaminants, within the storage condition limits published by the equipment manufacturer. Dampers shall be stored so that seal integrity, blade alignment and frame alignment are maintained. ## 1.5 OPERATION MANUAL An HVAC control system operation manual in indexed booklet form shall be provided for each HVAC control system. The operation manual shall include the HVAC control system sequence of operation, and procedures for the HVAC system start-up, operation and shut-down. The operation manual shall include as-built HVAC control system detail drawings. The operation manual shall include the as-built configuration checksheets, the procedures for changing HVAC control system setpoints, and the procedures for placing HVAC system controllers in the manual control mode. a. The procedures for changing HVAC control system setpoints shall describe the step-by-step procedures required to change the process variable setpoints, the alarm setpoints, the bias settings, and setpoint reset schedules. b. The procedures for placing HVAC system controllers in the manual control mode shall describe step-by-step procedures required to obtain manual control of each controlled device and to manually adjust their positions. #### 1.6 MAINTENANCE AND REPAIR MANUAL An HVAC control system maintenance and repair manual in indexed booklet form in hardback binders shall be provided for each HVAC control system. The maintenance and repair manual shall include the routine maintenance checklist, a recommended repair methods list, a list of recommended maintenance and repair tools, the qualified service organization list, the as-built commissioning procedures and report, the as-built performance verification test procedures and report, and the as-built equipment data booklet. - a. The routine maintenance checklist shall be arranged in a columnar format. The first column shall list all devices listed in the equipment compliance booklet, the second column shall state the maintenance activity or state no maintenance required, the third column shall state the frequency of the maintenance activity, and the fourth column for additional comments or reference. - b. The recommended repair methods list shall be arranged in a columnar format and shall list all devices in the equipment data compliance booklet and state the guidance on recommended repair methods, either field repair, factory repair, or whole-item replacement. - c. The as-built equipment data booklet shall include the equipment compliance booklet and manufacturer supplied user manuals and information. - d. If the operation manual and the maintenance and repair manual are provided in a common volume, they shall be clearly differentiated and separately indexed. # 1.7 MAINTENANCE AND SERVICE Services, materials and equipment shall be provided as necessary to maintain the entire system in an operational state as specified for a period of one year after successful completion and acceptance of the Performance Verification Test. Impacts on facility operations shall be minimized. # 1.7.1 Description of Work The adjustment and repair of the system shall include the manufacturer's required adjustments of computer equipment, software updates, transmission equipment and instrumentation and control devices. # 1.7.2 Personnel Service personnel shall be qualified to accomplish work promptly and satisfactorily. The Government shall be advised in writing of the name of the designated service representative, and of any changes in personnel. ## 1.7.3 Scheduled Inspections Two inspections shall be performed at six-month intervals (or less if required by the manufacturer), and all work required shall be performed. Inspections shall be scheduled in June and December. These inspections shall include: - a. Visual checks and operational tests of equipment. - b. Fan checks and filter changes for control system equipment. - c. Clean control system equipment including interior and exterior surfaces. - d. Check and calibrate each field device. Check and calibrate 50 percent of the total analog points during the first inspection. Check and calibrate the remaining 50 percent of the analog points during the second major inspection. Certify analog test instrumentation accuracy to be twice that of the device being calibrated. Randomly check at least 25 percent of all digital points for proper operation during the first inspection. Randomly check at least 25 percent of the remaining digital points during the second inspection. - e. Run system software diagnostics and correct diagnosed problems. - f. Resolve any previous outstanding problems. #### 1.7.4 Scheduled Work This work shall be performed during regular working hours, Monday through Friday, excluding legal holidays. ## 1.7.5 Emergency Service The Government will initiate service calls when the system is not functioning properly. Qualified personnel shall be available to provide service to the system. A telephone number where the service supervisor can be reached at all times shall be provided. Service personnel shall be at the site within 24 hours after receiving a request for service. The control system shall be restored to proper operating condition within three calendar days after receiving a request for service. # 1.7.6 Operation Scheduled adjustments and repairs shall include verification of the control system operation as demonstrated by the applicable tests of the performance verification test. ## 1.7.7 Records and Logs Dated records and logs shall be kept of each task, with cumulative records for each major component, and for the complete system chronologically. A continuous log shall be maintained for all devices. The log shall contain initial analog span and zero calibration values and digital points. Complete logs shall be kept and shall be available for inspection onsite, demonstrating that planned and systematic adjustments and repairs have been accomplished for the control system. # 1.7.8 Work Requests Each service call request shall be recorded as received and shall include the serial number identifying the component involved, its location, date and time the call was received, nature of trouble, names of the service personnel assigned to the task, instructions describing what has to be done, the amount and nature of the materials to be used, the time and date work started, and the time and date of completion. A record of the work performed shall be submitted within 5 days after work is accomplished. # 1.7.9 System Modifications Recommendations for system modification shall be submitted in writing. No system modifications, including operating parameters and control settings, shall be made without prior approval of the Government. Any modifications made to the system shall be incorporated into the operations and maintenance manuals, and other documentation affected. # 1.7.10 Software Updates to the software shall be provided for system, operating and application software, and operation in the system shall be verified. Updates shall be incorporated into operations and maintenance manuals, and software documentation. There shall be at least one scheduled update near the end of the first year's warranty period, at which time the latest released version of the Contractor's software shall be installed and validated. #### 1.8 FACTORY TESTING The Contractor shall assemble the factory test DDC system as specified and shall perform test to demonstrate that the performance of the system satisfies the requirements of this specification. Model numbers of equipment tested shall be identical to those to be delivered to the site. Original copies of data produced, including results of each test procedure during factory testing shall be delivered to the Government at the conclusion of testing, prior to Government approval of the test. The test results documentation shall be arranged so that commands, responses, and data acquired are correlated in a manner which will allow for logical interpretation of the data. # 1.8.1 Factory Test Setup The factory test setup shall include the following: - a. Printer. - b. DDC test set. - c. Portable workstation/tester. - d. Communication links of each type and speed including MODEMs. - e. Dial-up MODEM. - f. Software. #### PART 2 PRODUCTS # 2.1 GENERAL EQUIPMENT REQUIREMENTS Units of the same type of equipment shall be products of a single manufacturer. Each major component of equipment shall have the manufacturer's name and address, and the model and serial number in a conspicuous place. Materials and equipment shall be standard products of a manufacturer regularly engaged in the manufacturing of such products, which are of a similar material, design and workmanship. The standard products shall have been in a satisfactory commercial or industrial use for two years prior to use on this project. The two years' use shall include applications of equipment and materials under similar circumstances and of similar size. The two years' experience shall be satisfactorily completed by a product which has been sold or is offered for sale on the commercial market through advertisements, manufacturers' catalogs, or brochures. Products having less than a two-year field service record will be acceptable if a certified record of satisfactory field operation, for not less than 6,000
hours exclusive of the manufacturer's factory tests, can be shown. The equipment items shall be supported by a service organization. Items of the same type and purpose shall be identical, including equipment, assemblies, parts and components. Automatic temperature controls shall be direct digital controls that will provide the required sequence of operation. ## 2.1.1 Electrical and Electronic Devices Electrical, electronic, and electropneumatic devices not located within a DDC panel shall have a NEMA ICS 1 enclosure in accordance with NEMA 250 unless otherwise shown. # 2.1.2 Standard Signals Except for air distribution terminal unit control equipment, the output of all analog transmitters and the analog input and output of all DDC controllers shall be 4-to-20 mAdc signals. The signal shall originate from current-sourcing devices and shall be received by current-sinking devices. # 2.1.3 Ambient Temperature Limits DDC panels shall have ambient condition ratings of 35 to 120 degrees F and 10 to 95 percent relative humidity, noncondensing. Devices installed outdoors shall operate within limit ratings of minus 35 to plus 150 degrees F. Instrumentation and control elements shall be rated for continuous operation under the ambient environmental temperature, pressure, humidity, and vibration conditions specified or normally encountered for the installed location. ## 2.1.4 Year 2000 Compliance All equipment and software shall be Year 2000 compliant and shall be able to accurately process date/time data (including, but not limited to, calculating, comparing, and sequencing) from, into, and between the twentieth and twenty-first centuries, including leap year calculations, when used in accordance with the product documentation provided by the contractor, provided that all products (e.g. hardware, software, firmware) used in combination with other information technology, shall accurately process date/time data if other information technology properly exchanges date/time data with it. # 2.2 TUBING #### 2.2.1 Copper Copper tubing shall conform to ASTM B 88, ASTM B 88M and shall have sweat fittings and valves. #### 2.2.2 Stainless Steel Stainless steel tubing shall conform to ASTM A 269 and shall have stainless steel compression fittings. ## 2.2.3 Plastic Plastic tubing shall have barbed fittings and valves. Plastic tubing shall have the burning characteristics of linear low-density polyethylene tubing, shall be self-extinguishing when tested in accordance with ASTM D 635, shall have UL 94 V-2 flammability classification, and shall withstand stress cracking when tested in accordance with ASTM D 1693. Plastic-tubing bundles shall be provided with Mylar barrier and flame-retardant polyethylene jacket. #### 2.3 WIRING #### 2.3.1 Terminal Blocks Terminal blocks shall be insulated, modular, feed-through, clamp style with recessed captive screw-type clamping mechanism, shall be suitable for rail mounting, and shall have end plates and partition plates for separation or shall have enclosed sides. # 2.3.2 Control Wiring for 24-Volt Circuits Control wiring for 24-volt circuits shall be 18 AWG minimum, stranded copper and shall be rated for 300-volt service. # 2.3.3 Wiring for 120-Volt Circuits Wiring for 120-volt circuits shall be 18 AWG minimum, stranded copper and shall be rated for 600-volt service. # 2.3.4 Instrumentation Cable Instrumentation cable shall be 18 AWG, stranded copper, single- or multiple-twisted, minimum 2 inch lay of twist, 100 percent shielded pairs, and shall have a 300-volt insulation. Each pair shall have a 20 AWG tinned-copper drain wire and individual overall pair insulation. Cables shall have an overall aluminum-polyester or tinned-copper cable-shield tape, overall 20 AWG tinned-copper cable drain wire, and overall cable insulation. #### 2.3.5 Transformers Step down transformers shall be utilized where control equipment operates at lower than line circuit voltage. Transformers, other than transformers in bridge circuits, shall have primaries wound for the voltage available and secondaries wound for the correct control circuit voltage. Transformer shall be sized so that the connected load is 80 percent of the rated capacity or less. Transformers shall conform to UL 508 and NEMA ST 1. # 2.4 ACTUATORS Actuators shall be electric or electronic as shown and shall be provided with mounting and connecting hardware. Electric or electronic actuators shall be used for variable air volume (VAV) air terminal units. Actuators shall fail to their spring-return positions on signal or power failure ,except that VAV terminal unit actuators may be of the floating type. The actuator stroke shall be limited in the direction of power stroke by an adjustable stop. Actuators shall have a visible position indicator. Actuators shall smoothly open or close the devices to which they are applied and shall have a full stroke response time of 90 seconds or less. Electric actuators shall have an oil-immersed gear train. Electric or electronic actuators operating in series shall have an auxiliary actuator driver. Electric or electronic actuators used in sequencing applications shall have an adjustable operating range and start point. #### 2.4.1 Valve Actuators Valve actuators shall be selected to provide a minimum of 125 percent of the motive power necessary to operate the valve over its full range of operation. #### 2.5 AUTOMATIC CONTROL VALVES Valves shall have stainless-steel stems and stuffing boxes with extended necks to clear the piping insulation. Unless otherwise stated, valves shall have globe style bodies. Valve bodies shall be designed for not less than 125 psig working pressure or 150 percent of the system operating pressure, whichever is greater. Valve leakage rating shall be 0.01 percent of rated Cv. Unless otherwise specified, bodies for valves 1-1/2 inches and smaller shall be brass or bronze, with threaded or union ends; bodies for 2 inch valves shall have threaded ends; and bodies for valves 2 to 3 inches shall be of brass, bronze or iron. Bodies for valves 2-1/2 inches and larger shall be provided with flanged-end connections. Valve Cv shall be within 100 to 125 percent of the Cv shown. # 2.5.1 Butterfly Valve Assembly Butterfly valves shall be threaded lug type suitable for dead-end service and modulation to the fully-closed position, with carbon-steel bodies and noncorrosive discs, stainless steel shafts supported by bearings, and EPDM seats suitable for temperatures from minus 20 to plus 250 degrees F. Valves shall have a manual means of operation independent of the actuator. The rated Cv for butterfly valves shall be the value Cv at 70% open (60 degrees open). # 2.5.2 Two-Way Valves Two-way modulating valves shall have equal-percentage characteristics. # 2.5.3 Three-Way Valves Three-way valves shall provide linear flow control with constant total flow throughout full plug travel. ## 2.5.4 Duct-Coil and Terminal-Unit-Coil Valves Control valves with either flare-type or solder-type ends shall be provided for duct or terminal-unit coils. Flare nuts shall be furnished for each flare-type end valve. #### 2.5.5 Valves for Hot-Water Service For hot water service below 250 degrees F service. Internal trim for valves controlling water 210 degrees F or less shall be brass or bronze. Nonmetallic parts of hot-water control valves shall be suitable for a minimum continuous operating temperature of 250 degrees F or 50 degrees F above the system design temperature, whichever is higher. Valves 4 inches and larger shall be butterfly valves. ## 2.6 DAMPERS #### 2.6.1 Damper Assembly A single damper section shall have blades no longer than 48 inches and shall be no higher than 72 inches. Maximum damper blade width shall be 8 inches. Larger sizes shall be made from a combination of sections. Dampers shall be steel, or other materials where shown. Flat blades shall be made rigid by folding the edges. Blade-operating linkages shall be within the frame so that blade-connecting devices within the same damper section shall not be located directly in the air stream. Damper axles shall be 0.5 inch minimum, plated steel rods supported in the damper frame by stainless steel or bronze bearings. Blades mounted vertically shall be supported by thrust bearings. Pressure drop through dampers shall not exceed 0.04 inch water gauge at 1,000 feet per minute in the wide-open position. Frames shall not be less than 2 inches in width. Dampers shall be tested in accordance with AMCA Std 500. # 2.6.2 Operating Links Operating links external to dampers, such as crankarms, connecting rods, and line shafting for transmitting motion from damper actuators to dampers, shall withstand a load equal to at least twice the maximum required damper-operating force. Rod lengths shall be adjustable. Links shall be brass, bronze, zinc-coated steel, or stainless steel. Working parts of joints and clevises shall be brass, bronze, or stainless steel. Adjustments of crankarms shall control the open and closed positions of dampers. # 2.6.3 Damper Types Dampers shall be parallel-blade type. # 2.6.3.1 Outside Air, Return Air, and Relief Air Dampers Outside air, return air and relief air dampers shall be provided where shown. Blades shall have interlocking edges and shall be provided with compressible seals at points of contact. The channel frames of the dampers shall be provided with jamb seals to minimize air leakage. Dampers shall not leak in excess of 20 cfm per square foot at 4 inches water gauge static pressure when closed. Seals shall be suitable for an operating temperature range of minus 40 to plus 200 degrees F. Dampers shall be rated at not less than 2,000 feet per minute air velocity. # 2.6.3.2 Mechanical and Electrical Space Ventilation Dampers Mechanical and electrical space ventilation dampers shall be as shown. Dampers shall not leak in excess of 80 cfm square foot at 4 inches water gauge static pressure when closed. Dampers shall be rated at not less than 1,500
feet per minute air velocity. # 2.6.4 Damper End Switches Each end switch shall be a hermetically sealed switch with a trip lever and over-travel mechanism. The switch enclosure shall be suitable for mounting on the duct exterior and shall permit setting the position of the trip lever that actuates the switch. The trip lever shall be aligned with the damper blade. #### 2.7 SMOKE DETECTORS Duct smoke detectors shall be provided in supply and return air ducts in accordance with NFPA 90A. Duct smoke detectors shall conform to the requirements of UL 268A. Duct smoke detectors shall have perforated sampling tubes extended into the air duct. Detector circuitry shall be mounted in a metallic enclosure exterior to the duct. Detectors shall have manual reset. Detectors shall be rated for air velocities that include air flows between 500 and 4000 fpm. Detectors shall be powered from the fire alarm control panel (FACP). Detectors shall have two sets of normally open alarm contacts and two sets of normally closed alarm contacts. Detectors shall be connected to the building fire alarm panel for alarm initiation. A remote annunciation lamp and accessible remote reset switch shall be provided for duct detectors that are mounted eight feet or more above the finished floor and for detectors that are not readily visible. Remote lamps and switches as well as the affected fan units shall be properly identified in etched rigid plastic placards. #### 2.8 INSTRUMENTATION #### 2.8.1 Measurements Transmitters shall be calibrated to provide the following measurements, over the indicated ranges, for an output of 4 to 20 mAdc: - a. Conditioned space temperature, from 50 to 85 degrees F. - b. Duct temperature, from 40 to 140 degrees F. - c. Heating hot-water temperature, from 50 to 250 degrees F. - d. Outside-air temperature, from minus 30 to 130 degrees F. - e. Relative humidity, 0 to 100 percent for space and duct high-limit applications. - f. Differential pressure for VAV supply-duct static pressure from $\,$ 0 to $\,$ 2.0 inches water gauge. - g. Pitot-tube air-flow measurement station and transmitter, from 0 to 0.1 inch water gauge for flow velocities of 700 to 1200 fpm, 0 to 0.25 inch water gauge for velocities of 700 to 1800 fpm, or 0 to 0.5 inch water gauge for velocities of 700 to 2500 fpm. - h. Electronic air-flow measurement station and transmitter, from $\,$ 125 to 2500 fpm. ## 2.8.2 Temperature Instruments # 2.8.2.1 Resistance Temperature Detectors (RTD) Temperature sensors shall be 100 ohms 3- or 4-wire RTD. Each RTD shall be platinum with a tolerance of 0.54 degrees F at 32 degrees F with a temperature coefficient of resistance (TCR) of .00214 ohms/ohm/deg F and shall be encapsulated in epoxy, series 300 stainless steel, anodized aluminum, or copper. Each RTD shall be furnished with an RTD transmitter as specified, integrally mounted unless otherwise shown. # 2.8.2.2 Continuous Averaging RTD Continuous averaging RTDs shall have a tolerance of plus or minus 1.0 degree F at the reference temperature, and shall be of sufficient length to ensure that the resistance represents an average over the cross section in which it is installed. The sensing element shall have a bendable copper sheath. Each averaging RTD shall be furnished with an RTD transmitter to match the resistance range of the averaging RTD. #### 2.8.2.3 RTD Transmitter The RTD transmitter shall match the resistance range of the RTD. The transmitter shall be a two-wire, loop powered device. The transmitter shall produce a linear 4-to-20 mAdc output corresponding to the required temperature measurement. The output error shall not exceed 0.1 percent of the calibrated measurement. # 2.8.3 Relative Humidity Instruments A relative-humidity instrument for indoor application shall have a measurement range from 0 to 100 percent relative-humidity and be rated for operation at ambient air temperatures within the range of 25 to 130 degrees F. It shall be capable of being exposed to a condensing air stream (100 percent RH) with no adverse effect to the sensor's calibration or other harm to the instrument. The instrument shall be of the wall-mounted or duct-mounted type, as required by the application, and shall be provided with any required accessories. Instruments used in duct high-limit applications shall have a bulk polymer resistive sensing element. Duct-mounted instruments shall be provided with a duct probe designed to protect the sensing element from dust accumulation and mechanical damage. The instrument (sensing element and transmitter) shall be a two-wire, loop-powered device and shall have an accuracy of plus or minus three percent of full scale within the range of 20 to 80 percent relative humidity. The instrument shall have a typical long-term stability of 1 percent or less drift per year. The transmitter shall convert the sensing element's output to a linear 4-20 mAdc output signal in proportion to the measured relative-humidity value. The transmitter shall include offset and span adjustments. # 2.8.4 Electronic Airflow Measurement Stations and Transmitters ## 2.8.4.1 Stations Each station shall consist of an array of velocity sensing elements and an air-flow straightener. Air-flow straightener shall be contained in a flanged sheet metal or aluminum casing. The velocity sensing elements shall be of the RTD or thermistor type, producing a temperature compensated output. The sensing elements shall be distributed across the duct cross section in the quantity and pattern specified by the published application data of the station manufacturer. The resistance to air flow through the airflow measurement station shall not exceed 0.08 inch water gauge at an airflow of 2,000 fpm. Station construction shall be suitable for operation at airflows of up to 5,000 fpm over a temperature range of 40 to 120 degrees F, and accuracy shall be plus or minus three percent over a range of 125 to 2,500 fpm. In outside air measurement or in low-temperature air delivery applications, the station shall be certified by the manufacturer to be accurate as specified over a temperature range of minus 20 to plus 120 degrees F. In outside air measurement applications, the air flow straightener shall be constructed of 1/8 inch aluminum honeycomb and the depth of the straightener shall not be less than 1.5 inches. #### 2.8.4.2 Transmitters Each transmitter shall produce a linear, 4-to-20 mAdc, output corresponding to the required velocity pressure measurement. The transmitter shall be a two-wire, loop powered device. The output error of the transmitter shall not exceed 0.5 percent of the calibrated measurement. # 2.8.5 Pitot Tube Airflow Measurement Stations and Transmitters #### 2.8.5.1 Stations Each station shall contain an array of velocity sensing elements and straightening vanes inside a flanged sheet metal casing. The velocity sensing elements shall be of the multiple pitot tube type with averaging manifolds. The sensing elements shall be distributed across the duct cross section in the quantity and pattern specified by the published installation instructions of the station manufacturer. The resistance to air flow through the airflow measurement station shall not exceed 0.08 inch water gauge at an airflow of 2,000 fpm. Station construction shall be suitable for operation at airflows of up to 5,000 fpm over a temperature range of 40 to 120 degrees F, and accuracy shall be plus or minus three percent over a range of 500 to 2,500 fpm. This device will not be used if the required velocity measurement is below 700 fpm or for outside airflow measurements. #### 2.8.5.2 Transmitters Each transmitter shall produce a linear 4-to-20 mAdc output corresponding to the required velocity pressure measurement. Each transmitter shall have a low range differential pressure sensing element. The transmitter shall be a two-wire, loop powered device. Sensing element accuracy shall be plus or minus one percent of full scale, and overall transmitter accuracy shall be plus or minus 0.25 percent of the calibrated measurement. ## 2.8.6 Differential Pressure Instruments The instrument shall be a pressure transmitter with an integral sensing element. The instrument over pressure rating shall be 300 percent of the operating pressure. The sensor/transmitter assembly accuracy shall be plus or minus two percent of full scale. The transmitter shall be a two-wire, loop-powered device. The transmitter shall produce a linear 4-to-20 mAdc output corresponding to the required pressure measurement. #### 2.8.7 Thermowells Thermowells shall be Series 300 stainless steel with threaded brass plug and chain, 2 inch lagging neck and extension type well. Inside diameter and insertion length shall be as required for the application. #### 2.8.8 Sunshields Sunshields for outside air temperature sensing elements shall prevent the sun from directly striking the temperature sensing elements. The sunshields shall be provided with adequate ventilation so that the sensing element responds to the ambient temperature of the surroundings. The top of each sunshield shall have a galvanized metal rainshield projecting over the face of the sunshield. The sunshields shall be painted white. #### 2.9 THERMOSTATS Thermostat ranges shall be selected so that the setpoint is adjustable without tools between plus or minus 10 degrees F of the setpoint shown. Thermostats shall be electronic or electric. #### 2.9.1 Modulating Room Thermostats Modulating room thermostats shall have either one output signal, two output signals operating in unison, or two output signals operating in sequence, as required for the application. Each thermostat shall have an adjustable throttling range of 4 to 8 degrees F for each output. Room thermostats shall be enclosed with separate locking covers (guards). #### 2.9.2 Freezestats Freezestats shall be manual reset, low temperature safety thermostats, with NO and NC contacts and a 20 foot element which shall respond to the coldest 18 inch
segment. # 2.10 PRESSURE SWITCHES AND SOLENOID VALVES #### 2.10.1 Pressure Switches Each switch shall have an adjustable setpoint with visible setpoint scale. Range shall be as shown. Differential adjustment shall span 20 to 40 percent of the range of the device. # 2.10.2 Differential-Pressure Switches Each switch shall be an adjustable diaphragm-operated device with two SPDT contacts, with taps for sensing lines to be connected to duct pressure fittings designed to sense air pressure. These fittings shall be of the angled-tip type with tips pointing into the air stream. The setpoint shall not be in the upper or lower quarters of the range and the range shall not be more than three times the setpoint. Differential shall be a maximum of 0.15 inch water gauge at the low end of the range and 0.35 inch water gauge at the high end of the range. # 2.10.3 Pneumatic Electric (PE) Switches Each switch shall have an adjustable setpoint range of 3 to 20 psig with a switching differential adjustable from 2 to 5 psig. The switch action shall be SPDT. # 2.10.4 Solenoid-Operated Pneumatic (EP) Valves Each valve shall have three-port operation: common, normally open, and normally closed. Each valve shall have an outer cast aluminum body and internal parts of brass, bronze, or stainless steel. The air connection shall be a 3/8 inch NPT threaded connection. Valves shall be rated for 50 psig when used in a control system that operates at 25 psig or less, or 150 psig when used in a control system that operates in the range of 25 to 100 psig. ## 2.11 INDICATING DEVICES #### 2.11.1 Thermometers ## 2.11.1.1 Piping System Thermometers Piping system thermometers shall have brass, malleable iron or aluminum alloy case and frame, clear protective face, permanently stabilized glass tube with indicating-fluid column, white face, black numbers, and a 9 inch scale. Thermometers for piping systems shall have rigid stems with straight, angular, or inclined pattern. # 2.11.1.2 Piping System Thermometer Stems Thermometer stems shall have expansion heads as required to prevent breakage at extreme temperatures. On rigid-stem thermometers, the space between bulb and stem shall be filled with a heat-transfer medium. ## 2.11.1.3 Nonaveraging Air-Duct Thermometers Air-duct thermometers shall have perforated stem guards and 45-degree adjustable duct flanges with locking mechanism. # 2.11.1.4 Averaging Air-Duct Thermometers Averaging thermometers shall have a 3-1/2 inch (nominal) dial, with black legend on white background, and pointer traveling through a 270-degree arc. #### 2.11.1.5 Accuracy Thermometers shall have an accuracy of plus or minus one percent of scale range. Thermometers shall have a range suitable for the application. ## 2.11.2 Pressure Gauges Gauges shall be 2 inch (nominal) size, back connected, suitable for field or panel mounting as required, shall have black legend on white background, and shall have a pointer traveling through a 270-degree arc. Accuracy shall be plus or minus three percent of scale range. Gauges shall meet requirements of ASME B40.1. # 2.11.2.1 Hydronic System Gauges Gauges for hydronic system applications shall have ranges and graduations as shown. ## 2.11.3 Low Differential Pressure Gauges Gauges for low differential pressure measurements shall be a minimum of 3.5 inch (nominal) size with two sets of pressure taps, and shall have a diaphragm-actuated pointer, white dial with black figures, and pointer zero adjustment. Gauges shall have ranges and graduations as shown. Accuracy shall be plus or minus two percent of scale range. ## 2.12 CONTROL DEVICES AND ACCESSORIES ## 2.12.1 Relays Control relay contacts shall have utilization category and ratings selected for the application, with a minimum of two sets of contacts (two normally open, two normally closed) enclosed in a dustproof enclosure. Relays shall be rated for a minimum life of one million operations. Operating time shall be 20 milliseconds or less. Relays shall be equipped with coil transient suppression devices to limit transients to 150 percent of rated coil voltage. Time delay relays shall be 2PDT with eight-pin connectors, dust cover, and a matching rail-mounted socket. Adjustable timing range shall be 0 to 5 minutes. Power consumption shall not be greater than three watts. ## 2.12.2 Current to Pneumatic (IP) Transducers The transducers shall be two-wire current-to-pressure transmitters that convert a 4-to-20 mAdc input signal to a 3 to 15 psig, or a 15 to 3 psig, pneumatic output, with a conversion accuracy of plus or minus two percent of full scale, including linearity and hysteresis. Input impedance shall not exceed 250 ohms. Air consumption shall not be greater than 0.25 scfm. #### 2.12.3 Joule or Watthour Meters Watthour meters shall be in accordance with ANSI C12.1 and have pulse initiators for remote monitoring of Watthour consumption. Pulse initiator shall consist of form C contacts with a current rating not to exceed two amperes and voltage not to exceed 500 V, with combinations of VA not to exceed 100 VA, and a life rating of one billion operations. Meter sockets shall be in accordance with ANSI C12.1. # 2.12.4 Joule or Watthour Meters with Demand Register Meters shall be in accordance with ANSI C12.1 and shall have pulse initiators for remote monitoring of Watthour consumption and instantaneous demand. Pulse initiators shall consist of form C contacts with a current rating not to exceed two amperes and voltage not to exceed 500 V, with combinations of VA not to exceed 100 VA, and a life rating of one billion operations. Meter sockets shall be in accordance with ANSI C12.1 ## 2.12.5 Joule or Watthour Transducers Watthour transducers shall have an accuracy of plus or minus 0.25 percent for kW and kWh outputs from full lag to full lead power factor. Input ranges for kW and kWh transducers shall be selectable without requiring the changing of current or potential transformers. The output shall be 4 to 20 mAdc. ## 2.12.6 Current Sensing Relays Current sensing relays shall provide a normally-open contact rated at a minimum of 50 volts peak and 1/2 ampere or 25 VA, noninductive. There shall be a single hole for passage of current carrying conductors. The devices shall be sized for operation at 50 percent rated current based on the connected load. Voltage isolation shall be a minimum of 600 volts. ## 2.12.7 Power-Line Conditioners (PLC) Power line conditioners shall be furnished for each DDC panel. The PLCs shall provide both voltage regulation and noise rejection. The PLCs shall be of the ferro-resonant design, with no moving parts and no tap switching, while electrically isolating the secondary from the power-line side. The PLCs shall be sized for 125 percent of the actual connected kVA load. Characteristics of the PLC shall be as follows: - a. At 85 percent load, the output voltage shall not deviate by more than plus or minus one percent of nominal when the input voltage fluctuates between minus 20 percent to plus 10 percent of nominal. - b. During load changes of zero to full load, the output voltage shall not deviate by more than plus or minus three percent of nominal voltage. Full correction of load switching disturbances shall be accomplished within five cycles, and 95 percent correction shall be accomplished within two cycles of the onset of the disturbance. - c. Total harmonic distortion shall not exceed 3-1/2 percent at full load. # 2.13 DIRECT DIGITAL CONTROL (DDC) HARDWARE All functions, constraints, data base parameters, operator developed programs and any other data shall be downloadable from a portable workstation/tester to network control panels, RIU's, universal programmable controllers, and unitary controllers. Download shall be accomplished through both the primary network and the local DDC portable workstation/tester port. # 2.13.1 Network Control Panel Network control panels shall be microcomputer-based with sufficient memory provided to perform all specified and shown network control panel functions and operations, including spare capacity for all spares and its I/O functions specified. Each network control panel and remote I/O units (RIU) shall have a minimum of 10% of its I/O functions as spare capacity but not less than 2 of each type used in each. The type of spares shall be in the same proportion as the implemented I/O functions on the panel, but in no case shall there be less than two spare points of each type. The panel I/O functions shall be furnished complete, with no changes or additions necessary to support implementation of spare functions. Output relays associated with digital signals shall be considered part of the I/O function, whether physically mounted in the enclosure or separately mounted. Implementation of spare points shall necessitate only providing the additional field sensor or control device, field wiring including connection to the system, and point definition assignment by the operator using the portable workstation/tester. The panel shall contain all necessary I/O functions to connect to field sensors and control panels. I/O function operation shall be fully supervised to detect I/O function failures. Network control panels shall operate in an independent stand-alone mode, which is defined as all network control panel operations performed by the network control panel without any continuing input from other Direct digital controls or portable workstation/tester. The network control panel shall be capable of controlling a mix of at least 32 RIUs, unitary controllers, and universal programmable controllers. ## 2.13.1.1 Integral Features The network control panel shall include: - a. Main power switch. - b. Power on indicator. - c. Portable workstation/tester port, connector, and if necessary power supply. - d. Manufacturers control network port. - e. On-Off-Auto switches for each DO which controls a device. These switches shall be mounted in the field panel, with the exception of motors, for which the
switch shall be mounted at the motor control center. On-Off-Auto switches are not required for DO associated with a status or alarm such as pilot lights. The status of these switches shall be available to the panel for further processing. - f. Minimum-Maximum-Auto switches, or Auto-Manual switches with manual output override, for each AO. The status of these shall be available to the panel for further processing. - q. An intrusion detection device, connected as an alarm. #### 2.13.1.2 Communication Interfaces The following communication capabilities shall function simultaneously. - a. Manufacturers Control Network. Manufacturers control network communications interfaces for each data transmission systems (DTS) circuit between network control panels and RIUs, unitary controllers, and universal programmable controllers, shall be provided. Communication interfaces shall be provided between each network control panel and associated I/O functions. The DTS will provide for transmission speeds necessary to comply with performance requirements specified. DTS equipment shall be installed in the network control panel enclosure. - b. Portable Workstation/Tester Port. A communications port for interfacing to a portable workstation/tester shall be provided. Network control panel workstation/tester port other than RS-232, shall be converted to RS-232, including cabling and power supply, and shall be permanently installed in the panel. - c. Primary Network Port. The network control panel shall either have a built in primary network Port or be capable of accepting a primary network port expansion card for future networking to a base wide utility monitoring and control system (UMCS). The primary network port expansion card shall be either Ethernet (IEEE802.3) or ARCNET. # 2.13.1.3 Memory and Real Time Clock (RTC) Backup The network control panel memory and real time clock functions shall continue to operate for a minimum of 72 hours in the event of a power failure. If rechargeable batteries are provided, automatic charging of batteries shall be provided. Whenever a either a permanent workstation/tester or portable workstation/tester is monitoring the network control panel, a low battery alarm message shall be sent to it. # 2.13.1.4 Duplex Outlet A single phase, 120 Vac electrical service outlet for use with test equipment shall be furnished either inside or within 6 feet of the network control panel enclosure. ## 2.13.1.5 Locking Enclosures Locking type mounting cabinets with common keying shall be furnished for each network control panel. #### 2.13.1.6 Failure Mode Upon failure of the network control panel, either due to failure of the network control panel hardware or of the manufacturers control network, the network control panel shall revert to the failure mode as shown. - a. Manufacturers Control Network Failure: Upon failure of the manufacturers control network, the network control panel shall operate in an independent stand-alone mode. - b. Network Control Panel Hardware Failure: Upon failure of the network control panel hardware, the network control panel shall cease operation and stop communications with other network control panels, RIUs, unitary controllers and universal programmable controllers connected to the affected network control panel. The affected network control panel shall respond to this failure as specified and shown. ## 2.13.2 RIU The RIU shall be functionally a part of the network control panel as specified, but may be remotely located from the network control panel and communicate over a dedicated communication circuit. When remotely located, the I/O functions shall be subject to the same requirements as for the network control panel hardware. RIUs shall be used to connect remote inputs and outputs to a network control panel and shall contain all necessary I/O functions to connect to field sensors and control devices. RIU operation shall be fully supervised by the network control panel to detect failures. Each RIU shall have a minimum of 10 % of its I/O functions as spare capacity. The type of spares shall be in the same proportion as the implemented I/O functions on the RIU, but in no case shall there be less than two spare points of each type. The RIU shall be furnished complete, with no changes or additions necessary to support implementation of spare functions. Output relays associated with digital signals shall be considered part of the I/O function, whether physically mounted in the enclosure or separately mounted. Implementation of spare points by others shall require only providing the additional field sensor or control device, field wiring including connection to the system, and point definition assignment by the operator. The RIU shall either report the status of all connected points on each scan, or report the status of all points which have changed state or value since the previous scan. # 2.13.2.1 Integral Features The RIU shall include: - a. Main power switch. - b. Power on indicator. - c. Portable workstation/tester port, connector, and if necessary power supply. - d. Manufacturers control network port. - e. On-Off-Auto switches for each DO which controls a device. These switches shall be mounted in the RIU, with the exception of motors, for which the switch shall be mounted at the motor control center. On-Off-Auto switches are not required for DO associated with a status or alarm such as pilot lights. The status of these switches shall be available to the RIU for further processing. - f. Minimum-Maximum-Auto switches, or Auto-Manual switches with manual output override, for each AO. The status of these shall be available to the panel for further processing. - q. An intrusion detection device, connected as an alarm. # 2.13.2.2 Duplex Outlet A single phase, 120 Vac electrical service outlet for use with test equipment shall be furnished either inside or within 6 feet of the RIU. #### 2.13.2.3 Locking Enclosures Locking type mounting cabinets with common keying shall be furnished for each RIU. #### 2.13.2.4 Failure Mode Upon failure of the RIU, either due to failure of the RIU hardware or of the DTS, the RIU shall revert to the failure mode shown. # 2.13.3 Universal Programmable Controller (UPC) The universal programmable controller shall be a microprocessor based controller designed and programmed to control and monitor systems as shown. Resident programs shall be contained in reprogramable nonvolatile memory. Each universal programmable controller shall contain necessary power supplies, transformers, memory, I/O functions and communications interfaces necessary to perform its required functions and to provide control and monitoring of connected equipment and devices. It shall contain all necessary I/O functions to connect to field sensors and controls. I/O operation shall be fully supervised to detect I/O function failures. It shall provide for operation as a device connected to the system via the manufacturers control network. # 2.13.3.1 Integral Features The universal programmable controller shall include as a minimum: - a. Main power switch. - b. Power on indicator. - c. Portable workstation/tester port, connector, and if necessary power supply. - d. Manufacturers control network port. - e. I/O functions - (1) 8 DI - (2) 4 DO - (3) 8 AI - (4) 4 AO - (5) 1 PA - f. On-Off-Auto switches for each DO which controls a device. These switches shall be mounted in the universal programmable controller, with the exception of motors, for which the switch shall be mounted at the motor control center. On-Off-Auto switches are not required for DO associated with a status or alarm such as pilot lights. The status of these switches shall be available to the panel for further processing. - g. Minimum-Maximum-Auto switches, or Auto-Manual switches with manual output override, for each AO. The status of these shall be available to the panel for further processing. #### 2.13.3.2 Communication Interfaces The UPC shall have the following communication capabilities which shall function simultaneously. - a. Manufacturers Control Network. The manufacturers control network communications interface for a data transmission systems (DTS) circuit between the UPC and a network control panels shall be provided. The DTS will provide for transmission speeds necessary to comply with performance requirements specified. DTS equipment shall be installed in the UPC Panel enclosure. - b. Portable Workstation/Tester Port. A communications port for interfacing to a portable workstation/tester shall be provided. A UPC workstation/tester port other than RS-232, shall be converted to RS-232, including cabling and power supply, and shall be permanently installed in the panel. # 2.13.3.3 Memory and RTC Backup The UPC memory and real time clock functions shall continue to operate for a minimum of 72 hours in the event of a power failure. If rechargeable batteries are provided, automatic charging of batteries shall be provided. Whenever a either a permanent workstation/tester or portable workstation/tester is monitoring the network control panel, a low battery alarm message shall be sent to it. # 2.13.3.4 Specific Requirements Each universal programmable controller shall be accessible for purposes of application selection, control parameters, set point adjustment, and monitoring from any DDC controller connected to the same manufacturers control network as the universal programmable controller. This shall be done using a portable workstation/tester connected to a portable workstation/tester port either directly or via modem. ## 2.13.3.5 Locking Enclosures Locking type mounting cabinets with common keying shall be furnished for each enclosure. #### 2.13.3.6 Failure Mode Upon failure of the universal programmable controller, it shall revert to the failure mode of operation as shown. # 2.13.4 Unitary Controller The unitary controller shall be a microprocessor based, stand-alone, dedicated purpose controller, communicating with the
network control panel, designed and programmed to control air distribution system mixing boxes, terminal units, heat pumps, fan coil units, self-contained DX units or VAV boxes as shown. Each unitary controller shall contain resident programs in nonvolatile memory for each specific application implemented. Each unitary controller shall contain necessary power supplies, transformers, memory, I/O functions and communications interfaces necessary to perform its required functions and to provide control and monitoring of connected equipment and devices. It shall contain all necessary I/O functions to connect to field sensors and controls. I/O operation shall be fully supervised to detect I/O function failures and shall provide for operation as a device connected to the network control panel via the manufacturers control network. ## 2.13.4.1 Integral Features The unitary controller shall include: - a. Main power switch. - b. Power on indicator. - c. Portable workstation/tester port, connector, and power supply. - d. Manufacturers control network port. - e. All I/O functions required to implement the requirements as shown. - f. On-Off-Auto switches for each DO which controls a device. These switches shall be mounted in the field panel, with the exception of motors, for which the switch shall be mounted at the motor control center. On-Off-Auto switches are not required for DO associated with a status or alarm such as pilot lights. The status of these switches shall be available to the panel for further processing. - g. Minimum-Maximum-Auto switches, or Auto-Manual switches with manual output override, for each AO. The status of these shall be available to the panel for further processing. # 2.13.4.2 Communication Interfaces The unitary controller shall have the following communication capabilities which shall function simultaneously. - a. Manufacturers Control Network. The manufacturers control network communications interface for a data transmission systems (DTS) circuit between the unitary controller and a network control panel shall be provided. The DTS will provide for transmission speeds necessary to comply with performance requirements specified. DTS equipment shall be installed in the unitary control panel enclosure. - b. Portable Workstation/Tester Port. A communications port for interfacing to a portable workstation/tester shall be provided. A unitary controller workstation/tester port other than RS-232, shall be converted to RS-232, including cabling and power supply, and shall be permanently installed in the panel. For unitary controller applications where the controller is not mounted in an enclosure, such as for fan-coil units or VAV terminal units, a portable conversion device for an RS-232 connection to the portable workstation/tester may be provided. ## 2.13.4.3 Specific Requirements Unitary controller components for new air distribution terminal units shall be furnished to the air distribution terminal unit manufacturer for factory mounting and calibration. Existing air distribution terminal units shall be controlled by field installed unitary controllers. - a. Accessibility and Interfaces: Each unitary controller shall be accessible for purposes of application selection, control parameters, set point adjustment, and monitoring using a portable workstation/tester connected to the manufacturers control network. They shall also be accessible with a portable workstation/tester connected to the unitary controller portable workstation/tester port. - b. Air Distribution Terminal Unit Controls Pressure Independent: Controls shall consist of a transducer for connection to the velocity-sensing device provided by the terminal unit supplier in the primary air entering the terminal unit, a room temperature sensor, a damper actuator, and an adjustable microprocessor-based controller. The room temperature sensor shall have occupant setpoint adjustment and temperature display, timed override of unoccupied mode, and a communication port. The controller shall operate the damper for cooling and heating and provide control outputs for duct heating coil if applicable. This controller capability shall allow the sequencing of the damper and the heating coil to maintain conditions in the space. - c. Air Distribution Terminal Unit Controls Pressure Independent with Recirculating Fan: Controls for pressure-independent boxes with recirculating fans shall consist of a transducer for connection to the velocity-sensing device provided by the terminal unit supplier in the primary air entering the terminal unit, a room temperature sensing element, a damper actuator, an adjustable microprocessor-based terminal unit controller, and a switch to operate the recirculation fan, provided by the terminal unit supplier. The room temperature sensor shall have occupant setpoint adjustment and temperature display, timed override of unoccupied mode, and a communication port. The controller shall operate the damper for cooling and shall provide outputs for controlling the recirculation fan and duct heating coil in sequence for heating. - d. Air Distribution Terminal Unit Damper Actuator: Air distribution terminal unit damper actuator shall open or close the device to which it is connected within 60 seconds. The damper actuator shall utilize spring return to fail to the position shown on loss of power or control signal #### 2.13.4.4 Failure Mode Upon failure of the unitary controller, it shall revert to the failure mode of operation as shown. ## 2.13.5 I/O Functions ## 2.13.5.1 DDC Hardware I/O Functions ${\ \ \, }$ I/O Functions shall be provided as part of the DDC system and shall be in accordance with the following: - a. The analog input (AI) function shall monitor each analog input, perform A-to-D conversion, and hold the digital value in a buffer for interrogation. The A-to-D conversion shall have a minimum resolution of 10 bits plus sign. Signal conditioning shall be provided for each analog input. Analog inputs shall be individually calibrated for zero and span, in hardware or in software. The AI shall incorporate common mode noise rejection of 50 dB from 0 to 100 Hz for differential inputs, and normal mode noise rejection of 20 dB at 60 Hz from a source impedance of 10,000 ohms. Input ranges shall be within the range of 4-to-20 mAdc. - b. The analog output (AO) function shall accept digital data, perform D-to-A conversion, and output a signal within the range of 4-to-20 mAdc. D-to-A conversion shall have a minimum resolution of eight bits plus sign. Analog outputs shall be individually calibrated for zero and span. Short circuit protection on voltage outputs and open circuit protection on current outputs shall be provided. An individual gradual switch for manual override of each analog output and means of physically securing access to these switches shall be provided. Each AO shall have a three-position switch for selection of the DDC control signal, no control, or a locally generated control signal for connection to the controlled device. Feedback shall be provided to the system as to the status of the output (manual control or automatic). All switches shall be either of a key operated design with the same keying system used for other outputs or otherwise suitably protected from unauthorized access. - c. The digital input (DI) function shall accept on-off, open-close, or other change of state (two state data) indications. Isolation and protection against an applied steady-state voltage up to 180 Vac peak shall be provided. - d. The digital output (DO) function shall provide contact closures for momentary and maintained operation of output devices. Closures shall have a minimum duration of 0.1 second. DO relays shall have an initial breakdown voltage between contacts and coil of at least 500 V peak. Electromagnetic interference suppression shall be furnished on all output lines to limit transients to nondamaging levels. Protection against an applied steady-state voltage up to 180 Vac peak shall be provided. Minimum contact rating shall be one ampere at 24 Vac. Key locked HOA switches shall be provided for manual override of each digital output. Feedback shall be provided to the system as to the status of the output (manual control or automatic). Switches shall be common keyed. - e. The pulse accumulator function shall have the same characteristics as the DI. In addition, a buffer shall be provided to totalize pulses and allow for interrogation by the DDC system. The pulse accumulator shall accept rates up to 20 pulses per second. The totalized value shall be reset to zero upon operator's command. - f. Signal conditioning for sensors shall be provided as specified. - g. The binary coded decimal (BCD) function: The BCD function shall have the same characteristics as the DI, except that, in addition, a buffer shall be provided to totalize inputs and allow for interrogation by the network control panel. The BCD function shall have 16-channel optically isolated buffered inputs to read four digit numbers. The BCD function shall accumulate inputs at rates up to 10 inputs per second. #### 2.13.5.2 Failure Mode Upon failure of the I/O function, including data transmission failure, logic power supply failure, DDC processor malfunction, software failure, interposing relay power failure, or any other failure which prevents stand alone operation of any DDC normally capable of stand alone operation, connected outputs shall be forced to the failure mode shown. ## 2.13.6 Portable Workstation/Tester A portable workstation/tester shall be provided and shall be able to connect to any DDC hardware. The portable workstation/tester shall consist of a portable computer with a nominal 10 inch active color matrix liquid crystal display, capable of displaying up to 256 colors at a minimum resolution of 640 X 480 pixels, an external VGA monitor port, 32 bit microprocessor operating at a minimum of 100 MHZ. The portable workstation/tester shall have, as a
minimum, a 1200 MB hard drive, 16 megabytes of memory, integral pointing device, serial and parallel ports, color VGA video port for an external color monitor, 3.5 inch floppy disk drive, modem, PCMCIA type 3 slot, rechargeable battery, battery charger and 120 Vac power supply. It shall include carrying case, extra battery, charger and a compatible network adapter. The workstation/tester shall: - a. Run DDC diagnostics. - $\ensuremath{\text{b.}}$ Load all DDC memory resident programs and information, including parameters and constraints. - c. Display any AI, DI, AO, DO, or PA point in engineering units for analog points or status for digital points. - d. Control any AO or DO. - e. Provide an operator interface, contingent on password level, allowing the operator to use full English language words and acronyms, or an object oriented graphical user interface. - f. Display database parameters. - g. Modify database parameters. - h. Accept DDC software and information for subsequent loading into a specific DDC. Provide all necessary software and hardware required to support this function, including an EIA ANSI/EIA/TIA 232-F port. - i. Disable/enable each DDC. - j. Perform all workstation functions as specified. # 2.13.7 Data Terminal Cabinet (DTC) The DTC shall be an independent metallic enclosure not physically part of the network control panel/RIU as shown. The DTC shall be sized to accommodate the number of I/O functions required for each network control panel/RIU, including installed spares, plus 10% expansion for each type of I/O function provided. The DTC shall be divided into analog input and output groups and digital input and output groups. The DTC shall be provided with double sided screw type terminal strips. One side of the terminal strip shall be used for termination of field wiring from instrumentation-mentation and controls. The other side shall be used to connect the DTC to the network control panel/RIU. Terminal strips shall have individual terminal identification numbers. The DTC shall be a locking type mounting enclosure, with common keying and door switch wired to an input for intrusion alarm annunciation at the central station. DTC keying shall be identical to network control panel/RIU keying. #### 2.14 DDC SOFTWARE All DDC software described in this specification shall be furnished as part of the complete DDC System. ## 2.14.1 Operating System Each DDC shall contain an operating system that controls and schedules that DDC's activities in real time. The DDC shall maintain a point database in its memory that includes all parameters, constraints, and the latest value or status of all points connected to that DDC. The execution of DDC application programs shall utilize the data in memory resident files. The operating system shall include a real time clock function that maintains the seconds, minutes, hours, date and month, including day of the week. Each DDC real time clock shall be automatically synchronized with the network control panel real time clock at least once per day to plus or minus 10 seconds. When the network control panel is connected to a central workstation/tester, the network control panel RTC shall be updated by the central workstation/tester RTC. The time synchronization shall be accomplished without operator intervention and without requiring system shutdown. The operating system shall allow loading of software, data files data entry, and diagnostics from the central workstation/tester both locally through the central workstation/tester port and remotely through a network control panel and the manufacturers control network. # 2.14.1.1 Startup The DDC shall have startup software that causes automatic commencement of operation without human intervention, including startup of all connected I/O functions. A DDC restart program based on detection of power failure at the DDC shall be included in the DDC software. Upon restoration of power to the DDC, the program shall restart equipment and restore loads to the state at time of power failure, or to the state as commanded by time programs or other overriding programs. The restart program shall include start time delays between successive commands to prevent demand surges or overload trips. The startup software shall initiate operation of self-test diagnostic routines. Upon failure of the DDC, if the database and application software are no longer resident or if the clock cannot be read, the DDC shall not restart and systems shall remain in the failure mode indicated until the necessary repairs are made. If the database and application programs are resident, the DDC shall resume operation after an adjustable time delay of from 0 to 600 seconds. The startup sequence for each DDC shall include a unique time delay setting for each control output when system operation is initiated. ## 2.14.1.2 Operating Mode Each DDC shall control and monitor functions as specified, independent of communications with other DDC. This software shall perform all DDC functions and DDC resident application programs as specified using data obtained from I/O functions and based upon the DDC real time clock function. When communications circuits between the DDC are operable, the DDC shall obtain real time clock updates and any required global data values transmitted from other network control panels. The DDC software shall execute commands after performing constraints checks in the DDC. Status and analog values, including alarms and other data shall be transmitted from other network control panels when communications circuits are operable. If communications are not available, each DDC shall function in stand-alone mode and operational data, including the latest status and value of each point and results of calculations, normally transmitted from other network control panels shall be stored for later transmission to the network control panel. Storage for the latest 256 values shall be provided at each network control panel. Each DDC shall accept software downloaded from the network control panel. Constraints shall reside at the DDC. #### 2.14.1.3 Failure Mode Upon failure for any reason, each DDC shall perform an orderly shutdown and force all DDC outputs to a predetermined (failure mode) state, consistent with the failure modes shown and the associated control device. #### 2.14.2 Functions The Contractor shall provide software necessary to accomplish the following functions, as appropriate, fully implemented and operational, within each network control panel, RIU, unitary controller and universal programmable controller. - a. Scanning of inputs. - b. Control of outputs. - c. Reporting of analog changes outside a selectable differential. - d. Reporting of unauthorized digital status. - e. Reporting of alarms automatically to network control panel. - f. Reporting of I/O status to network control panel upon request. - g. Maintenance of real time, updated by the network control panel at least once a day. - h. Communication with the network control panel. - i. Execution of DDC resident application programs. - j. Averaging or filtering of AIs. - k. Constraints checks (prior to command issuance). - 1. Diagnostics. - m. Portable workstation/tester operation as specified. - n. Reset of PA by operator based on time and value. ## 2.14.2.1 Analog Monitoring The system shall measure and transmit analog values including calculated analog points. An analog change in value is defined as a change exceeding a preset differential value as specified. The record transmitted for each analog value shall include a readily identifiable flag which indicates the abnormal status of the value when it deviates from operator selectable upper and lower analog limits. Analog values shall be expressed in proper engineering units with sign. Engineering units conversions shall be provided for each measurement. Each engineering units conversion set shall include range, span, and conversion equation. A vocabulary of engineering unit descriptors shall be provided, using at least three alphanumeric characters to identify information in the system. The system shall support 255 different engineering units. ## 2.14.2.2 Logic (Virtual) Points Logic (virtual) points shall be software points entered in the point database which are not directly associated with a physical I/O function. Logic (virtual) points shall be analog or digital points created by calculation from any combination of digital and analog points, or other data having the properties of real points, including alarms, without the associated hardware. Logic (virtual) points shall be defined or calculated and entered into the database by the Contractor. The calculated analog point shall have point identification in the same format as any other analog point. The calculated point shall be used in any program where the real value is not obtainable directly. Constants used in calculations shall be changeable on-line by the operator. Calculated point values shall be current for use by the system within 10 seconds of the time of any input changes. ## 2.14.2.3 State Variables If an analog point represents more than two (up to eight) specific states, each state shall be nameable. For example, a level sensor shall be displayed at its measured engineering units plus a state variable with named states usable in programs or for display such as low alarm/low/normal/high/high alarm. ## 2.14.2.4 Analog Totalization Any analog point shall be operator assignable to the totalization program. Up to eight analog values shall be totalized within a selectable time period. At the end of the period, the totals shall be stored. Totalization shall then restart from zero for the next time period. The program shall keep track of the peak and total value measured during the current period and for the previous period. The operator shall be able to set or reset each totalized value individually. The time period shall be able to be operator defined, modified or deleted on-line.
2.14.2.5 Energy Totalization The system shall calculate the heat energy in Btus, for each energy source consumed by the mechanical systems specified, totalize the calculated Btus, the instantaneous rate in Btus per hour, and store totals in thousands of Btus (MBtu). The Btus calculated shall be totalized for an adjustable time period. The time period shall be defined uniquely for each Btu totalization. #### 2.14.2.6 Trending Any analog or calculated point shall be operator assignable to the trend program. Up to eight points shall be sampled at individually assigned intervals, selectable between one minute and two hours. A minimum of the most recent 128 samples of each trended point shall be stored. The sample intervals shall be able to be defined, modified, or deleted on-line. ## 2.14.3 I/O Point Database/Parameter Definition Each I/O point shall be defined in a database residing in the DDC. The definition shall include all physical parameters associated with each point. Each point shall be defined and entered into the database by the Contractor, including as applicable: - a. Name. - b. Device or sensor type (i.e., sensor, control relay, motors). - c. Point identification number. - d. Unit. - e. Building number. - f. Area. - g. Island. - h. DDC number and channel address. - i. KW (running). - j. KW (starting). - k. Sensor range. - 1. Controller range. - m. Sensor span. - n. Controller span. - o. Engineering units conversion (scale factor). - p. Setpoint (analog). - q. High reasonableness value (analog). - r. Low reasonableness value (analog). - s. High alarm limit differential (return to normal). - t. Low alarm limit differential (return to normal). - u. High alarm limit (analog). - v. Low alarm limit (analog). - w. Alarm disable time period upon startup or change of setpoint. - x. Analog change differential (for reporting). - y. Alarm class and associated primary message text. - z. High accumulator limit (pulse). - aa. Status description. - bb. Run time target. - cc. Failure mode as specified and shown. - dd. Constraints as specified. #### 2.14.4 Alarm Processing Each DDC shall have alarm processing software for AI, DI, and PA alarms for all real and virtual points connected to that DDC. ## 2.14.4.1 Digital Alarms Definition Digital alarms are those abnormal conditions indicated by DIs as specified and shown. ## 2.14.4.2 Analog Alarms Definition Analog alarms are those conditions higher or lower than a defined value, as measured by an AI. Analog readings shall be compared to predefined high and low limits, and alarmed each time a value enters or returns from a limit condition. Unique high and low limits shall be assigned to each analog point in the system. Analog alarm limits shall be stored in the DDC database. Each analog alarm limit shall have an associated unique limit differential specifying the amount by which a variable must return into the proper operating range before being annunciated as a return-to-normal-state. All limits and differentials shall be entered on-line by the operator in limits of the measured variable, without interruption or loss of monitoring of the point concerned. The program shall automatically change the high or low limits or both, of any analog point, based on time scheduled operations as specified, allowing for a time interval before the alarm limit becomes effective. In CPA applications, key the limit to a finite deviation traveling with the setpoint. The system shall automatically suppress analog alarm reporting associated with a digital point when that digital point is turned off. #### 2.14.4.3 Pulse Accumulator Alarms Definition Pulse accumulator alarms are those conditions calculated from totalized values of accumulator inputs or PA input rates that are outside defined limits as specified and shown. PA totalized values shall be compared to predefined limits and alarmed each time a value enters a limit condition. Unique limits shall be assigned to each PA point in the system. Limits shall be stored in the DDC database. #### 2.14.5 Constraints ## 2.14.5.1 Equipment Constraints Definitions Each control point in the database shall have DDC resident constraints defined and entered by the Contractor, including as applicable: - a. Maximum starts (cycles) per hour. - b. Minimum off time. - c. Minimum on time. - d. High limit (value in engineering units). - e. Low limit (value in engineering units). #### 2.14.5.2 Constraints Checks Control devices connected to the system shall have the DDC memory resident constraints checked before each command is issued to insure that no equipment damage will result from improper operation. Each command shall be executed by the DDC only after all constraints checks have been passed. Each command point shall have unique constraints assigned. High and low "reasonableness" values or one differential "rate-of-change" value shall be assigned to each AI. Values outside the reasonableness limits shall be rejected and an alarm message sent to the network control panel or portable workstation/tester. Status changes and analog point values shall be reported to the workstation upon operator request, such as for reports, alphanumeric displays, graphic displays, and application programs. Each individual point shall be capable of being selectively disabled by the operator from a workstation/tester. Disabling a point shall prohibit monitoring and automatic control of that point. # 2.14.6 Diagnostics Each DDC shall have self-test diagnostic routines implemented in firmware. The tests shall include routines that exercise memory. Diagnostic software shall be usable in conjunction with the central workstation/tester and portable workstation/tester. The software shall display messages in English to inform the tester's operator of diagnosed problems. ## 2.14.7 Summer-Winter Operation Monitoring The system shall provide software to automatically change the operating parameters, monitoring of alarm limits, and start-stop schedules for each mechanical system from summer to winter and vice-versa. The software shall provide automatic commands to applications programs to coordinate proper summer or winter operation. Change over setpoints shall be operator selectable and settable. # 2.14.8 Control Sequences and Control Loops Sufficient memory shall be provided to implement the requirements specified and shown for each DDC. Specific functions to be implemented are defined in individual system control sequences and database tables shown in the drawings, and shall include, as applicable, the following: - a. PI Control: This function shall provide proportional control and proportional plus integral control. - b. Two Position Control: This function shall provide control for a two state device by comparing a set point against a process variable and an established deadband. - c. Floating Point Control: This function shall exercise control when an error signal exceeds a selected deadband, and shall maintain control until the error is within the deadband limits. - d. Signal Selection: This function shall allow the selection of the highest or lowest analog value from a group of analog values as the basis of control. The function shall include the ability to cascade analog values so that large numbers of inputs can be reduced to one or two outputs. - e. Signal Averaging: This function shall allow the mathematical calculation of the average analog value from a group of analog values as the basis of control. The function shall include the ability to "weight" the individual analog values so that the function output can be biased as necessary to achieve proper control. - f. Reset Function: This function shall develop an AO based on up to two AIs and one operator specified reset schedule. - g. Cooling/Heating Operation Program: Software shall be provided to change, either automatically or on operator command, the operating parameters, monitoring of alarm limits, and start-stop schedules for each mechanical system where such a change from cooling to heating and vice versa is meaningful. The software shall provide commands to application programs to coordinate cooling or heating mode operation. Software shall automatically switch facilities from cooling to heating, and vice versa, based on schedules or temperatures. All HVAC equipment and systems shall be assigned to the program. #### 2.14.9 Command Priorities A scheme of priority levels shall be provided to prevent interaction of a command of low priority with a command of higher priority. The system shall require the latest highest priority command addressed to a single point to be stored for a period of time longer than the longest time constraint in the on and off states, insuring that the correct command shall be issued when the time constraint is no longer in effect or report the rejected command. Override commands entered by the operator shall have higher priority than those emanating from applications programs. # 2.14.10 Resident Application Software The Contractor shall provide resident applications programs to achieve the sequences of operation, parameters, constraints, and interlocks necessary to provide control of the systems connected to the DDC system. Application programs shall be resident and shall execute in the DDC, and shall coordinate with each other, to insure that no conflicts or contentions remain unresolved. The Contractor shall coordinate the application programs specified with the equipment and controls operation, and other specified requirements. A scheme of priority levels shall be provided to prevent interaction of a command of low priority with a command of higher priority. The system shall require the latest highest priority command addressed to a single point to be stored for a period of time longer than the longest time constraint in the ON and OFF states, insuring that the correct command shall be issued when the time constraint is no longer in effect or the rejected command shall be reported. Override
commands entered by the operator shall have higher priority than those emanating from application programs. # 2.14.10.1 Program Inputs and Outputs The Contractor shall select the appropriate program inputs listed for each application program to calculate the required program outputs. Where the specific program inputs are not available, a "default" value or virtual point appropriate for the equipment being controlled and the proposed sequence of operation shall be provided to replace the missing input, thus allowing the application program to operate. AIs to application programs shall have an operator adjustable deadband to preclude short cycling or hunting. Program outputs shall be real analog or digital outputs or logic (virtual) points as required to provide the specified functions. The Contractor shall select the appropriate input and output signals to satisfy the requirements for control of systems as shown. ## 2.14.10.2 DDC General Conditions The Contractor shall provide software required to achieve the sequences of operation, parameters, constraints, and interlocks shown. Application software shall be resident in the DDC in addition to any other required software. In the event of a DDC failure, the controlled equipment shall continue to function in the failure mode shown. # 2.14.10.3 Scheduled Start/Stop Program This program shall start and stop equipment based on a time of day schedule for each day of the week, and on a holiday schedule. To eliminate power surges, an operator adjustable time delay shall be provided between consecutive start commands. # a. Program Inputs: - (1) Day of week/holiday. - (2) Time of day. - (3) Cooling and heating high-low alarm limits. - (4) Cooling and heating start-stop schedules. - (5) Cooling or heating mode of operation. - (6) Equipment status. - (7) Equipment constraints. - (8) Consecutive start time delay. - b. Program Outputs: Start/stop signal. # 2.14.10.4 Optimum Start/Stop Program This program shall start and stop equipment as specified for the scheduled start/stop program, but shall include a sliding schedule based on indoor and outdoor air conditions. The program shall take into account the thermal characteristics of the structure, and indoor and outdoor air conditions, using prediction software to determine the minimum time of HVAC system operation needed to satisfy space environmental requirements at the start of the occupied cycle, and determine the earliest time for stopping equipment at the day's end without exceeding space environmental requirements. An adaptive control algorithm shall be utilized to automatically adjust the constants used in the program. #### a. Program Inputs: - (1) Day of week/holiday. - (2) Time of day. - (3) Cooling or heating mode of operation. - (4) Equipment status. - (5) Cooling and heating building occupancy schedules. - (6) Space temperature. - (7) Building heating constant (operator adjustable and automatically optimized). - (8) Building cooling constant (operator adjustable and automatically optimized). - (9) OA temperature. - (10) Required space temperature at occupancy (heating). - (11) Required space temperature at occupancy (cooling). - (12) Equipment constraints. - (13) Cooling and heating high-low alarm limits. - b. Program Outputs: Start/stop signal. # 2.14.10.5 Day-Night Setback Program The software shall limit the rise or drop of space temperature (or specified fluid temperature) during unoccupied hours. Whenever the space temperature (or specified fluid temperature) is above (or below for heating) the operator assigned temperature limit, the system shall be turned on until the temperature is within the assigned temperature limit. ## a. Program Inputs: - (1) Day of week. - (2) Time of day. - (3) Cooling or heating mode of operation. - (4) Cooling and heating occupancy schedules. - (5) Equipment status. - (6) Space temperature (or specified fluid temperature). - (7) Minimum space temperature (or specified fluid temperature) during unoccupied periods. - (8) Maximum space temperature (or specified fluid temperature) during unoccupied periods. - (9) Equipment constraints. - b. Program Outputs: Start/stop signal. ## 2.14.10.6 Economizer Program I The software shall reduce the HVAC system cooling requirements when the OA dry bulb temperature is less than the return air temperature. When the OA dry bulb temperature is above the return air temperature or changeover setpoint, the OA dampers, return air dampers, and relief air dampers shall be positioned to provide minimum required OA. When the OA dry bulb temperature is below a changeover setpoint temperature, the OA dampers, return air dampers, and exhaust air dampers shall be positioned to maintain the required mixed air temperature. - a. Program Input: - (1) Changeover conditions. - (2) OA dry bulb temperature. - (3) RA dry bulb temperature. - (4) Mixed air dry bulb temperature. - (5) Equipment constraints. - b. Program Output: Damper actuator/cooling control signal. # 2.14.10.7 Ventilation/Recirculation and Flush Programs The software shall reduce the HVAC system thermal load for two modes of operation and provide for flushing of the building as follows: - a. Ventilation mode: In this mode, the system shall precool the space prior to building occupancy. When the outside air temperature is lower than the space temperature, the outside air damper and exhaust air damper shall open to their maximum positions and the return air damper shall close to its minimum position. - b. Recirculation mode: In this mode, the system shall preheat the space prior to building occupancy. When the outside air temperature is lower than the space temperature, the outside air damper and the exhaust air damper shall close to their minimum positions and the return air damper shall open to its maximum position. - c. Flush mode: The software shall use the HVAC supply system to provide 100% outside air for ventilation purpose and flush building spaces. The network control panel shall modulate the control valves to maintain the air supply temperature setpoints while the flush program is in effect. The flush mode shall be manually initiated and have the highest priority (it shall override all other programs). The outside air damper and the exhaust air damper shall be closed at other times during unoccupied periods, except for economizer operation during day/night setback periods. For systems without mechanical cooling, this program shall, in addition to the above requirements, act as an economizer. The outside, return, and exhaust air dampers shall be modulated to maintain the required mixed air temperature setpoint. When this program is released, the outside and exhaust air dampers shall return to their minimum positions, and the return air damper shall return to its maximum position. # d. Program Inputs: - (1) Day of week. - (2) Time of day. - (3) Cooling or heating mode of operation. - (4) Equipment status. - (5) Cooling and heating occupancy schedules. - (6) OA dry bulb temperature. - (7) Space temperature. - (8) Equipment constraints. - e. Program Output: Damper actuator control signal. # 2.14.10.8 Reheat Coil Reset Program The software shall select the zone with the least amount of heat required. The program shall reset the cold deck discharge temperature upward until it satisfies the zone with the lowest demand, or until the zone humidity control requirements cannot be met. # a. Program Inputs: - (1) Zone RH high limit. - (2) Zone temperature (where shown). - (3) Zone RH (where shown). - (4) Cold deck temperature. - (5) Reheat coil valve positions or proportional signals from primary elements. - (6) Minimum space temperature during occupied periods. - (7) Maximum space temperature during occupied periods. - (8) Equipment constraints. b. Program Output: Cold deck valve actuator control signal. # 2.14.10.9 Air Volume Control Program The software shall monitor supply and return/exhaust air flow volumes and modulate fan controls to maintain required air flow volumes and/or ratio or fixed differential of supply to return air flows. This program shall be coordinated with the ventilation-recirculation program and the economizer program for damper control and with static pressure control requirements for fan control. # a. Program Inputs - (1) Supply air flow. - (2) Return/exhaust air flow. - (3) Required supply air flow high and low limits.(4) Required return/exhaust air flow high and low limits. - (5) Volume offset or ratio, as appropriate. # b. Program Outputs - (1) Supply fan volume control. - (2) Return/exhaust fan volume control. # 2.14.10.10 Air Distribution Unitary Controller Software Software shall be provided for the management and control of the air distribution terminal units. Software shall allow for operator definition of multiple air distribution terminal units as functional groups which may be treated as a single entity; monitoring, alarming and reporting of terminal unit parameters on an individual or group basis; and remote setpoint adjustment on an individual or group basis. ## a. Functions: - (1) Volume control in response to temperature. - (2) Volume flow limits, minimum and maximum. - (3) Occupied and unoccupied operation with associated temperature and volume limits. - (4) Temperature setpoint override. # b. Program Inputs - (1) Space temperature. - (2) Space temperature setpoint. - (3) Space temperature setpoint limits. - (4) Supply airflow volume. - (5) Supply airflow volume high and low limits. # c. Program Outputs - Supply volume control signal. (1) - (2) Auxiliary fan start/stop signal. - (3) Supplemental heat control signal. # 2.14.10.11 Hot Water OA Reset Program The software shall reset the hot water temperature supplied by the boiler or converter in accordance with the OA temperature or other specified independent- dent variable. The hot water supply temperature shall be reset downward or upward from a fixed temperature proportionally, as a function of OA temperature or
other specified independent variable. ## a. Program Inputs - (1) Reset schedule. - (2) OA dry bulb temperature or other specified independent variable. - (3) Hot water supply temperature. - (4) Maximum hot water supply temperature. - (5) Minimum hot water supply temperature. - (6) Equipment constraints. - b. Program Output: Valve actuator control signal. # 2.14.10.12 Heat Recovery Boiler Efficiency and Monitoring The software shall remotely monitor and calculate efficiency of heat recovery boiler operation. The program shall monitor inputs and alarm operator if any monitored point exceeds a predetermined value or changes status incorrectly. ## a. Program Inputs - (1) Flue gas oxygen.(stack) - (2) Flue gas temperature.(stack) - (3) Make-up flow. - (4) Furnace draft. - (5) Hot water flow (hot water gas furnace). - (6) Hot water pressure (hot water gas furnace). - (7) Hot water supply temperature (hot water gas furnace). - (8) Hot water return temperature (hot water gas furnace). - (9) Hot water BTUs (hot water gas furnace). - b. Program Output: Heat recovery boiler efficiency # 2.14.10.13 Hot Water Distribution Program The software shall control the hot water distribution temperature to individual building zones. The zone hot water distribution temperature shall be reset downward or upward from a fixed temperature proportionally as a function of OA temperature or other specified independent variable by modulating the respective zone mixing valve. The zone pump shall be stopped when the OA temperature exceeds the specified setpoint. When parallel pumps are used, the software shall alternate pump operation and shall start the standby pump (after a time delay) upon failure of the operating pump. #### a. Program Inputs - (1) Zone hot water distribution temperature. - (2) Reset schedule. - (3) OA dry bulb temperature or other specified independent variable. - (4) Maximum zone hot water distribution temperature. - (5) Zone pump status. - (6) Equipment constraints. ## b. Program Outputs - (1) Zone mixing valve control. - (2) Zone pump start/stop signal(s). ## 2.14.10.14 Domestic Hot Water Generator Program The software shall control the domestic hot water temperature by adjusting the hot water heating control valve. # a. Program Inputs - (1) Domestic hot water temperature. - (2) Domestic hot water temperature setpoint. - b. Program Output: Hot water heating control valve actuator control signal. # 2.14.10.15 Lighting Control Program The software shall turn lights on and off based on the time of day and the day of week, including holidays. The program shall generate additional commands at operator adjustable intervals to assure that lights are off (relay operated zoned lighting only). ## a. Program Inputs - (1) Day of week-holiday. - (2) Time of day. - (3) Cooling and heating start-stop schedules. - (4) Equipment status. - (5) Times of day for additional off commands (where applicable). - b. Program Output: On/off signal. #### PART 3 EXECUTION # 3.1 GENERAL INSTALLATION CRITERIA #### 3.1.1 HVAC Control System The HVAC control system shall be completely installed and ready for operation. Dielectric isolation shall be provided where dissimilar metals are used for connection and support. Penetrations through and mounting holes in the building exterior shall be made watertight. The HVAC control system installation shall provide clearance for control system maintenance by maintaining access space between coils, access space to mixed-air plenums, and other access space required to calibrate, remove, repair, or replace control system devices. The control system installation shall not interfere with the clearance requirements for mechanical and electrical system maintenance. #### 3.1.2 Software Installation Software shall be loaded for an operational system, including databases for all points, operational parameters, and system, command, and application software. The Contractor shall provide original and backup copies of source, excluding the general purpose operating systems and utility programs furnished by computer manufacturers and the non-job-specific proprietary code furnished by the system manufacturer, and object modules for software on each type of media utilized, within 30 days of formal Government acceptance. In addition, a copy of individual floppy disks of software for each DDC panel shall be provided. ## 3.1.3 Device Mounting Criteria Devices mounted in or on piping or ductwork, on building surfaces, in mechanical/electrical spaces, or in occupied space ceilings shall be installed in accordance with manufacturer's recommendations and as shown. Control devices to be installed in piping and ductwork shall be provided with required gaskets, flanges, thermal compounds, insulation, piping, fittings, and manual valves for shutoff, equalization, purging, and calibration. Strap-on temperature sensing elements shall not be used except as specified. ## 3.1.4 Wiring Criteria Wiring external to control panels, including low-voltage wiring, shall be installed in metallic raceways. Nonmetallic-sheathed cables or metallic-armored cables may be installed in areas permitted by NFPA 70 Wiring shall be installed without splices between control devices and DDC panels. Instrumentation grounding shall be installed as necessary to prevent ground loops, noise, and surges from adversely affecting operation of the system. Ground rods installed by the contractor shall be tested as specified in IEEE Std 142. Cables and conductor wires shall be tagged at both ends, with the identifier shown on the shop drawings. Electrical work shall be as specified in Section 16415A ELECTRICAL WORK, INTERIOR and as shown. ## 3.2 CONTROL SYSTEM INSTALLATION ## 3.2.1 Damper Actuators Actuators shall not be mounted in the air stream. Multiple actuators operating a common damper shall be connected to a common drive shaft. Actuators shall be installed so that their action shall seal the damper to the extent required to maintain leakage at or below the specified rate and shall move the blades smoothly. # 3.2.2 Room Instrument Mounting Room instruments , such as wall mounted thermostats, shall be mounted 60 inches above the floor unless otherwise shown. Temperature setpoint devices shall be recess mounted. # 3.2.3 Freezestats For each 20 square feet of coil face area, or fraction thereof, a freezestat shall be provided to sense the temperature at the location shown. Manual reset freezestats shall be installed in approved, accessible locations where they can be reset easily. The freezestat sensing element shall be installed in a serpentine pattern. 3.2.4 Averaging Temperature Sensing Elements Sensing elements shall have a total element minimum length equal to 1 linear foot per square foot of duct cross-sectional area. 3.2.5 Duct Static Pressure Sensing Elements and Transmitters The duct static pressure sensing element and transmitter sensing point shall be located at 75% to 100% of the distance between the first and last air terminal units. 3.2.6 Indication Devices Installed in Piping and Liquid Systems Gauges in piping systems subject to pulsation shall have snubbers. Gauges for steam service shall have pigtail fittings with cock. Thermometers and temperature sensing elements installed in liquid systems shall be installed in thermowells. - 3.3 CONTROL SEQUENCES OF OPERATION - 3.3.1 General Requirements HVAC Systems These requirements shall apply to all primary HVAC systems unless modified herein. The sequences describe the actions of the control system for one direction of change in the HVAC process analog variable, such as temperature, humidity or pressure. The reverse sequence shall occur when the direction of change is reversed. 3.3.1.1 Supply Fan Operating HVAC system outside air, return air, and relief air dampers shall function as described for specific modes of operation Cooling coil control valves and cooling coil circulating pumps shall function as described for the specific modes of operation . Heating coil valves shall be under control. 3.3.1.2 Supply Fan Not Operating When an HVAC system is stopped, the outside air and relief air dampers shall close, the return air damper shall open, all stages of direct-expansion cooling shall stop, the system shall pump down if it has a pump down cycle, humidification shall stop, and cooling coil valves for coils located indoors shall close to the coil. Cooling coil valves of units located outdoors shall open to the coil. Heating coil valves shall remain under control. 3.3.1.3 Hydronic Heating - Distribution Pump Operating Hydronic heat-exchanger valves shall be under control. 3.3.1.4 Hydronic Heating - Distribution Pump Not Operating Hydronic heat-exchanger valves shall close. 3.3.2 Perimeter Radiation Control Sequence All Modes - A room thermostat, located as shown, shall operate a control valve to maintain the setpoint as shown. #### 3.3.3 Cabinet Unit Heater All Modes - A wall-mounted thermostat with an "AUTO-OFF" switch located as shown, shall cycle the fan to maintain its setpoint as shown when the switch is in the "AUTO" position. When the switch is in the "OFF" position, the fan shall be stopped. # 3.3.4 All-Air Small Package Unitary System A microprocessor-based room thermostat, located as shown, with "HEAT-OFF-COOL" and "AUTO-ON" switches shall control the system. Heating Mode - Cooling unit shall be off, and heating shall be active. The thermostat shall operate the condensing unit and system fan to maintain the day and night setpoints as shown. Programmed occupied times shall be considered "day" and programmed unoccupied times shall be considered "night." Cooling Mode - Heating unit shall be off. During the day the thermostat shall operate the condensing units and system fan to maintain the setpoint. The condensing unit shall be off at night. Off Mode - The system shall be off. On Mode - The system fan shall run continuously. Auto Mode - The system fan shall operate whenever heating or cooling is
required. 3.3.5 Single Building Hydronic Heating with Existing Hot Water Gas Furnace #### 3.3.5.1 All Modes The DDC system shall accept a signal from a sunshielded outside air temperature sensing element and transmitter located as shown. The DDC system shall start and stop distribution pump and existing gas furnace existing at the outside air temperatures shown. The DDC system shall reset the hydronic heating supply temperature setpoint in a linear schedule based on the outside air temperature as shown. The DDC system shall accept a signal from a temperature sensing element and transmitter located in the hydronic heating supply line and the DDC system output shall modulate the hydronic heating system control valve to maintain the reset schedule setpoint in the hydronic heating supply line. # 3.3.5.2 Occupied Mode When the system time schedule places the system in the occupied mode, a space temperature sensing element and transmitter located as shown shall signal the DDC system, which shall maintain the space temperature setpoint shown by modulating the secondary hydronic system zone valve. ## 3.3.5.3 Unoccupied Mode When the system is in the unoccupied mode, the space temperature setpoint shall be as shown. - 3.3.6 Variable Air Volume Control Sequence without Return Fan - 3.3.6.1 Occupied, Unoccupied, and Ventilation Delay Modes of Operation Ventilation delay mode timing shall start prior to the occupied mode timing. During ventilation delay mode, the dampers shall remain in their normal positions as shown, except when under economizer control. At the time shown, the DDC system shall place the system in the occupied mode. At the expiration of the ventilation delay mode timing period, the DDC system shall place the minimum outside air damper under minimum outside air flow control and shall place the economizer outside air, return air, and relief air dampers under economizer control and mixed air temperature. At the time shown, the DDC system shall place the control system in the unoccupied mode of operation and all dampers shall return to their normal positions as shown. # 3.3.6.2 Supply Fan Control - a. Occupied and Ventilation Delay Modes Supply fan for RTU-1 shall start, and operate continuously. - b. Unoccupied Mode The supply fan shall cycle according to the night setback schedule. The fan shall start and stop at the setpoints as shown. ## 3.3.6.3 Supply Duct Pressurization Control When the supply fan starts, the DDC system shall modulate the inlet vanes from the signal of a static pressure sensing element and transmitter to maintain the setpoint as shown. A high limit static pressure switch in the fan discharge shall stop the supply fan and initiate a high static alarm when the static pressure exceeds the setpoint. When the fan is off, the inlet vanes shall be closed. #### 3.3.6.4 Filters A differential pressure switch across each filter shall initiate a filter alarm when the pressure drop across the filter reaches the setpoint as shown. #### 3.3.6.5 Freeze Protection All Modes - A freezestat, located as shown, shall stop the supply fan, cause the outside air, return air, and relief air dampers to return to their normal position, and shall initiate a low temperature alarm if the temperature drops below the freezestat's setpoint as shown. The DDC system shall monitor the freezestat through auxiliary contacts and shall indicate an alarm condition when the freezestat trips. # 3.3.6.6 Cooling Coil - a. Occupied and Ventilation Delay Modes The cooling coil control valve shall be modulated by the DDC system from the signal of a temperature sensing element and transmitter located in the coil discharge air to maintain the setpoint as shown. - b. Unoccupied Mode The cooling coil control valve shall remain closed. ## 3.3.6.7 Minimum Outside Air Flow Control - a. Occupied Mode The minimum outside air damper shall be modulated to maintain the minimum outside air flow at setpoint, as sensed by an air flow measurement station located in the minimum outside air duct. - b. Unoccupied and Ventilation Delay Modes The minimum outside air damper shall remain closed. # 3.3.6.8 Economizer and Mixed Air Temperature Control The DDC system shall accept the signal of an outside air temperature sensing element and transmitter and the signal of a return air temperature sensing element and transmitter. When the return air temperature is above the economizer setpoint, and the outside air temperature is sufficiently below the return air temperature to be effective for cooling, the DDC system shall place the AHU in the economizer mode by modulating the economizer outside air, relief air, and the return air dampers to maintain the mixed air temperature at setpoint. As the economizer outside air and relief air dampers open, the return air damper closes. When the system is not in economizer mode, the economizer outside air and relief air dampers shall remain closed and the return air damper shall remain open. # 3.3.6.9 Pressure Independent Terminal VAV Box with Velocity Controller All Modes - The control damper of the VAV box shall modulate in response to the signal from a flow sensing element at the discharge or inlet of the VAV box to a microprocessor based VAV box velocity controller. The velocity controller shall control the box damper from the minimum flow position to the full flow position from the signal of a space temperature sensing element located as shown. When the space temperature decreases, the damper shall gradually close to the minimum flow position to maintain the cooling setpoint as shown. When the space temperature calls for heating after the minimum flow position is reached, control shall then pass through a temperature dead band as shown. When the space temperature has dropped through the dead band, the duct heater coil shall be gradually controlled to maintain the heating setpoint as shown. #### 3.3.6.10 Fan Powered Terminal VAV Box a. Series Fan Powered Terminal Box. All Modes - The VAV box fan shall be energized from an upstream duct pressure switch confirming HVAC system fan operation. A space temperature sensing element, located as shown, acting through a microprocessor based VAV box controller, shall modulate the supply air control damper, mixing the supply air and recirculating room air to provide a constant volume of air to the space to maintain the cooling set point as shown until the supply air damper closes to minimum supply air flow. When the space temperature calls for heat after the supply air damper is closed to minimum flow and the VAV box is in maximum recirculation, control shall then pass through the temperature dead band. When the space temperature has dropped through the temperature dead band, the duct heater coil shall be gradually controlled to maintain the heating setpoint. ## 3.3.6.11 Emergency Fan Shutdown All Modes - Smoke detectors in the supply air and return air ductwork shall stop the supply fan and initiate a smoke alarm if smoke is detected at either location. Restarting the supply fan shall require manual reset at the smoke detector. - 3.3.7 Single Zone Hydronic Heating and Direct Expansion Cooling Coil - 3.3.7.1 Occupied, Unoccupied, and Ventilation Delay Modes Ventilation delay mode timing shall start prior to the occupied mode timing. The DDC system shall prevent the outside air damper from opening. At the time shown, the DDC system shall place the system in the occupied mode. At the expiration of the ventilation delay mode timing period, the DDC system shall allow the outside air damper to open. At the time shown, the DDC system shall place the control system in the unoccupied mode of operation. # 3.3.7.2 Outside Air, Return Air, and Relief Air Dampers - a. Occupied Mode The outside air, return air, and relief air dampers shall be under mixed air temperature and economizer control. - b. Unoccupied Mode The dampers shall return to their normal positions. - c. Ventilation Delay Mode The dampers shall return to their normal positions, except when under economizer control. # 3.3.7.3 Supply Fan Control - a. Occupied and Ventilation Delay Modes Supply fan for RTU-1 shall start and shall operate continuously. - b. Unoccupied Mode The supply fan shall cycle according to the night setback schedule. The fan shall start and stop at the setpoints shown. #### 3.3.7.4 Filter A differential pressure switch across the filter shall initiate a filter alarm when the pressure drop across the filter reaches the setpoint. ## 3.3.7.5 Freeze Protection All Modes - A freezestat, located as shown, shall stop the supply fan, cause the outside air, return air, and relief air dampers to return to their normal position, and shall initiate a low temperature alarm if the temperature drops below the freezestat's setpoint. Return to the normal mode of operation shall require manual reset at the freezestat. The DDC system shall monitor the freezestat through auxiliary contacts and shall indicate an alarm condition when the freezestat trips. # 3.3.7.6 Direct Expansion Cooling Coil - a. Occupied and Ventilation Delay Modes The stages of cooling shall be controlled according to the space temperature. - b. Unoccupied Mode Cooling shall be off. ## 3.3.7.7 Economizer Control The DDC system shall accept the signal of an outside air temperature sensing element and transmitter and the signal of a return air temperature sensing element and transmitter. The DDC system shall perform switchover between outside air economizer control mode and minimum outside air mode. Until the return air temperature rises above the setpoint, the DDC system shall hold the system in the minimum outside air mode. When the return air temperature rises above the setpoint, the DDC system shall place the AHU in the economizer mode or in the minimum outside air mode, as determined by a comparison of the outside air and return air temperatures in accordance with the differential temperature setpoints. When the outside air temperature is low with
respect to the return air temperature, the AHU shall be in the economizer mode. When the DDC system places the control system in the minimum outside air mode, the outside air damper shall be open to the minimum outdoor air setting. # 3.3.7.8 Space Temperature Sequenced Heating and Cooling Control When the DDC system is in the economizer mode, it shall maintain the setpoint as shown from the signal of a space temperature sensor and transmitter. On a rise in space temperature, the DDC system shall first gradually close the heating. After passing through a deadband, the DDC system shall gradually operate the outside air damper to admit outside air beyond the minimum quantity and after the outside air damper is fully open the DDC system shall operate the stages of cooling in sequence. When the DDC system is in the minimum outside air mode, the outside air damper shall be open to the minimum outside air setting. On a rise in space temperature, the DDC system shall first gradually close the heating. After passing through a deadband, the DDC system shall operate the stages of cooling in sequence. ## 3.3.7.9 Emergency Fan Shutdown All Modes - Smoke detectors in the supply air and return air ductwork shall stop the supply fan and initiate a smoke alarm if smoke is detected at either location. Restarting the supply fan shall require manual reset at the smoke detector. ## 3.4 COMMISSIONING PROCEDURES #### 3.4.1 Evaluations The Contractor shall make the observations, adjustments, calibrations, measurements, and tests of the control systems, set the time schedule, and make any necessary control system corrections to ensure that the systems function as described in the sequence of operation. #### 3.4.1.1 Item Check Signal levels shall be recorded for the extreme positions of each controlled device. An item-by-item check of the sequence of operation requirements shall be performed using Steps 1 through 4 in the specified control system commissioning procedures. Steps 1, 2, and 3 shall be performed with the HVAC system shut down; Step 4 shall be performed after the HVAC systems have been started. External input signals to the DDC system (such as starter auxiliary contacts, and external systems) may be simulated in steps 1, 2, and 3. With each operational mode signal change, DDC system output relay contacts shall be observed to ensure that they function. # 3.4.1.2 Weather Dependent Test Procedures Weather dependent test procedures that cannot be performed by simulation shall be performed in the appropriate climatic season. When simulation is used, the actual results shall be verified in the appropriate season. # 3.4.1.3 Two-Point Accuracy Check A two-point accuracy check of the calibration of each HVAC control system sensing element and transmitter shall be performed by comparing the DDC system readout to the actual value of the variable measured at the sensing element and transmitter or airflow measurement station location. Digital indicating test instruments shall be used, such as digital thermometers, motor-driven psychrometers, and tachometers. The test instruments shall be at least twice as accurate as the specified sensing element-to-DDC system readout accuracy. The calibration of the test instruments shall be traceable to National Institute Of Standards And Technology standards. The first check point shall be with the HVAC system in the shutdown condition, and the second check point shall be with the HVAC system in an operational condition. Calibration checks shall verify that the sensing element-to-DDC system readout accuracies at two points are within the specified product accuracy tolerances. If not, the device shall be recalibrated or replaced and the calibration check repeated. # 3.4.1.4 Insertion and Immersion Temperatures Insertion temperature and immersion temperature sensing elements and transmitter-to-DDC system readout calibration accuracy shall be checked at one physical location along the axis of the sensing element. ## 3.4.1.5 Averaging Temperature Averaging temperature sensing element and transmitter-to-DDC system readout calibration accuracy shall be checked every 2 feet along the axis of the sensing element in the proximity of the sensing element, for a maximum of 10 readings. These readings shall then be averaged. ## 3.4.2 Space Temperature Controlled Perimeter Radiation The heating medium shall be turned on, and the thermostat temperature setpoint shall be raised. The valve shall open. The thermostat temperature shall be lowered and the valve shall close. The thermostat shall be set at the setpoint shown. #### 3.4.3 Cabinet Unit Heater The "OFF/AUTO" switch shall be placed in the "OFF" position. Each space thermostat temperature setting shall be turned up so that it makes contact to turn on the unit heater fans. The unit heater fans shall not start. The "OFF/AUTO" switch shall be placed in the "AUTO" position. It shall be ensured that the unit heater fans start. Each space thermostat temperature setting shall be turned down, and the unit heater fans shall stop. The thermostats shall be set at their temperature setpoints. The results of testing of one of each type of unit shall be logged. # 3.4.4 All-Air Small Packaged Unitary The schedules shall be manually entered for day temperature and night temperature setpoints as shown. The fan "AUTO/ON" switch shall be set to "ON." The time shall be manually entered as "DAY." The "HEATING/COOLING" switch shall be set to "HEATING" and it shall be ensured that cooling is off. The temperature setpoint shall be raised and it shall be ensured that heating starts. The "HEATING/COOLING" switch shall be set to "COOLING" and it shall be ensured that heat is off. The temperature setpoint shall be lowered and it shall be ensured that cooling starts. The fan "AUTO/ON" switch shall be set to "AUTO" and the foregoing procedure repeated. The fan shall start and stop automatically with the starting and stopping of heating and cooling. The time shall be manually entered as "NIGHT." The foregoing procedures shall be repeated. When the system is verified as operational, the correct "DAY" and "NIGHT" temperature settings shall be restored and the correct time restored. The power to the thermostat shall be shut off and it shall be verified that the thermostat clock keeps time. The results of testing of one of each type of unit shall be logged. - 3.4.5 Single Building Hydronic Heating with Existing Hot Water Gas Furnace Steps for installation shall be as follows: - a. Step 1 System Inspection: The HVAC system shall be observed in its shutdown condition. It shall be verified that power and main air are available where required. - b. Step 2 Calibration Accuracy Check with HVAC System Shutdown: Readings shall be taken with a digital thermometer at each temperature sensing element location. Each temperature shall be read at the DDC controller, and the thermometer and DDC system readings logged. The calibration accuracy of the sensing element-to-DDC system readout for outside air temperature and system supply temperature shall be checked. - c. Step 3 Actuator Range Adjustments: A signal shall be applied to the actuator through an operator entered value to the DDC system. The proper operation of the actuators and positioners for all valves shall be verified visually. The signal shall be varied from live zero to full range, and it shall be verified that the actuators travel from zero stroke to full stroke within the signal range. It shall be verified that all sequenced actuators move from zero stroke to full stroke in the proper direction, and move the connected device in the proper direction from one extreme position to the other. - d. Step 4 Control System Commissioning: - (1) The two-point calibration sensing element-to-DDC system readout accuracy check for the outside air temperature shall be performed. Any necessary software adjustments to setpoints or parameters shall be made to achieve the outside air temperature schedule. - (2) The outside air temperature shall be simulated through an operator entered value to be above the setpoint. It shall be verified that pump (existing) and gas furnace (existing) stop. A value shall be entered to simulate that the outside air temperature is below the setpoint as shown. It shall be verified that pumps (existing) start and gas furnace (existing) operates. - (3) The two-point calibration accuracy check of the sensing element-to-DDC system readout for the hydronic system supply temperature shall be performed. The supply temperature setpoint shall be set for the temperature schedule as shown. Signals of 8 ma and 16 ma shall be sent to the DDC system from the outside air temperature sensor, to verify that the supply temperature setpoint changes to the appropriate values. - (4) The control system shall be placed in the occupied mode. The calibration accuracy check of sensing element-to-DDC system readout shall be performed for each space temperature sensor and the values logged. Each space temperature setpoint shall be set as shown. The control system shall be placed in the unoccupied mode, and it shall be verified that each space temperature setpoint changes to the unoccupied mode setting. # 3.4.6 Variable Air Volume Control System - Without Return Fan Steps for installation shall be as follows: - a. Step 1 System Inspection: The HVAC system shall be observed in its shutdown condition. The system shall be checked to see that power and main air are available where required, the outside air and relief air dampers are closed, the return air damper is open, and the supply fan inlet vanes and cooling coil valve are closed. - b. Step 2 Calibration Accuracy Check with HVAC System in Shutdown: Readings shall be taken with a digital thermometer at each temperature sensing element location. Each temperature shall be read at the DDC controller, and the thermometer and DDC system display readings logged. The calibration accuracy of the sensing element-to-DDC
system readout for outside air, return air, mixed air, and the cooling coil discharge temperatures shall be checked. The minimum outside air flow shall be read, using a digital indicating velometer, and the velometer and DDC system display readings logged. The flow should read zero. - c. Step 3 Actuator Range Adjustments: A signal shall be applied to the actuators through an operator entered value to the DDC system. The proper operation of the actuators and positioners for all dampers and valves shall be visually verified. The signal shall be varied from live zero to full range, and it shall be verified that the actuators travel from zero stroke to full stroke within the signal range. It shall be verified that all sequenced and parallel operated actuators move from zero stroke to full stroke in the proper direction, and move the connected device in the proper direction from one extreme position to the other. # d. Step 4 - Control System Commissioning: - (1) With the fan ready to start, the control system shall be placed in the ventilation delay mode and in the occupied mode through operator entered values. It shall be verified that supply fan for RTU-1 starts. It shall be verified that the outside air dampers and relief damper are closed, the return air damper is open, and the cooling coil valve and inlet vanes are under control, by simulating a change in the fan discharge temperature. The system shall be placed out of the ventilation delay mode, and it shall be verified that the economizer outside air and relief air dampers remain closed, the return air damper remains open, and the minimum outside air damper comes under control. - (2) The two-point calibration accuracy check of sensing element-to-DDC system readout for the minimum outside air flow measurement station shall be performed. Force all VAV box dampers to the full open position, turn all exhaust fans off, manually adjust the supply duct static pressure to achieve the design duct static pressure, and manually adjust the minimum outside air flow to achieve a flow which is approximately 25% less than the desired air flow. Under these conditions, the minimum outside air flow control loop shall be tuned. Confirm stable operation of the minimum outside air flow control loop in response to a process disturbance. - (3) With supply fan for RTU-1 running, a high static pressure input signal shall be simulated at the device, by pressure input to the differential pressure switch sensing device. HVAC system shutdown shall be verified; it shall be verified that the high static pressure alarm is initiated. The differential pressure switch shall be set at the setpoint. The HVAC system shall be restarted by manual reset, and it shall be verified that the high static pressure alarm returns to normal. - (4) The two-point calibration accuracy check for sensing element-to-DDC system readout for the static pressure in the supply duct shall be performed. - (5) The economizer mode shall be simulated by a change in the outside air temperature and the return air temperature through operator entered values and it shall be verified that the system goes into the economizer mode. The mixed air temperature shall be artificially changed through operator entered values to slightly open the economizer outside air damper and the second point of the two-point calibration accuracy check of sensing element-to-DDC system readout for outside air, return air, and mixed air temperatures shall be performed. The temperature setpoint shall be set as shown. - (6) The two-point calibration accuracy check of sensing element-to-DDC system readout for the fan discharge temperature shall be performed. The setpoint for the fan discharge temperature shall be set as shown. A change shall be simulated in the discharge air temperature through an operator entered value and it shall be verified that the control valve is modulated. - (7) The control system shall be placed in the unoccupied mode and it shall be verified that the HVAC system shuts down and the control system assumes the specified shutdown conditions. The space temperature shall be artificially changed to below the night setback temperature setpoint, and it shall be verified that the HVAC system starts; the space temperature shall be artificially changed to above the night setback setpoint, and it shall be verified that the HVAC system stops. The night setback temperature setpoint shall be set at the setpoint shown. - (8) With the HVAC system running, a filter differential pressure switch input signal shall be simulated at the device. It shall be verified that the filter alarm is initiated. The differential pressure switch shall be set at the setpoint. This shall be performed for each filter. - (9) With the HVAC system running, a freezestat trip input signal shall be simulated at the device. HVAC system shutdown shall be verified. It shall be verified that a low temperature alarm is initiated. The freezestat shall be set at the setpoint. The HVAC system shall be restarted by manual restart and it shall be verified that the alarm returns to normal. - (10) With the HVAC system running, a smoke detector trip input signal shall be simulated at each detector, and control device actions and interlock functions as described in the Sequence of Operation shall be verified. Simulation shall be performed without false-alarming any Life Safety systems. It shall be verified that the HVAC system shuts down and the smoke detector alarm is initiated. The detectors shall be reset. The HVAC system shall be restarted by manual reset, and it shall be verified that the alarm returns to normal. - (11) Velocity setpoints shall be set for minimum and maximum flow and temperature setpoints for the heating/cooling dead band, for each VAV terminal unit. The actions of the controller, the operation of the damper, and the operation of heating shall be verified. It shall be verified that space temperature is maintained. - 3.4.7 Single Zone with Gas Heating Direct Expansion Cooling Steps for installation shall be as follows: - a. Step 1 System Inspection: The HVAC system shall be verified in its shutdown condition. The system shall be checked to see that power and main air are available where required, the outside air damper and relief air damper are closed, all stages of cooling are off, and that the return air damper is open. - b. Step 2 Calibration Accuracy Check with HVAC System Shutdown: Readings shall be taken with a digital thermometer at each temperature sensing element location. Each temperature shall be read at the DDC controller, and the thermometer and DDC system display readings logged. The calibration accuracy of the sensing element-to-DDC system readout for outside air, return air, and space temperatures shall be checked. - c. Step 3 Actuator Range Adjustments: A signal shall be applied to the actuator, through an operator entered value to the DDC system. The proper operation of the actuators and positioners for all dampers and valves shall be visually verified. The signal shall be varied from live zero of 4 ma to 20 ma, and it shall be verified that the actuators travel from zero stroke to full stroke within the signal range. It shall be verified that all sequenced and parallel operated actuators move from zero stroke to full stroke in the proper direction and move the connected device in the proper direction from one extreme position to the other. Example: NC actuators are closed at 4 ma and are open at 20 ma. The signal levels that move the controlled device to its extreme positions shall be logged. The operating points of the sequence shall be set for each stage of cooling and the proper operation of each stage shall be verified. # d. Step 4 - Control System Commissioning: - (1) With the fan ready to start, the control system shall be placed in the ventilation delay mode and in the occupied mode, and it shall be verified that supply fan for RTU-1 starts. It shall be verified that the outside air and relief air dampers are closed, the return air damper is open, and the heating coil and stages of cooling are under control, by simulating a change in the space temperature. The control system shall be placed out of the ventilation delay mode, and it shall be verified that the outside air, return air, and relief air dampers come under control by simulating a change in the mixed air temperature. - (2) The control system shall be placed in the minimum outside air mode. It shall be verified that the outside air damper opens to minimum position. - (3) The economizer mode shall be simulated by a change in the outside air temperature and the return air temperature through operator entered values and it shall be verified that the system goes into the economizer mode. The space temperature shall be artificially changed through operator entered values to slightly open the outside air damper and the second point of the two-point calibration accuracy check of sensing element-to-DDC system readout for outside air, return air, and space temperatures shall be performed. The space temperature setpoint shall be set as shown. A change in space temperature shall be simulated and it shall be verified that the heating and the stages of D/X cooling operate in sequence as shown. - (4) The control system shall be placed in the unoccupied mode, and it shall be verified that the HVAC system shuts down, and the control system assumes the specified shutdown conditions. The space temperature shall be artificially changed to below the night setback temperature setpoint, and it shall be verified that the HVAC system starts; the space temperature shall be artificially changed to above the night setback temperature setpoint, and it shall be verified that the HVAC system stops. The night setback temperature setpoint shall be set at the setpoint as shown. - (5) With the HVAC system running, a filter differential pressure switch input signal shall be simulated at the device. It shall be
verified that the filter alarm is initiated. The differential pressure switch shall be set at the setpoint as shown. - (6) With the HVAC system running, a freezestat trip input signal shall be simulated at the device. HVAC system shutdown shall be verified. It shall be verified that a low-temperature alarm is initiated. The freezestat shall be set at the setpoint. The HVAC system shall be restarted by manual restart and it shall be verified that the alarm returns to normal. - (7) With the HVAC system running, a smoke detector trip input signal shall be simulated at each detector, and control device actions and interlock functions as described in the Sequence of Operation shall be verified. Simulation shall be performed without false-alarming any Life Safety systems. It shall be verified that the HVAC system shuts down and that the smoke detector alarm is initiated. The detectors shall be reset. The HVAC system shall be restarted by manual reset, and it shall be verified that the alarm returns to normal. ## 3.5 BALANCING, COMMISSIONING, AND TESTING # 3.5.1 Coordination with HVAC System Balancing Commissioning of the control system, except for tuning of controllers, shall be performed prior to or simultaneous with HVAC system balancing. The contractor shall tune the HVAC control system after all air system and hydronic system balancing has been completed, minimum damper positions set and a report has been issued. 3.5.2 Control System Calibration, Adjustments, and Commissioning Control system commissioning shall be performed for each HVAC system, using test plans and procedures previously approved by the Government. The Contractor shall provide all personnel, equipment, instrumentation, and supplies necessary to perform commissioning and testing of the HVAC control system. All instrumentation and controls shall be calibrated and the specified accuracy shall be verified using test equipment with calibration traceable to NIST standards. Wiring shall be tested for continuity and for ground, open, and short circuits. Tubing systems shall be tested for leaks. Mechanical control devices shall be adjusted to operate as specified. HVAC control panels shall be pretested off-site as a functioning assembly ready for field connections, calibration, adjustment, and commissioning of the operational HVAC control system. Control parameters and logic (virtual) points including control loop setpoints, gain constants, and integral constraints, shall be adjusted before the system is placed on line. Communications requirements shall be as indicated. Written notification of any planned commissioning or testing of the HVAC Control systems shall be given to the Government at least 14 calendar days in advance. ## 3.5.3 Performance Verification Test The Contractor shall demonstrate compliance of the HVAC control system with the contract documents. Using test plans and procedures previously approved by the Government, the Contractor shall demonstrate all physical and functional requirements of the project. The performance verification test shall show, step-by-step, the actions and results demonstrating that the control systems perform in accordance with the sequences of operation. The performance verification test shall not be started until after receipt by the Contractor of written permission by the Government, based on Government approval of the Commissioning Report and completion of balancing. The tests shall not be conducted during scheduled seasonal off periods of base heating and cooling systems. #### 3.5.4 Endurance Test The endurance test shall be used to demonstrate the specified overall system reliability requirement of the completed system. The endurance test shall not be started until the Government notifies the Contractor in writing that the performance verification test is satisfactorily completed. The Government may terminate the testing at any time when the system fails to perform as specified. Upon termination of testing by the Government or by the Contractor, the Contractor shall commence an assessment period as described for Phase II. Upon successful completion of the endurance test, the Contractor shall deliver test reports and other documentation as specified to the Government prior to acceptance of the system. - a. Phase I (Testing). The test shall be conducted 24 hours per day, 7 days per week, for 15 consecutive calendar days, including holidays, and the system shall operate as specified. The Contractor shall make no repairs during this phase of testing unless authorized by the Government in writing. - b. Phase II (Assessment). After the conclusion of Phase I, the Contractor shall identify failures, determine causes of failures, repair failures, and deliver a written report to the Government. The report shall explain in detail the nature of each failure, corrective action taken, results of tests performed, and shall recommend the point at which testing should be resumed. After delivering the written report, the Contractor shall convene a test review meeting at the jobsite to present the results and recommendations to the Government. As a part of this test review meeting, the Contractor shall demonstrate that all failures have been corrected by performing appropriate portions of the performance verification test. Based on the Contractor's report and test review meeting, the Government may require that the Phase I test be totally or partially rerun. After the conclusion of any retesting which the Government may require, the Phase II assessment shall be repeated as if Phase I had just been completed. ## 3.5.5 Posted and Panel Instructions Posted and Panel Instructions, showing the final installed conditions, shall be provided for each system. The posted instructions shall consist of laminated half-size drawings and shall include the control system schematic, equipment schedule, sequence of operation, wiring diagram, communication network diagram, and valve and damper schedules. The posted instructions shall be permanently affixed, by mechanical means, to a wall near the control panel. Panel instructions shall consist of laminated letter-size sheets and shall include a Routine Maintenance Checklist and as-built configuration check sheets. Panel instructions and one copy of the Operation and Maintenance Manuals, previously described herein, shall be placed inside each control panel or permanently affixed, by mechanical means, to a wall near the panel. #### 3.6 TRAINING ## 3.6.1 Training Course Requirements A training course shall be conducted for 2 operating staff members designated by the Contracting Officer in the maintenance and operation of the system, including specified hardware and software. The training period, for a total of 32 hours of normal working time, shall be conducted within 30 days after successful completion of the performance verification test. The training course shall be conducted at the project site. Audiovisual equipment and 6 sets of all other training materials and supplies shall be provided. A training day is defined as 8 hours of classroom instruction, including two 15 minute breaks and excluding lunchtime, Monday through Friday, during the daytime shift in effect at the training facility. # 3.6.2 Training Course Content For guidance in planning the required instruction, the Contractor shall assume that attendees will have a high school education or equivalent, and are familiar with HVAC systems. The training course shall cover all of the material contained in the Operating and Maintenance Instructions, the layout and location of each HVAC control panel, the layout of one of each type of unitary equipment and the locations of each, the location of each control device external to the panels, the location of the compressed air station, preventive maintenance, troubleshooting, diagnostics, calibration, adjustment, commissioning, tuning, and repair procedures. Typical systems and similar systems may be treated as a group, with instruction on the physical layout of one such system. The results of the performance verification test and the calibration, adjustment and commissioning report shall be presented as benchmarks of HVAC control system performance by which to measure operation and maintenance effectiveness. #### SECTION 15990A # TESTING, ADJUSTING, AND BALANCING OF HVAC SYSTEMS 08/97 #### PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. ASSOCIATED AIR BALANCE COUNCIL (AABC) AABC MN-1 (1989) National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems NATIONAL ENVIRONMENTAL BALANCING BUREAU (NEBB) NEBB Procedural Stds (1991) Procedural Standards for Testing Adjusting Balancing of Environmental Systems #### 1.2 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-02 Shop Drawings TAB Schematic Drawings and Report Forms; G, ED Three copies of the TAB Schematic Drawings and Report Forms, no later than 21 days prior to the start of TAB field measurements. SD-03 Product Data TAB Related HVAC Submittals; G, ED A list of the TAB Related HVAC Submittals, no later than 7 days after the approval of the TAB Specialist. TAB Procedures; G, ED Proposed procedures for TAB, submitted with the TAB Schematic Drawings and Report Forms. Calibration; G, ED List of each instrument to be used during TAB, stating calibration requirements required or recommended by both the TAB Standard and the instrument manufacturer and the actual calibration history of the instrument, submitted with the TAB Procedures. The calibration history
shall include dates calibrated, the qualifications of the calibration laboratory, and the calibration procedures used. Systems Readiness Check; G, ED Proposed date and time to begin the Systems Readiness Check, no later than 7 days prior to the start of the Systems Readiness Check. TAB Execution; G, ED Proposed date and time to begin field measurements, making adjustments, etc., for the TAB Report, submitted with the Systems Readiness Check Report. TAB Verification; G, ED Proposed date and time to begin the TAB Verification, submitted with the TAB Report. SD-06 Test Reports Design Review Report; G, ED A copy of the Design Review Report, no later than 14 days after approval of the TAB Firm and the TAB Specialist. Systems Readiness Check; G, ED A copy of completed checklists for each system, each signed by the TAB Specialist, at least 7 days prior to the start of TAB Execution. All items in the Systems Readiness Check Report shall be signed by the TAB Specialist and shall bear the seal of the Professional Society or National Association used as the TAB Standard. TAB Report; G, ED Three copies of the completed TAB Reports, no later that 7 days after the execution of TAB. All items in the TAB Report shall be signed by the TAB Specialist and shall bear the seal of the Professional Society or National Association used as the TAB Standard. TAB Verification Report; G, ED Three copies of the completed TAB Verification Report, no later that 7 days after the execution of TAB Verification. All items in the TAB Verification Report shall be signed by the TAB Specialist and shall bear the seal of the Professional Society or National Association used as the TAB Standard. SD-07 Certificates Ductwork Leak Testing, G, ED A written statement signed by the TAB Specialist certifying that the TAB Specialist witnessed the Ductwork Leak Testing, it was successfully completed, and that there are no known deficiencies related to the ductwork installation that will prevent TAB from producing satisfactory results. TAB Firm; G, ED Certification of the proposed TAB Firm's qualifications by either AABC or NEBB to perform the duties specified herein and in other related Sections, no later than 21 days after the Notice to Proceed. The documentation shall include the date that the Certification was initially granted and the date that the current Certification expires. Any lapses in Certification of the proposed TAB Firm or disciplinary action taken by AABC or NEBB against the proposed TAB Firm shall be described in detail. TAB Specialist; G, ED Certification of the proposed TAB Specialist's qualifications by either AABC or NEBB to perform the duties specified herein and in other related Sections, no later than 21 days after the Notice to Proceed. The documentation shall include the date that the Certification was initially granted and the date that the current Certification expires. Any lapses in Certification of the proposed TAB Specialist or disciplinary action taken by AABC or NEBB against the proposed TAB Specialist shall be described in detail. ## 1.3 SIMILAR TERMS In some instances, terminology differs between the Contract and the TAB Standard primarily because the intent of this Section is to use the industry standards specified, along with additional requirements listed herein to produce optimal results. The following table of similar terms is provided for clarification only. Contract requirements take precedent over the corresponding AABC or NEBB requirements where differences exist. ## SIMILAR TERMS | Contract Term | AABC Term | NEBB Term | |----------------------------|--|--| | TAB Standard | National Standards for
Testing and Balancing
Heating, Ventilating, and
Air Conditioning Systems | Procedural Standards
for Testing Adjusting
Balancing of
Environmental | | Systems. | 3 . | | | TAB Specialist | TAB Engineer | TAB Supervisor | | Systems Readiness
Check | Construction Phase Inspection | Field Readiness
Check & Preliminary
Field Procedures. | #### 1.4 TAB STANDARD TAB shall be performed in accordance with the requirements of the standard under which the TAB Firm's qualifications are approved, i.e., AABC MN-1or NEBB Procedural Stds, unless otherwise specified herein. All recommendations and suggested practices contained in the TAB Standard shall be considered mandatory. The provisions of the TAB Standard, including checklists, report forms, etc., shall, as nearly as practical, be used to satisfy the Contract requirements. The TAB Standard shall be used for all aspects of TAB, including qualifications for the TAB Firm and Specialist and calibration of TAB instruments. Where the instrument manufacturer calibration recommendations are more stringent than those listed in the TAB Standard, the manufacturer's recommendations shall be adhered to. All quality assurance provisions of the TAB Standard such as performance guarantees shall be part of this contract. For systems or system components not covered in the TAB Standard, TAB procedures shall be developed by the TAB Specialist. Where new procedures, requirements, etc., applicable to the Contract requirements have been published or adopted by the body responsible for the TAB Standard used (AABC or NEBB), the requirements and recommendations contained in these procedures and requirements shall be considered mandatory. ## 1.5 QUALIFICATIONS #### 1.5.1 TAB Firm The TAB Firm shall be either a member of AABC or certified by the NEBB and certified in all categories and functions where measurements or performance are specified on the plans and specifications, including building systems commissioning. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the firm loses subject certification during this period, the Contractor shall immediately notify the Contracting Officer and submit another TAB Firm for approval. Any firm that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections to be performed by the TAB Firm shall be considered invalid if the TAB Firm loses its certification prior to Contract completion and must be performed by an approved successor. These TAB services are to assist the prime Contractor in performing the quality oversight for which it is responsible. The TAB Firm shall be a subcontractor of the prime Contractor, and shall report to and be paid by the prime Contractor. # 1.5.2 TAB Specialist The TAB Specialist shall be either a member of AABC or an experienced technician of the Firm certified by the NEBB. The certification shall be maintained for the entire duration of duties specified herein. If, for any reason, the Specialist loses subject certification during this period, the Contractor shall immediately notify the Contracting Officer and submit another TAB Specialist for approval. Any individual that has been the subject of disciplinary action by either the AABC or the NEBB within the five years preceding Contract Award shall not be eligible to perform any duties related to the HVAC systems, including TAB. All work specified in this Section and in other related Sections performed by the TAB Specialist shall be considered invalid if the TAB Specialist loses its certification prior to Contract completion and must be performed by the approved successor. #### 1.6 TAB SPECIALIST RESPONSIBILITIES All TAB work specified herein and in related sections shall be performed under the direct guidance of the TAB Specialist. The TAB Specialist shall participate in the commissioning process specified in Section 15995A COMMISSIONING OF HVAC SYSTEMS. PART 2 PRODUCTS (Not Applicable) #### PART 3 EXECUTION #### 3.1 DESIGN REVIEW The TAB Specialist shall review the Contract Plans and Specifications and advise the Contracting Officer of any deficiencies that would prevent the HVAC systems from effectively operating in accordance with the sequence of operation specified or prevent the effective and accurate TAB of the system. The TAB Specialist shall provide a Design Review Report individually listing each deficiency and the corresponding proposed corrective action necessary for proper system operation. ## 3.2 TAB RELATED HVAC SUBMITTALS The TAB Specialist shall prepare a list of the submittals from the Contract Submittal Register that relate to the successful accomplishment of all HVAC TAB. The submittals identified on this list shall be accompanied by a letter of approval signed and dated by the TAB Specialist when submitted to the Government. The TAB Specialist shall also ensure that the location and details of ports, terminals, connections, etc., necessary to perform TAB are identified on the submittals. #### 3.3 TAB SCHEMATIC DRAWINGS AND REPORT FORMS A schematic drawing showing each system component, including balancing devices, shall be provided for each system. Each drawing shall be accompanied by a copy of all report forms required by the TAB Standard used for that system. Where applicable, the acceptable range of operation or appropriate setting for each component shall be included on the forms or as an attachment to the forms. The schematic drawings shall identify all testing points and cross reference these points to the report forms and procedures. ## 3.4 DUCTWORK LEAK TESTING The TAB Specialist shall witness the Ductwork Leak Testing specified in Section 15895A AIR SUPPLY, DISTRIBUTION, VENTILATION, AND EXHAUST SYSTEM and approve the results as specified in Paragraph TAB RELATED HVAC SUBMITTALS. ## 3.5 TESTING, ADJUSTING, AND BALANCING # 3.5.1 TAB Procedures Step by step procedures for each measurement
required during TAB Execution shall be provided. The procedures shall be oriented such that there is a separate section for each system. The procedures shall include measures to ensure that each system performs as specified in all operating modes, interactions with other components (such as exhaust fans, kitchen hoods, fume hoods, relief vents, etc.) and systems, and with all seasonal operating differences, diversity, simulated loads, and pressure relationships required. ## 3.5.2 Systems Readiness Check The TAB Specialist shall inspect each system to ensure that it is complete, including installation and operation of controls, and that all aspects of the facility that have any bearing on the HVAC systems, including installation of ceilings, walls, windows, doors, and partitions, are complete to the extent that TAB results will not be affected by any detail or touch-up work remaining. The TAB Specialist shall also verify that all items such as ductwork and piping ports, terminals, connections, etc., necessary to perform TAB shall be complete during the Systems Readiness Check. # 3.5.3 Preparation of TAB Report Preparation of the TAB Report shall begin only when the Systems Readiness Report has been approved. The Report shall be oriented so that there is a separate section for each system. The Report shall include a copy of the appropriate approved Schematic Drawings and TAB Related Submittals, such as pump curves, fan curves, etc., along with the completed report forms for each system. The operating points measured during successful TAB Execution and the theoretical operating points listed in the approved submittals shall be marked on the performance curves and tables. Where possible, adjustments shall be made using an "industry standard" technique which would result in the greatest energy savings, such as adjusting the speed of a fan instead of throttling the flow. Any deficiencies outside of the realm of normal adjustments and balancing during TAB Execution shall be noted along with a description of corrective action performed to bring the measurement into the specified range. If, for any reason, the TAB Specialist determines during TAB Execution that any Contract requirement cannot be met, the TAB Specialist shall immediately provide a written description of the deficiency and the corresponding proposed corrective action necessary for proper system operation to the Contracting Officer. ## 3.5.4 TAB Verification The TAB Specialist shall recheck ten percent of the measurements listed in the Tab Report and prepare a TAB Verification Report. The measurements selected for verification and the individuals that witness the verification will be selected by the Contracting Officer's Representative (COR). The measurements will be recorded in the same manner as required for the TAB Report. All measurements that fall outside the acceptable operating range specified shall be accompanied by an explanation as to why the measurement does not correlate with that listed in the TAB Report and a description of corrective action performed to bring the measurement into the specified range. The TAB Specialist shall update the original TAB report to reflect any changes or differences noted in the TAB verification report and submit the updated TAB report. If over 20 percent of the measurements selected by the COR for verification fall outside of the acceptable operating range specified, the COR will select an additional ten percent for verification. If over 20 percent of the total tested (including both test groups) fall outside of the acceptable range, the TAB Report shall be considered invalid and all contract TAB work shall be repeated beginning with the Systems Readiness Check. # 3.5.5 Marking of Setting Following approval of TAB Verification Report, the setting of all HVAC adjustment devices including valves, splitters, and dampers shall be permanently marked by the TAB Specialist so that adjustment can be restored if disturbed at any time. #### 3.5.6 Identification of Test Ports The TAB Specialist shall permanently and legibly identify the location points of duct test ports. If the ductwork has exterior insulation, the identification shall be made on the exterior side of the insulation. All penetrations through ductwork and ductwork insulation shall be sealed to prevent air leakage or to maintain integrity of vapor barrier. -- End of Section -- #### SECTION 15995A # COMMISSIONING OF HVAC SYSTEMS 04/01 ## PART 1 GENERAL #### 1.1 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: #### SD-03 Product Data Commissioning Team; G, ED List of team members who will represent the Contractor in the pre-commissioning checks and functional performance testing, at least 2 weeks prior to the start of pre-commissioning checks. Proposed revision to the list, prior to the start of the impacted work. #### 1.2 SEQUENCING AND SCHEDULING The work described in this Section shall begin only after all work required in related Sections, including Section 15990A TESTING, ADJUSTING, AND BALANCING OF HVAC SYSTEMS, has been successfully completed, and all test and inspection reports and operation and maintenance manuals required in these Sections have been submitted and approved. PART 2 PRODUCTS (Not Applicable) ### PART 3 EXECUTION #### 3.1 COMMISSIONING TEAM AND CHECKLISTS The Contractor shall designate team members to participate in the pre-commissioning checks and the functional performance testing specified herein. In addition, the Government will be represented by a representative of the Contracting Officer, the Design Agent's Representative, and the Using Agency. The team members shall be as follows: | Designation | Function | |----------------|---| | Q | Contractor's Chief Quality Control Representative | | M | Contractor's Mechanical Representative | | E | Contractor's Electrical Representative | | T | Contractor's Testing, Adjusting, and Balancing | | Representative | | | С | Contractor's Controls Representative | | D | Design Agent's Representative | | 0 | Contracting Officer's Representative | | U | Using Agency's Representative | Each checklist shown in appendices A and B shall be completed by the commissioning team. Acceptance by each commissioning team member of each pre-commissioning checklist item shall be indicated by initials and date unless an "X" is shown indicating that participation by that individual is not required. Acceptance by each commissioning team member of each functional performance test checklist shall be indicated by signature and date. #### 3.2 TESTS The pre-commissioning checks and functional performance tests shall be performed in a manner which essentially duplicates the checking, testing, and inspection methods established in the related Sections. Where checking, testing, and inspection methods are not specified in other Sections, methods shall be established which will provide the information required. Testing and verification required by this section shall be performed during the Commissioning phase. Requirements in related Sections are independent from the requirements of this Section and shall not be used to satisfy any of the requirements specified in this Section. The Contractor shall provide all materials, services, and labor required to perform the pre-commissioning checks and functional performance tests. A pre-commissioning check or functional performance test shall be aborted if any system deficiency prevents the successful completion of the test or if any participating non-Government commissioning team member of which participation is specified is not present for the test. The Contractor shall reimburse the Government for all costs associated with effort lost due to tests that are aborted. These costs shall include salary, travel costs and per diem (where applicable) for Government commissioning team members. # 3.2.1 Pre-Commissioning Checks Pre-commissioning checks shall be performed for the items indicated on the checklists in Appendix A. Deficiencies discovered during these checks shall be corrected and retested in accordance with the applicable contract requirements. ### 3.2.2 Functional Performance Tests Functional performance tests shall be performed for the items indicated on the checklists in Appendix B. Functional performance tests shall begin only after all pre-commissioning checks have been successfully completed. Tests shall prove all modes of the sequences of operation, and shall verify all other relevant contract requirements. Tests shall begin with equipment or components and shall progress through subsystems to complete systems. Upon failure of any functional performance test checklist item, the Contractor shall correct all deficiencies in accordance with the applicable contract requirements. The checklist shall then be repeated until it has been completed with no errors. # APPENDIX A # PRE-COMMISSIONING CHECKLISTS | Pre | -commissioning checklist - Piping | | | | | | | | | |-----|---|----|---|---|---|---|---|---|---| | For | Hot Water Piping System | | | | | | | | | | Che | cklist Item | Q | M | E | Т | С | D | 0 | U | | Ins | tallation | | | | | | | | | | a. | Piping complete. | | | Х | | X | | | | | b. | As-built shop drawings submitted. | | | Х | | X | | | | | c. | Piping flushed and cleaned. | | | Х | | X | | | | | d. | Strainers cleaned. | | | Х | | X | | | | | e. | Valves installed as required. | | | X | | X | | | | | f. | Piping insulated as required. | | | Х | | X | | | | | g. | Thermometers and gauges installed as required. | | | Х | | Х | | | | | h. |
Verify operation of valves. | | | X | | | | | | | i. | Air vents installed as specified. | | | X | X | X | | | | | j. | Flexible connectors installed as specifi | ed | | X | X | X | | | | | k. | Verify that piping has been labeled and valves identified as specified. | | | X | | | | | | | Tes | ting, Adjusting, and Balancing (TAB) | | | | | | | | | | a. | Hydrostatic test complete. | | | Х | | X | | | | | b. | TAB operation complete. | | | Х | | | | | | | Pre | commissioning Checklist - Variable Volume | e Air | Ha | ndli | ng U | nit | | | | |-----------|---|-------|----|------|------|-----|---|---|---| | For | Packaged DX Rooftop Air Handling Unit: I | RTU-1 | - | | | | | | | | Che | cklist Item | Q | M | E | Т | С | D | 0 | U | | Inst | callation | | | | | | | | | | a. | Vibration isolation devices installed. | | | Х | X | Х | | | | | b.
and | Inspection and access doors are operable sealed. | | | X | | _ X | | | | | c. | Casing undamaged. | | | X | Х | Х | | | | | d. | Insulation undamaged. | | | X | Х | Х | | | | | e. | Condensate drainage is unobstructed. (Visually verify drainage by pouring a cup of water into drain pan.) | | | Х | X | Х | | | | | f. | Fan belt adjusted. | | | Х | | X | | | | | g. | Manufacturer's required maintenance clearance provided. | | | X | X | Х | | | | | Elec | ctrical | | | | | | | | | | a. | Power available to unit disconnect. | | | | Х | Х | | | | | b. | Power available to unit control panel. | | | | Х | | | | | | C. | Proper motor rotation verified. | | | | | X | | | | | d. | Verify that power disconnect is located within sight of the unit it controls. | | | | Х | | | | | | Coil | Ls | | | | | | | | | | a. | Refrigerant piping properly connected. | | | Х | X | X . | | | | | b. | Refrigerant piping pressure tested. | | | X | X | Х | | | | | c. | Gas piping properly connected | _ X | Х | Х | | | | _ | | | d. | Gas piping pressure tested | _ X | X | X | | | _ | _ | | | | Any damage to coil fins has been repaired | d | | Х | | X | | | | | | | | | | | | | | | | a. | Dampers/actuators properly installed. | | | X | | | | | | | Pre | -commissioning Checklist - Variable Volume | e Air | Han | ıdliı | ng Ur | nit | | | | |------|---|-------|-------|-------|-------|-------|-------|---|-------| | For | Packaged DX Rooftop Air Handling Unit: 1 | RTU-1 | | | | | | | | | | cklist Item
Dampers/actuators operable. | ~ | M
 | | | C
 | D
 | 0 | U
 | | c. | Verify proper location, installation and calibration of duct static pressure sensor. | | | Х | | | | | | | d. | Fan air volume controller operable. | | | X | | | | | | | e. | Air handler controls system operational. | | | X | | | | | | | Test | ting, Adjusting, and Balancing (TAB) | | | | | | | | | | a. | Construction filters removed and replaced | d | | Х | | | | | | | b. | TAB report submitted. | | | Х | | Х | | | | | c. | TAB results within +10%/-0% of cfm shown on drawings | | | | | | | | | | d. | TAB results for outside air intake within +10%/-0% of both the minimum and maximum cfms | | | | | | | | | | | shown on drawings. | | | X | | X | | | | | Pre | -commissioning Checklist - VAV Terminal | | | | | | | | | |-----|---|---|---|---|---|-----|---|---|---| | For | VAV Terminal: FB-1 through FB-7 | | | | | | | | | | Che | cklist Item | Q | M | E | Т | С | D | 0 | U | | Ins | tallation | | | | | | | | | | a. | VAV terminal in place. | | | X | Х | X | | | | | b. | VAV terminal ducted. | | | X | Х | X | | | | | c. | VAV terminal connected to controls. | | | X | Х | | | | | | d. | Reheat coil connected to hot water pipe. | | | X | | X . | | | | | f. | Manufacturer's required maintenance clearance provided. | | | X | Х | Х | | | | | Con | trols | | | | | | | | | | a. | Cooling only VAV terminal controls set. | | | X | X | | | | | | b. | Cooling only VAV controls verified. | | | X | X | | | | | | c. | Reheat VAV terminal controls set. | | | X | X | | | | | | d. | Reheat terminal/coil controls verified. | | | X | Х | | | | | | Tes | ting, Adjusting, and Balancing (TAB) | | | | | | | | | | a. | Verify terminal maximum air flow set. | | | X | | | | | | | b. | Verify terminal minimum air flow set. | | | X | | | | | | | С. | TAB operation complete. | | | X | | X | | | | | Pre | -commissioning Checklist - DX Air Cooled | Cond | ensir | ng Un | nit | | | | | |-----|--|------|-------|-------|-----|---|---|---|---| | For | Condensing Unit: ACCU-1 | | | | | | | | | | Che | cklist Item | Q | M | E | Т | С | D | 0 | U | | Ins | tallation | | | Х | Х | Х | | | | | b. | Refrigerant pipe leak tested. | | | Х | Х | X | | | | | C. | Refrigerant pipe evacuated and charged in accordance with manufacturer's instructions. | | | X | Х | Х | | | | | d. | Check condenser fans for proper rotation | · | | X | | X | | | | | e. | Any damage to coil fins has been repaire | d | | Х | | Х | | | | | f. | Manufacturer's required maintenance/ operational clearance provided. | | | Х | Х | Х | | | | | Ele | ctrical Power available to unit disconnect. | | | | X | X | | | | | | Power available to unit control panel. | | | | Х | | | | | | C. | Verify that power disconnect is located within sight of the unit it controls | | | | X | | | | | | | trols
Unit safety/protection devices tested. | | | Х | Х | | | | | | b. | Control system and interlocks installed. | | | X | X | | | | | | c. | Control system and interlocks operationa | 1. | | Х | Х | | | | | | Pre- | -commissioning Checklist - Cabinet Unit He | ater | 2 | | | | | | | |------|---|--------|---|-----|---|---|---|---|---| | For | CabinetUnit Heater: CUH-1 through CUH-4 | | | | | | | | | | Chec | cklist Item | Q | M | E | Т | С | D | 0 | U | | Inst | callation | | | | | | | | | | a. | Hot water piping properly connected | | | Х _ | | | | | | | b. | Hot water piping pressure tested. | | | Х | | | | | | | c. | Air vent installed on hot water coil with shutoff valve as specified. | | | X | Х | Х | | | | | d. | Any damage to coil fins has been repaired | l | | X | | Х | | | | | e. | Manufacturer's required maintenance/ operational clearance provided. | | | X | Х | Х | | | | | Elec | ctrical | | | | | | | | | | a. | Power available to unit disconnect. | | | | Х | | | | | | b. | Proper motor rotation verified. | | | | X | X | | | | | C. | Verify that power disconnect is located within sight of the unit it controls. | | | | Х | | | | | | d. | Power available to electric heating coil. | | | | X | | | | | | Cont | crols | | | | | | | | | | a. | Control valves properly installed. | | | X | | | | | | | b. | Control valves operable. | | | X | X | | | | | | C. | Verify proper location and installation c thermostat. | of
 | | X | | | | | | | Test | ing, Adjusting, and Balancing (TAB) | | | | | | | | | | a. | TAB Report submitted. | | | Х | | Х | | | | | Pre | -commissioning Checklist - Exhaust Fan | | | | | | | | | |-----|---|----------|-----|---|---|---|---|---|---| | For | Exhaust Fan: EF-1, EF-2 | | | | | | | | | | Che | cklist Item | Q | М | E | Т | С | D | 0 | U | | Ins | tallation | | | | | | | | | | a. | Fan belt adjusted. | | | X | | X | | | | | Ele | ctrical | | | | | | | | | | a. | Power available to fan disconnect. | | | | X | | | | | | b. | Proper motor rotation verified. | | | | | X | | | | | c. | Verify that power disconnect is located within sight of the unit it controls. | | | | Х | | | | | | Con | trols | | | | | | | | | | a. | Control interlocks properly installed. | | | | X | | | | | | b. | Control interlocks operable. | | | | Х | | | | | | c. | Dampers/actuators properly installed. | | | Х | | | | | | | d. | Dampers/actuators operable. | | | Х | | | | | | | e. | Verify proper location and installation thermostat. | of
—— | | Х | | | | | | | Tes | ting, Adjusting, and Balancing (TAB) | | | | | | | | | | a. | TAB results +10%/-0% to cfm shown on drawings X | Σ | _ X | | | | _ | | | | b. | TAB Report submitted. | | | X | | X | | | | | Pre | -commissioning Checklist - Computer Room | Unit | | | | | | | | |-----|---|--------|---|---|---|-----|---|---|---| | For | Computer Room Unit: CRU-1 | | | | | | | | | | Che | cklist Item | Q | M | E | Т | С | D | 0 | U | | Ins | tallation | | | | | | | | | | a. | Unit properly supported. | | | Х | X | Х | | | | | b. | Access doors are operable and sealed. | | | Х | | _ X | | | | | c. | Casing undamaged. | | | Х | X | Х | | | | | d. | Insulation undamaged. | | | Х | X | Х | | | | | e. | Condensate drainage is unobstructed and routed to floor drain. | | | Х | Х | Х | | | | | f. | Fan belt adjusted. | | | Х | | Х | | | | | g. | Manufacturer's required maintenance operational clearance provided. | | | Х | X | Х | | | | | Ele | ctrical | | | | | | | | | | a. | Power available to unit disconnect. | | | | X | Х | | | | | b. | Proper motor rotation verified. | | | | | _ X | | | | | c. | Proper motor rotation verified. | | | | | X | | | | | d. | Verify that power disconnect is located within sight of the unit it controls. | | | | X | | | | | | Coi | ls/Humidifier | | | | | | | | | | a. | Refrigerant piping properly connected. | | | Х | Х | X . | | | | | b. | Refrigerant piping pressure tested. | | | Х | Х | X . | | | | | c. | Hot water piping properly connected. | | | Х | | | | | | | d. | Hot water piping pressure tested. | | | Х | Х | | | | | | e. | Humidifier makeup water connected. | | | Х | X | Х | | | | | Con | trols | | | | | | | | | | a. | Control valves operable. | | | X | Х | | | | | | b. | Unit control system
operable and verifie | d | | | X | | | | | | C. | Verify proper location and installation thermostat. | of
 | | X | | | | | | | Pre | -commissioning Checklist - Computer Room U | Jnit | | | | | | | | |-----|---|------|---|---|---|---|---|---|---| | For | Computer Room Unit: CRU-1 | | | | | | | | | | | cklist Item
ting, Adjusting, and Balancing (TAB) | Q | М | Ε | Т | С | D | 0 | U | | a. | Construction filters removed and replaced | l | | Х | | Х | | | | | b. | TAB results +10%/-0% cfm shown on drawings. | | | Х | | Х | | | | | c. | TAB Report submitted. | | | Х | | Х | | | | | Pre- | -commissioning Checklist - HVAC System Cor | ntrol | Ls | | | | | | | |------|--|----------|----|---|---|---|---|---|---| | For | HVAC System: DDC Panel | | | | | | | | | | Che | cklist Item | Q | М | E | Т | С | D | 0 | U | | Inst | callation | | | | | | | | | | a. | As-built shop drawings submitted. | | | X | Х | | | | | | b. | Layout of control panel matches drawings. | · | | Х | X | | | | | | c. | Framed instructions mounted in or near control panel. | | | Х | Х | | | | | | d. | Components properly labeled (on inside aroutside of panel). | nd
—— | | Х | Х | | | | | | e. | Control components piped and/or wired to each labeled terminal strip. | | | Х | Х | | | | | | f. | EMCS connection made to each labeled terminal strip as shown. | | | Х | Х | | | | | | g. | Control wiring and tubing labeled at all terminations, splices, and junctions. | | | Х | X | | | | | | h. | Shielded wiring used on electronic sensor | îs | | X | X | | | | | | Mair | n Power and Control Air | | | | | | | | | | a. | 110 volt AC power available to panel. | | | | X | | | | | | Test | ting, Commissioning, and Balancing | | | | | | | | | | a. | Testing, Commissioning, and Balancing Report submitted. | | | X | | | | | | # APPENDIX B FUNCTIONAL PERFORMANCE TESTS CHECKLISTS Functional Performance Test Checklist - VAV Terminals The Contracting officer will select VAV terminals to be spot-checked during the functional performance test. The number of terminals shall not exceed 10 percent. - 1. Functional Performance Test: Contractor shall demonstrate operation of selected VAV boxes as per specifications including the following: - a. Cooling with reheat VAV boxes: - (1) Verify VAV box response to room temperature set point adjustment. Turn thermostat to 5 degrees F above ambient and measure maximum air flow. Turn thermostat to 5 degrees F below ambient and measure minimum air flow. Maximum flow 1000 cfm Minimum flow 651 cfm (2) Check damper maximum/minimum flow settings. Maximum flow setting 1000 cfm Minimum flow setting 651 cfm Reheat coil operation range (full open to full closed) | b. | Fan | powered | VAV | boxes: | | |----|-----|---------|-----|--------|--| - (1) Verify VAV box response to sensor call for heating via set point adjustment. Changes to be cooling setpoint to heating set point and return to cooling set point. ______ Verify cooling damper closes to minimum position, blower fan energizes according to sequence of operation, and upon further drop in space temperature, heating coil activation and deactivation. - (2) Check primary air damper maximum/minimum flow settings. Maximum flow setting refer to the "Fan Box Setting Schedule" Minimum flow setting refer to the "Fan Box Setting Schedule" - (3) Check blower fan flow. refer to the "Fan Box Setting Schedule" - (4) Verify free operation of fan backdraft damper (insure no primary air is being discharged through the recirculated air register). | | (5) | Verify | that | no | recirculated | air | is | being | induced | when | box | is | in | |------|----------|--------|------|----|--------------|-----|----|-------|---------|------|-----|----|----| | full | cooling. | | | | | | | | | | | | | | 2. | Certif | icati | on: | We | the | und | lers | igne | d hav | ze w | itne | essed | l the | abo | ove | functi | onal | |--------|---------|-------|-----|------|------|-----|------|------|-------|------|------|-------|-------|-----|-----|--------|------| | perfo | rmance | tests | and | cer | tify | th, | at | the | item | tes | sted | has | met | the | per | forman | ice | | requir | rements | in t | his | sect | ion | of | the | spe | cific | cati | ons. | | | | | | | | Si | gna | ture | and | Date | |----|-----|------|-----|------| | | | | | | Contractor's Chief Quality Control Representative | Functional Performance Test Checklist - VAV Termi | nals | |---|-------------| | Contractor's Mechanical Representative | | | Contractor's Electrical Representative | | | Contractor's Testing, Adjusting and Balancing Rep | resentative | | Contractor's Controls Representative | | | Contracting Officer's Representative | | | Using Agency's Representative | | Functional Performance Test Checklist - Variable Volume Air Handling Unit For Packaged DX Rooftop Air Handling Unit: RTU-1 Ensure that a slight negative pressure exists on inboard side of the outside air dampers throughout the operation of the dampers. Modulate OA, RA, and EA dampers from fully open to fully closed positions. - 1. Functional Performance Test: Contractor shall verify operation of air handling unit as per specification including the following: - a. The following shall be verified when the supply fan operating mode is initiated: - (1) All dampers in normal position. | (2) | All | valves | in | normal | position. | | |-----|-----|--------|----|--------|-----------|--| | | | | | | | | - (3) System safeties allow start if safety conditions are met. _____ - (4) VAV fan controller shall "soft-start" fan. - (5) Modulate all VAV boxes to minimum air flow and verify that the static pressure does not exceed the design static pressure Class shown. - b. Occupied mode of operation economizer de-energized. - (1) Outside air damper at minimum position. - (2) Return air damper open. - (3) Relief air damper at minimum position. - (4) Fan VAV controller receiving signal from duct static pressure sensor and modulating fan to maintain supply duct static pressure set point. - c. Occupied mode of operation economizer energized. - (1) Outside air damper modulated to maintain mixed air temperature set point. - (2) Relief air damper modulates with outside air damper according to sequence of operation. - (3) Heating control modulating to maintain leaving air temperature set point. - (4) Fan VAV controller receiving signal from duct static pressure sensor and modulating fan to maintain supply duct static pressure set point. | Functional Performance Test Checklist - Variable Volume Air Handling Unit | | | | | | |---|--|--|--|--|--| | For Packaged DX Rooftop Air Handling Unit: RTU-1
d. Unoccupied mode of operation | | | | | | | (1) All dampers in normal position. | | | | | | | (2) Verify low limit space temperature is maintained as specified in sequence of operation. | | | | | | | e. The following shall be verified when the supply fan off mode is initiated: | | | | | | | (1) All dampers in normal position. | | | | | | | (2) All valves in normal position. | | | | | | | (3) Fan de-energizes. | | | | | | | f. Verify safety shut down initiated by smoke detectors. | | | | | | | g. Verify safety shut down initiated by low temperature protection thermostat. | | | | | | | 2. Certification: We the undersigned have witnessed the above functional performance tests and certify that the item tested has met the performance requirements in this section of the specifications. | | | | | | | Signature and Date | | | | | | | Contractor's Chief Quality Control Representative | | | | | | | Contractor's Mechanical Representative | | | | | | | Contractor's Electrical Representative | | | | | | | Contractor's Testing, Adjusting and Balancing Representative | | | | | | | Contractor's Controls Representative | | | | | | | Contracting Officer's Representative | | | | | | | Using Agency's Representative | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | Functional Performance Test Checklist - Air Cooled Condensing Unit | |---| | For Condensing Unit: ACCU-1 | | 1. Functional Performance Test: Contractor shall demonstrate operation of refrigeration system as per specifications including the following: Start | | building air handler to provide load for condensing unit. Activate controls | | building air handler to provide loa system start sequence as follows. | | | | |--|---------------|------------------------|----------------| | a. Start computer roomg unit condensing unit start sequence. | . Verify co | ntrol system er | nergizes | | b. Shut off computer roomg ede-energizes. | | - | ing unit | | c. Restart computer room equal shut down. Verify condensing unit | | | ndensing unit | | 2. Verify condensing unit ampera and phase to ground. | age each phas | e and voltage p | phase to phase | | Amperage | PHASE 1 | PHASE 2 | PHASE 3 | | Voltage
Voltage | | | | | Voltage to ground | | | | | 3. Record the following informat | ion: | | | | Ambient dry bulb temperature
Ambient wet bulb temperature | | degrees F
degrees F | | | Suction pressure
Discharge pressure | | psig | | | 4. Unusual vibration, noise, etc | · . | | | | | | | | | 5. Certification: We the unders performance tests and certify that requirements in this section of the | the item tes | ted has met the | | | | | Signatu | ire and Date | | Contractor's Chief Quality Control | Representati |
ve
 | | | Contractor's Mechanical Representat | ive | | | | Contractor's Electrical Representat | ive Represen | tative | | | Contractor's Testing, Adjusting and | l Balancing | | | | Congitivo | Compartmented | Information | Facility | (CCTE) | |-----------|---------------|-------------|----------|--------| | Sensitive | Compartmented | iniormation | Facility | (SCIF) | 31004102 | Functional Performance Test Checklist - Air Cool | ed Condensing Unit | |--|--------------------| | For Condensing Unit: ACCU-1 | | | Contractor's Controls Representative | | | Contracting Officer's Representative | | | Using Agency's Representative | | Using Agency's Representative Functional Performance Test Checklist - Cabinet Unit Heaters The Contracting Officer will select unit heaters to be spot-checked during the functional performance test. The number of terminals shall not exceed 10 percent. | 1. Functional Performance Test: Contractor shall demonstrate operation of selected cabinet unit heaters as per specifications including the following: | | | | | | |---|--|--|--|--|--| | a. Verify unit heater response to room temperature set point adjustment. Changes to be heating set point to heating set point minus 10 degrees and return to heating set point. | | | | | | | b. Check blower fan speedrpm | | | | | | | c. Check heating mode inlet air temperature. Check heating mode inlet air temperature degrees F | | | | | | | d. Check heating mode outlet air temperature. Check heating mode outlet air temperature degrees F | | | | | | | 2. Certification: We the undersigned have witnessed the above functional performance tests and certify that the item tested has met the performance requirements in this section of the specifications. | | | | | | | Signature and Date | | | | | | | Contractor's Chief Quality Control Representative | | | | | | | Contractor's Mechanical Representative | | | | | | | Contractor's Electrical Representative | | | | | | | Contractor's Testing, Adjusting and Balancing Representative | | | | | | | Contractor's Controls Representative | | | | | | | Contracting Officer's Representative | | | | | | | Functional Performance Test Checklist - Computer Room Unit | | | | | |---|--|--|--|--| | For Computer Room Unit: CRU-1 | | | | | | 1. Functional Performance Test: Contractor shall verify operation of computer room unit as per specification including the following: | | | | | | a. System safeties allow start if safety conditions are met | | | | | | b. Verify cooling and heating operation by varying thermostat set point from space set point to space set point plus 10 degrees, space set point minus 10 degrees, and returning to space set point. | | | | | | c. Verify humidifier operation by varying humidistat set point from space set point to space set point plus 20 percent RH, and returning to space set point. | | | | | | d. Verify that airflow is within $+10/-0$ percent of design airflow. | | | | | | e. Verify unit shut down during fire event initiated by smoke/heat sensors. | | | | | | 2. Certification: We the undersigned have witnessed the above functional performance tests and certify that the item tested has met the performance requirements in this section of the specifications. | | | | | | Signature and Date | | | | | | Contractor's Chief Quality Control Representative | | | | | | Contractor's Mechanical Representative | | | | | | Contractor's Electrical Representative | | | | | | Contractor's Testing, Adjusting and Balancing Representative | | | | | | Contractor's Controls Representative | | | | | | Contracting Officer's Representative | | | | | | Using Agency's Representative | | | | | Functional Performance Test Checklist - HVAC Controls For HVAC System: DDC Panel The Contracting Officer will select HVAC control systems to undergo functional performance testing. The number of systems shall not exceed 10 percent. - 1. Functional Performance Test: Contractor shall verify operation of HVAC controls by performing the following tests: - a. Verify that controller is maintaining the set point by manually measuring the controlled variable with a thermometer, sling psychrometer, inclined manometer, etc. - b. Verify sensor/controller combination by manually measuring the controlled medium. Take readings from control panel display and compare readings taken manually. Record all readings. | Sensor | | |---------------------|--| | Manual measurement | | | Panel reading value | | - c. Verify system stability by changing the controller set point as follows: - (1) Air temperature 10 degrees F - (2) Water temperature 10 degrees F - (3) Static pressure 10 percent of set point - (4) Relative humidity percent (RH) The control system shall be observed for 10 minutes after the change in set point. Instability or excessive hunting will be unacceptable. - d. Verify interlock with other HVAC controls. - e. Verify interlock with fire alarm control panel. - 2. Verify that operation of control system conforms to that specified in the sequence of operation. - 3. Certification: We the undersigned have witnessed the above functional performance tests and certify that the item tested has met the performance requirements in this section of the specifications. | | Signature and Date | |---|--------------------| | Contractor's Chief Quality Control Representative | | | Contractor's Mechanical Representative | | | Contractor's Electrical Representative | | Contractor's Testing, Adjusting and Balancing Representative | Functional Performance Test Checklist - HVAC Controls | | | |---|--|--| | For HVAC System: DDC Panel | | | | Contractor's Controls Representative | | | | Contractor's Officer's Representative | | | | Using Agency's Representative | | | -- End of Section -- # SECTION 16415A # ELECTRICAL WORK, INTERIOR 08/96 # PART 1 GENERAL ## 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) | ANSI C12.10 | (1997) Electromechanical Watthour Meters | |---------------|--| | ANSI C12.11 | (1987; R 1993) Instrument Transformers for
Revenue Metering, 10 kV BIL Through 350 kV
BIL (0.6 kV NSV through 69 kV NSV) | | ANSI C39.1 | (1981; R 1992) Requirements for Electrical Analog Indicating Instruments | | ANSI C78.1 | (1991; C78.1a; R 1996) Fluorescent Lamps - Rapid-Start Types - Dimensional and Electrical Characteristics | | ANSI C78.2A | (1991) 18 & 26- Watt, Compact Fluorescent
Quad Tube Lamps | | ANSI C78.2B | (1992) 9 & 13-Watt, Compact Fluorescent
Quad Tube Lamps | | ANSI C78.1350 | (1990) Electric Lamps - 400-Watt,
100-Volt, S51 Single-Ended High-Pressure
Sodium Lamps | | ANSI C78.1351 | (1989) Electric Lamps - 250-Watt, 100-Volt
S50 Single-Ended High-Pressure Sodium Lamps | | ANSI C78.1352 | (1990) Electric Lamps - 1000-Watt,
250-Volt, S52 Single-Ended High-Pressure
Sodium Lamps | | ANSI C78.1355 | (1989) Electric Lamps - 150-Watt, 55-Volt
S55 High-Pressure Sodium Lamps | | ANSI C80.5 | (1995) Rigid Aluminum Conduit | | ANSI C82.1 | (1997) Specifications for Fluorescent Lamp
Ballasts | | ANSI C82.4 | (1992) Ballasts for | | ANSI C136.2 | High-Intensity-Discharge and Low-Pressure
Sodium Lamps (Multiple-Supply Type)
(1996) Luminaires, Voltage Classification
of Roadway Lighting Equipment | |--------------|--| | ANSI C136.3 | (1995) Roadway Lighting
Equipment-Luminaire Attachments | | ANSI C136.6 | (1997) Roadway Lighting Equipment - Metal
Heads and Reflector Assemblies -
Mechanical and Optical Interchangeability | | ANSI C136.9 | (1990) Roadway Lighting - Socket Support
Assemblies for Use in Metal Heads -
Mechanical Interchangeability | | ANSI C136.10 | (1996) Roadway Lighting- Locking-Type
Photocontrol Devices and Mating
Receptacles - Physical and Electrical
Interchangeability and Testing | | ANSI C136.11 | (1995) Multiple Sockets for Roadway
Lighting Equipment | | ANSI C136.15 | (1997) Roadway Lighting, High Intensity
Discharge and Low Pressure Sodium Lamps in
Luminaires - | # AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM) | ASTM B 1 | (1995) Hard-Drawn Copper Wire | |------------|---| | ASTM B 8 | (1999) Concentric-Lay-Stranded Copper
Conductors, Hard, Medium-Hard, or Soft | | ASTM D 709 | (1992; R 1997) Laminated Thermosetting Materials | # U.S. NATIONAL ARCHIVES AND RECORDS ADMINISTRATION (NARA) 47 CFR 18 Industrial, Scientific, and Medical Equipment ILLUMINATING ENGINEERING SOCIETY OF NORTH AMERICA (IESNA) IESNA RP-8 (1983; R 1993) Roadway Lighting INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS (IEEE) | IEEE C57.13 | (1993) Instrument Transformers (ANSI/IEEE) | |-------------|---| | IEEE C62.41 | (1991; R 1995) Surge Voltages in
Low-Voltage AC Power Circuits | | IEEE Std 81 | (1983) Guide for Measuring Earth | Resistivity, Ground Impedance, and Earth Surface Potentials of a Ground System (Part 1) # NATIONAL ELECTRICAL MANUFACTURERS ASSOCIATION
(NEMA) | NEMA 250 | (1991) Enclosures for Electrical Equipment (1000 Volts Maximum) | |------------|---| | NEMA AB 1 | (1993) Molded Case Circuit Breakers and
Molded Case Switches | | NEMA FU 1 | (1986) Low Voltage Cartridge Fuses | | NEMA ICS 1 | (1993) Industrial Control and Systems | | NEMA ICS 2 | (1993) Industrial Controls and Systems
Controllers, Contactors, and Overload
Relays Rated Not More Than 2,000 Volts AC
or 750 volts DC | | NEMA ICS 3 | (1993) Industrial Control and Systems
Factory Built Assemblies | | NEMA ICS 6 | (1993) Industrial Control and Systems,
Enclosures | | NEMA LE 4 | (1987) Recessed Luminaires, Ceiling
Compatibility | | NEMA MG 1 | (1998) Motors and Generators | | NEMA MG 10 | (1994) Energy Management Guide for
Selection and Use of Polyphase Motors | | NEMA OS 1 | (1996) Sheet-Steel Outlet Boxes, Device
Boxes, Covers, and Box Supports | | NEMA OS 2 | (1998) Nonmetallic Outlet Boxes, Device
Boxes, Covers and Box Supports | | NEMA PB 1 | (1995) Panelboards | | NEMA PB 2 | (1995) Deadfront Distribution Switchboards | | NEMA RN 1 | (1998) Polyvinyl-Chloride (PVC) Externally
Coated Galvanized Rigid Steel Conduit and
Intermediate Metal Conduit | | NEMA ST 20 | (1992) Dry-Type Transformers for General
Applications | | NEMA TC 2 | (1990) Electrical Polyvinyl Chloride (PVC)
Tubing (EPT) and Conduit (EPC-40 and
EPC-80) | | NEMA VE 1 | (1996) Metal Cable Tray Systems | |-------------------------|--| | NEMA WD 1 | (1983; R 1989) General Requirements for Wiring Devices | | NEMA WD 6 | (1988) Wiring Devices - Dimensional
Requirements | | NATIONAL FIRE PROTECTIO | N ASSOCIATION (NFPA) | | NFPA 70 | (2002) National Electrical Code | | NFPA 101 | (1997; Errata 97-1; TIA 97-1) Life Safety
Code | | UNDERWRITERS LABORATORI | ES (UL) | | UL 1 | (1993; Rev thru Jan 1995) Flexible Metal
Conduit | | UL 5 | (1996) Surface Metal Raceways and Fittings | | UL 6 | (1997) Rigid Metal Conduit | | UL 20 | (1995; Rev thru Oct 1998) General-Use Snap
Switches | | UL 50 | (1995; Rev thru Oct 1997) Enclosures for Electrical Equipment | | UL 67 | (1993; Rev thru Nov 1995) Panelboards | | UL 83 | (1998; Rev thru Sep 1999)
Thermoplastic-Insulated Wires and Cables | | UL 98 | (1994; Rev thru Jun 1998) Enclosed and Dead-Front Switches | | UL 198B | (1995) Class H Fuses | | UL 198C | (1986; Rev thru Feb 1998) High-Interrupting-Capacity Fuses, Current-Limiting Types | | UL 198D | (1995) Class K Fuses | | UL 198E | (1988; Rev Jul 1988) Class R Fuses | | UL 198G | (1988; Rev May 1988) Fuses for
Supplementary Overcurrent Protection | | UL 198H | (1988; Rev thru Nov 1993) Class T Fuses | | UL 360 | (1996; Rev thru Oct 1997) Liquid-Tight
Flexible Steel Conduit | | UL 467 | (1993; Rev thru Aug 1996) Grounding and Bonding Equipment | |---------|---| | UL 486A | (1997; Rev thru Dec 1998) Wire Connectors
and Soldering Lugs for Use with Copper
Conductors | | UL 486B | (1997; Rev Jun 1997) Wire Connectors for Use with Aluminum Conductors | | UL 486C | (1997; Rev thru Aug 1998) Splicing Wire Connectors | | UL 486E | (1994; Rev thru Feb 1997) Equipment Wiring
Terminals for Use with Aluminum and/or
Copper Conductors | | UL 489 | (1996; Rev thru Dec 1998) Molded-Case
Circuit Breakers, Molded-Case Switches,
and Circuit-Breaker Enclosures | | UL 498 | (1996; Rev thru Sep 1998) Attachment Plugs and Receptacles | | UL 506 | (1994; Rev Oct 1997) Specialty Transformers | | UL 508 | (1999) Industrial Control Equipment | | UL 510 | (1994; Rev thru Apr 1998) Polyvinyl
Chloride, Polyethylene, and Rubber
Insulating Tape | | UL 512 | (1993; R Dec 1995) Fuseholders | | UL 514A | (1996; Rev Dec 1999) Metallic Outlet Boxes | | UL 514B | (1997; Rev Oct 1998) Fittings for Cable and Conduit | | UL 514C | (1996; Rev thru Dec 1999) Nonmetallic
Outlet Boxes, Flush-Device Boxes, and
Covers | | UL 542 | (1994; Rev thru Jul 1998) Lampholders,
Starters, and Starter Holders for
Fluorescent Lamps | | UL 651 | (1995; Rev thru Oct 1998) Schedule 40 and
80 Rigid PVC Conduit | | UL 651A | (1995; Rev thru Apr 1998) Type EB and A
Rigid PVC Conduit and HDPE Conduit | | UL 674 | (1994; Rev thru Oct 1998) Electric Motors
and Generators for Use in Division 1
Hazardous (Classified) Locations | | UL 797 | (1993; Rev thru Mar 1997) Electrical | | | Metallic Tubing | |-------------------|--| | UL 844 | (1995; Rev thru Aug 1997) Electric
Lighting Fixtures for Use in Hazardous
(Classified) Locations | | UL 845 | (1995; Rev Feb 1996) Motor Control Centers | | UL 869A | (1998) Reference Standard for Service
Equipment | | UL 891 | (1994; Rev thru Jan 1995) Dead-Front
Switchboards | | UL 916 | (1998) Energy Management Equipment | | UL 943 | (1993; Rev thru May 1998)Ground-Fault
Circuit-Interrupters | | UL 1004 | (1994; Rev thru Dec 1997) Electric Motors | | UL 1022 | (1998) Line Isolation Monitors | | UL 1029 | (1994; R 1997, Bul. 2000)
High-Intensity-Discharge Lamp Ballasts | | UL 1047 | (1995; Rev Jul 1998) Isolated Power
Systems Equipment | | UL 1242 | (1996; Rev Mar 1998) Intermediate Metal
Conduit | | UL 1449 | (1996; Rev thru Oct 1998) Transient
Voltage Surge Suppressors | | UL 1570 | (1995; Rev thru Jun 1997) Fluorescent
Lighting Fixtures | | UL 1571 | (1995; Rev thru Nov 1999) Incandescent
Lighting Fixtures | | UL 1572 | (1995; Rev thru Nov 1999) High Intensity
Discharge Lighting Fixtures | | UL 1660 | (1994; Rev Apr 1998) Liquid-Tight Flexible
Nonmetallic Conduit | | UL Elec Const Dir | (1999) Electrical Construction Equipment
Directory | # 1.2 GENERAL # 1.2.1 Rules The installation shall conform to the requirements of NFPA 70 and NFPA 101, unless more stringent requirements are indicated or shown. #### 1.2.2 Coordination The drawings indicate the extent and the general location and arrangement of equipment, conduit, and wiring. The Contractor shall become familiar with all details of the work and verify all dimensions in the field so that the outlets and equipment shall be properly located and readily accessible. Lighting fixtures, outlets, and other equipment and materials shall be carefully coordinated with mechanical or structural features prior to installation and positioned according to architectural reflected ceiling plans; otherwise, lighting fixtures shall be symmetrically located according to the room arrangement when uniform illumination is required, or asymmetrically located to suit conditions fixed by design and shown. Raceways, junction and outlet boxes, and lighting fixtures shall not be supported from sheet metal roof decks. If any conflicts occur necessitating departures from the drawings, details of and reasons for departures shall be submitted and approved prior to implementing any change. The Contractor shall coordinate the electrical requirements of the mechanical work and provide all power related circuits, wiring, hardware and structural support, even if not shown on the drawings. ## 1.2.3 Special Environments #### 1.2.3.1 Weatherproof Locations Wiring, Fixtures, and equipment in designated locations shall conform to NFPA 70 requirements for installation in damp or wet locations. ## 1.2.3.2 Ducts, Plenums and Other Air-Handling Spaces Wiring and equipment in ducts, plenums and other air-handling spaces shall be installed using materials and methods in conformance with NFPA 70unless more stringent requirements are indicated in this specification or on the contract drawings. #### 1.2.4 Standard Products Material and equipment shall be a standard product of a manufacturer regularly engaged in the manufacture of the product and shall essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening. ## 1.2.5 Nameplates ## 1.2.5.1 Identification Nameplates Major items of electrical equipment and major components shall be permanently marked with an identification name to identify the equipment by type or function and specific unit number as indicated. Designation of motors shall coincide with their designation in the motor control center or panel. Unless otherwise specified, identification nameplates shall be made of laminated plastic in accordance with ASTM D 709 with black outer layers and a white core. Edges shall be chamfered. Plates shall be fastened with black-finished round-head drive screws, except motors, or approved nonadhesive metal fasteners. When the nameplate is to be installed on an irregular-shaped object, the Contractor shall devise an approved support suitable for the application and ensure the proper installation of the supports and nameplates. In all instances, the nameplate shall be installed in a conspicuous location. At the option of the Contractor, the equipment manufacturer's standard embossed nameplate material with black paint-filled letters may be furnished in lieu of laminated plastic. The front of each panelboard, and switchboard shall have a nameplate to indicate the phase letter, corresponding color and arrangement of the phase conductors. The following equipment, as a minimum, shall be provided with identification nameplates: Minimum 1/4 inch High Letters Minimum 1/8 inch High Letters Panelboards Starters Safety Switches Motor Control Centers Transformers Equipment Enclosures Switchgear Switchboards Motors Control Power Transformers Control Devices Instrument Transformers Each panel, section, or unit in switchboard or similar assemblies shall be provided with a nameplate in addition to nameplates listed
above, which shall be provided for individual compartments in the respective assembly, including nameplates which identify "future," "spare," and "dedicated" or "equipped spaces." #### 1.2.6 As-Built Drawings Following the project completion or turnover, within 30 days the Contractor shall furnish 2 sets of as-built drawings to the Contracting Officer. # 1.2.7 Recessed Light Fixtures (RLF) Option The Contractor has the option to substitute inch-pound (I-P) RLF to metric RLF. This option shall be coordinated with Section 09510A ACOUSTICAL CEILINGS. ## 1.3 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: SD-03 Product Data As-Built Drawings; G, ED. The as-built drawings shall be a record of the construction as installed. The drawings shall include all the information shown on the contract drawings, deviations, modifications, and changes from the contract drawings, however minor. The as-built drawings shall be kept at the job site and updated daily. The as-built drawings shall be a full-sized set of prints marked to reflect all deviations, changes, and modifications. The as-built drawings shall be complete and show the location, size, dimensions, part identification, and other information. Additional sheets may be added. The as-built drawings shall be jointly inspected for accuracy and completeness by the Contractor's quality control representative and by the Contracting Officer prior to the submission of each monthly pay estimate. Upon completion of the work, the Contractor shall submit three full sized sets of the marked prints to the Contracting Officer for approval. If upon review, the as-built drawings are found to contain errors and/or omissions, they will be returned to the Contractor for correction. The Contractor shall correct and return the as-built drawings to the Contracting Officer for approval within ten calendar days from the time the drawings are returned to the Contractor. Onsite Tests; G, . A detailed description of the Contractor's proposed procedures for on-site tests. SD-06 Test Reports Field Test Reports; G, . Six copies of the information described below in $8\ 1/2\ x\ 11$ inch binders having a minimum of 5 rings from which material may readily be removed and replaced, including a separate section for each test. Sections shall be separated by heavy plastic dividers with tabs. - a. A list of equipment used, with calibration certifications. - b. A copy of measurements taken. - c. The dates of testing. - d. The equipment and values to be verified. - e. The conditions specified for the test. - f. The test results, signed and dated. - g. A description of adjustments made. - h. Final position of controls and device settings. #### SD-07 Certificates Materials and Equipment; G, ED. The label or listing of the Underwriters Laboratories, Inc., will be accepted as evidence that the materials or equipment conform to the applicable standards of that agency. In lieu of this label or listing, a statement from a nationally recognized, adequately equipped testing agency indicating that the items have been tested in accordance with required procedures and that the materials and equipment comply with all contract requirements will be accepted. However, materials and equipment installed in hazardous locations must bear the UL label unless the data submitted from other testing agency is specifically approved in writing by the Contracting Officer. Items which are required to be listed and labeled in accordance with Underwriters Laboratories must be affixed with a UL label that states that it is UL listed. No exceptions or waivers will be granted to this requirement. Materials and equipment will be approved based on the manufacturer's published data. For other than equipment and materials specified to conform to UL publications, a manufacturer's statement indicating complete compliance with the applicable standard of the American Society for Testing and Materials, National Electrical Manufacturers Association, or other commercial standard, is acceptable. #### 1.4 WORKMANSHIP Materials and equipment shall be installed in accordance with NFPA 70, recommendations of the manufacturer, and as shown. #### PART 2 PRODUCTS Products shall conform to the respective publications and other requirements specified below. Materials and equipment not listed below shall be as specified elsewhere in this section. Items of the same classification shall be identical including equipment, assemblies, parts, and components. #### 2.1 CABLES AND WIRES Conductors No. 8 AWG and larger diameter shall be stranded. Conductors No. 10 AWG and smaller diameter shall be solid, except that conductors for remote control, alarm, and signal circuits, classes 1, 2, and 3, shall be stranded unless specifically indicated otherwise. Conductor sizes and ampacities shown are based on copper, unless indicated otherwise. Conductors indicated to be No. 6 AWG or smaller diameter shall be copper. Conductors indicated to be No. 4 AWG and larger diameter shall be either copper or aluminum, unless otherwise indicated or required by manufacturer. ## 2.1.1 Equipment Manufacturer Requirements When manufacturer's equipment requires copper conductors at the terminations or requires copper conductors to be provided between components of equipment, provide copper conductors or splices, splice boxes, and other work required to meet manufacturer's requirements. ## 2.1.2 Insulation Unless indicated otherwise, or required by NFPA 70, power and lighting wires shall be 600-volt, Type THWN, THHN, or THW conforming to UL 83, except that grounding wire may be type TW conforming to UL 83; remote-control and signal circuits shall be Type TW, THW or TF, conforming to UL 83. Where lighting fixtures require 90-degree Centigrade (C) conductors, provide only conductors with 90-degree C insulation or better. ## 2.1.3 Bonding Conductors ASTM B 1, solid bare copper wire for sizes No. 8 AWG and smaller diameter; ASTM B 8, Class B, stranded bare copper wire for sizes No. 6 AWG and larger diameter. #### 2.1.4 Tray Cable or Power Limited Tray Cable UL listed; Type TC or PLTC.2.2 CABLE TRAYS NEMA VE 1 cable trays shall form a wireway system, and shall be of nominal 4 inch depth. Cable trays shall be constructed of aluminum. Trays shall include splice and end plates, dropouts, and miscellaneous hardware. Edges, fittings, and hardware shall be finished free from burrs and sharp edges. Fittings shall have not less than the load-carrying ability of straight tray sections and shall have manufacturer's minimum standard radius. Radius of bends shall be as shown. ## 2.2.1 Solid-Bottom-Type Cable Tray Solid-bottom-type cable tray shall be Class B, 12 inch width with flanged solid cover. #### 2.3 TRANSIENT VOLTAGE SURGE PROTECTION Transient voltage surge suppressors shall be provided as indicated. Surge suppressors shall meet the requirements of IEEE C62.41 and be UL listed and labeled as having been tested in accordance with UL 1449. Surge suppressor ratings shall be 120/208 volts rms, operating voltage; 60 Hz; 3-phase; 4 wire with ground; transient suppression voltage (peak let-through voltage) of 400 volts. Fuses shall not be used as surge suppression. Maximum continuous operating voltage shall be greater than 115% of the nominal system operating voltage. #### 2.4 CIRCUIT BREAKERS #### 2.4.1 MOLDED-CASE CIRCUIT BREAKERS Molded-case circuit breakers shall conform to NEMA AB 1 and UL 489. Circuit breakers may be installed in panelboards, switchboards, enclosures, or combination motor controllers. #### 2.4.1.1 Construction Circuit breakers shall be suitable for mounting and operating in any position. Lug shall be listed for copper and aluminum conductors in accordance with UL 486E. Single-pole circuit breakers shall be full module size with not more than one pole per module. Multi-pole circuit breakers shall be of the common-trip type having a single operating handle such that an overload or short circuit on any one pole will result in all poles opening simultaneously. Sizes of 100 amperes or less may consist of single-pole breakers permanently factory assembled into a multi-pole unit having an internal, mechanical, nontamperable common-trip mechanism and external handle ties. All circuit breakers shall have a quick-make, quick-break overcenter toggle-type mechanism, and the handle mechanism shall be trip-free to prevent holding the contacts closed against a short-circuit or sustained overload. All circuit breaker handles shall assume a position between "ON" and "OFF" when tripped automatically. All ratings shall be clearly visible. #### 2.4.1.2 Ratings Voltage ratings shall be not less than the applicable circuit voltage. The interrupting rating of the circuit breakers shall be at least equal to the available short-circuit current at the line terminals of the circuit breaker and correspond to the UL listed integrated short-circuit current rating specified for the panelboards and switchboards. Molded-case circuit breakers shall have nominal voltage ratings, maximum continuous-current ratings, and maximum short-circuit interrupting ratings in accordance with NEMA AB 1. Ratings shall be coordinated with system X/R ratio. ## 2.4.1.3 Thermal-Magnetic Trip Elements Thermal magnetic circuit breakers shall be provided as shown. Automatic operation shall be obtained by means of thermal-magnetic tripping devices located in each pole providing inverse time delay and instantaneous circuit protection. The instantaneous magnetic trip shall be adjustable and accessible from the front of all circuit breakers on frame sizes above 225 amperes. #### 2.4.2 Solid-State Trip Elements Solid-state circuit breakers
shall be provided as shown. All electronics shall be self-contained and require no external relaying, power supply, or accessories. Printed circuit cards shall be treated to resist moisture absorption, fungus growth, and signal leakage. All electronics shall be housed in an enclosure which provides protection against arcs, magnetic interference, dust, and other contaminants. Solid-state sensing shall measure true RMS current with error less than one percent on systems with distortions through the 13th harmonic. Peak or average actuating devices are not acceptable. Current sensors shall be torodial construction, encased in a plastic housing filled with epoxy to protect against damage and moisture and shall be integrally mounted on the breaker. Where indicated on the drawings, circuit breaker frames shall be rated for 100 percent continuous duty. Circuit breakers shall have tripping features as shown on the drawings and as described below: - a. Long-time current pick-up, adjustable from 50 percent to 100 percent of continuous current rating. - b. Adjustable long-time delay. - c. Short-time current pick-up, adjustable from 1.5 to 9 times long-time current setting. - d. Adjustable short-time delay. - e. Instantaneous current pick-up, adjustable from 1.5 to 9 times long-time current setting. #### 2.4.3 SWD Circuit Breakers Circuit breakers rated 15 amperes and intended to switch 277 volts or less fluorescent lighting loads shall be marked "SWD." # 2.4.4 HACR Circuit Breakers Circuit breakers 60 amperes or below, 240 volts, 1-pole or 2-pole, intended to protect multi-motor and combination-load installations involved in heating, air conditioning, and refrigerating equipment shall be marked "Listed HACR Type." ## 2.4.5 Ground Fault Circuit Interrupters UL 943. Breakers equipped with ground fault circuit interrupters shall have ground fault class, interrupting capacity, and voltage and current ratings as indicated. #### 2.5 MOTOR SHORT-CIRCUIT PROTECTOR (MSCP) Motor short-circuit protectors shall conform to UL 508 and shall be provided as shown. Protectors shall be used only as part of a combination motor controller which provides coordinated motor branch-circuit overload and short-circuit protection, and shall be rated in accordance with the requirements of NFPA 70. #### 2.5.1 Construction Motor short-circuit protector bodies shall be constructed of high temperature, dimensionally stable, long life, nonhygroscopic materials. Protectors shall fit special MSCP mounting clips and shall not be interchangeable with any commercially available fuses. Protectors shall have 100 percent one-way interchangeability within the A-Y letter designations. All ratings shall be clearly visible. #### 2.5.2 Ratings Voltage ratings shall be not less than the applicable circuit voltage. Letter designations shall be A through Y for motor controller Sizes 0, 1, 2, 3, 4, and 5, with 100,000 amperes interrupting capacity rating. Letter designations shall correspond to controller sizes as follows: | CONTROLLER | SIZE | MSCP | DESIGNATION | |------------|------|------|-------------| | NEMA | 0 | | A-N | | NEMA | 1 | | A-P | | NEMA | 2 | | A-S | | NEMA | 3 | | A-U | | NEMA | 4 | | A-W | | NEMA | 5 | | A-Y | #### 2.6 CONDUIT AND TUBING 2.6.1 Electrical, Zinc-Coated Steel Metallic Tubing (EMT) UL 797 2.6.2 Flexible Conduit, Steel and Plastic General-purpose type, UL 1; liquid tight, UL 360, and UL 1660. 2.6.3 Intermediate Metal Conduit UL 1242. 2.6.4 PVC Coated Rigid Steel Conduit NEMA RN 1. 2.6.5 Rigid Aluminum Conduit ANSI C80.5 and UL 6. 2.6.6 Rigid Metal Conduit UL 6. 2.6.7 Rigid Plastic Conduit NEMA TC 2, UL 651 and UL 651A. - 2.6.8 Surface Metal Electrical Raceways and Fittings UL 5. - 2.7 CONDUIT AND DEVICE BOXES AND FITTINGS - 2.7.1 Boxes, Metallic Outlet NEMA OS 1 and UL 514A. - 2.7.2 Boxes, Nonmetallic, Outlet and Flush-Device Boxes and Covers NEMA OS 2 and UL 514C. - 2.7.3 Boxes, Switch (Enclosed), Surface-Mounted UL 98. - 2.7.4 Fittings for Conduit and Outlet Boxes UL 514B. - 2.7.5 Fittings, PVC, for Use with Rigid PVC Conduit and Tubing UL 514B. - 2.8 CONNECTORS, WIRE PRESSURE - 2.8.1 For Use With Copper Conductors UL 486A. - 2.8.2 For Use With Aluminum Conductors UL 486B. - 2.9 ELECTRICAL GROUNDING AND BONDING EQUIPMENT UL 467. - 2.9.1 Ground Rods Ground rods shall be of copper-clad steel conforming to UL 467 not less than 3/4 inch in diameter by 10 feet in length of the sectional type driven full length into the earth. #### 2.9.2 Ground Bus The ground bus shall be bare conductor or flat copper in one piece, if practicable. #### 2.10 ENCLOSURES NEMA ICS 6 or NEMA 250 unless otherwise specified. #### 2.10.1 Cabinets and Boxes Cabinets and boxes with volume greater than 100 cubic inches shall be in accordance with UL 50, hot-dip, zinc-coated, if sheet steel. #### 2.10.2 Circuit Breaker Enclosures UL 489. 2.11 INTERIOR LIGHTING FIXTURES, LAMPS, BALLASTS, EMERGENCY EQUIPMENT, CONTROLS AND ACCESSORIES The following specifications are supported and supplemented by information and details on the drawings. Additional fixtures, if shown, shall conform to this specification. Lighting equipment installed in classified hazardous locations shall conform to UL 844. Lamps, lampholders, ballasts, transformers, electronic circuitry and other lighting system components shall be constructed according to industry standards. Equipment shall be tested and listed by a recognized independent testing laboratory for the expected installation conditions. Equipment shall conform to the standards listed below. # 2.11.1 Lamps Lamps shall be constructed to operate in the specified fixture, and shall function without derating life or output as listed in published data. Lamps shall meet the requirements of the Energy Policy Act of 1992. a. Fluorescent lamps shall have color temperature of 3,500 degrees Kelvin. They shall be designed to operate with the ballasts and circuitry of the fixtures in which they will be used. Fluorescent lamps, including spares, shall be manufactured by one manufacturer to provide for color and performance consistency. Fluorescent lamps shall comply with ANSI C78.1. Fluorescent tube lamp efficiencies shall meet or exceed the following requirements. T8, 32 watts (4' lamp) 2800 lumens - (1) Linear fluorescent lamps, unless otherwise indicated, shall be 4 feet long 32 watt T8, 265 mA, with minimum CRI of 75. Lamps of other lengths or types shall be used only where specified or shown. Lamps shall deliver rated life when operated on rapid start ballasts. - (2) Small compact fluorescent lamps shall be twin, double, or triple tube configuration as shown with bi-pin or four-pin snap-in base and shall have minimum CRI of 85. They shall deliver rated life when operated on ballasts as shown. 9 and 13 watt double tube lamps shall comply with ANSI C78.2B. 18 and 26 watt double tube lamps shall comply with ANSI C78.2A. Minimum starting temperature shall be 32 degrees F for twin tube lamps and for double and triple twin tube lamps without internal starter; and 15 degrees F for double and triple twin tube lamps with internal starter. #### 2.11.2 Ballasts and Transformers Ballasts or transformers shall be designed to operate the designated lamps within their optimum specifications, without derating the lamps. Lamp and ballast combinations shall be certified as acceptable by the lamp manufacturer. - a. Fluorescent ballasts shall comply with ANSI C82.1 and shall be mounted integrally within fluorescent fixture housing unless otherwise shown. Ballasts shall have maximum current crest factor of 1.7; high power factor; Class A sound rating; maximum operating case temperature of 77 degrees F above ambient; and shall be rated Class P. Unless otherwise indicated, the minimum number of ballasts shall be used to serve each individual fixture. A single ballast may be used to serve multiple fixtures if they are continuously mounted, identically controlled and factory manufactured for that installation with an integral wireway. - (1) Compact fluorescent ballasts shall comply with IEEE C62.41 Category A transient voltage variation requirements and shall be mounted integrally within compact fluorescent fixture housing unless otherwise shown. Ballasts shall have minimum ballast factor of 0.95; maximum current crest factor of 1.6; high power factor; maximum operating case temperature of 77 degrees F above ambient; shall be rated Class P; and shall have a sound rating of Class A. Ballasts shall meet FCC Class A specifications for EMI/RFI emissions. Ballasts shall operate from nominal line voltage of 120 volts at 60 Hz and maintain constant light output over a line voltage variation of \pm 10%. Ballasts shall have an end-of-lamp-life detection and shut-down circuit. Ballasts shall be UL listed and shall contain no PCBs. Ballasts shall contain potting to secure PC board, provide lead strain relief, and provide a moisture barrier. - (2) Electronic fluorescent ballasts shall comply with 47 CFR 18 for electromagnetic interference. Ballasts shall withstand line transients per IEEE C62.41, Category A. Ballasts shall have total harmonic distortion between 10 and 20%; minimum frequency of 20,000Hz; filament voltage between 2.5 and 4.5 volts; maximum starting inrush current of 20 amperes; and shall comply with the minimum Ballast Efficacy Factors shown in the table below. Minimum starting temperature shall be 50 degrees F. Ballasts shall carry a manufacturer's full warranty of three years, including a minimum \$10 labor allowance per ballast. | FI.FCTPONIC | FLUORESCENT | $B \lambda T.T.\lambda CT$ | FFFTCXCV | FACTODG | |-------------|-------------|----------------------------|----------|---------| | PTPCIKONIC | LTOOKEDCENI | DALLASI | CLLTCACI | LACIORS | | LAMP | TYPE OF | NOMINA | \L | NUMBER | | MINIMUM | |--------|----------|--------|--------|--------|------|----------| | TYPE | STARTER | OPERAT | CIONAL | OF | | BALLAST | | | & LAMP | VOLTAG | ŧΕ | LAMPS | | EFFICACY | | | |
| | | | FACTOR | | | | | | | | | | 32W T8 | rapid | 120 | 1 | 2 | 2.54 | | | | start | | | 2 | | 1.44 | | | linear & | | | 3 | | 0.93 | | | U-tubes | | | 4 | | 0.73 | | | | | | | | | - (3) Dimming fluorescent ballasts shall be electronic and shall comply with the applicable electronic ballast specifications shown above. Dimming ballasts shall be compatible with the specified dimming control equipment and shall operate the lamps shown in the range from full rated light output to 20 percent of full rated light output. Dimming ballasts shall provide smooth square law dimming such that perceived dimming action is proportionate to the motion of the dimming control. Single or two-lamp dimming ballasts shall be used. Multi-lamp dimming ballasts shall be designed to operate lamps of the same length and current rating. - (4) Dimming compact fluorescent ballasts shall be electronic and shall comply with the applicable compact fluorescent and dimming ballast specifications shown above. Ballasts shall operate the lamps shown in the range from full rated light output to 5 percent of full rated light output. Ballast power factor shall be <90% throughout dimming range. THD shall be <10% at maximum light output and <20% at minimum light output. Ballast shall ignite the lamps at any light output setting selected. #### 2.11.3 Fixtures Fixtures shall be in accordance with the size, shape, appearance, finish, and performance shown. Unless otherwise indicated, lighting fixtures shall be provided with housings, junction boxes, wiring, lampholders, mounting supports, trim, hardware and accessories for a complete and operable installation. Recessed housings shall be minimum 20 gauge cold rolled or galvanized steel as shown. Extruded aluminum fixtures shall have minimum wall thickness of 0.125 inches. Plastic lenses shall be 100% virgin acrylic or as shown. Glass lenses shall be tempered. Heat resistant glass shall be borosilicate type. Conoid recessed reflector cones shall be Alzak with clear specular low iridescent finish. a. Fluorescent fixtures shall comply with UL 1570. Recessed ceiling fixtures shall comply with NEMA LE 4. Fixtures shall be plainly marked for proper lamp and ballast type to identify lamp diameter, wattage, color and start type. Marking shall be readily visible to service personnel, but not visible from normal viewing angles. Fluorescent fixture lens frames on recessed and surface mounted troffers shall be one assembly with mitered corners. Parabolic louvers shall have a low iridescent finish and 45 degree cut-off. Louver intersection joints shall be hairline type and shall conceal mounting tabs or other assembly methods. Louvers shall be free from blemishes, lines or defects which distort the visual surface. Integral ballast and wireway compartments shall be easily accessible without the use of special tools. Housings shall be constructed to include grounding necessary to start the lamps. Open fixtures shall be equipped with a sleeve, wire guard, or other positive means to prevent lamps from falling. Medium bi-pin lampholders shall be twist-in type with positive locking position. - b. Emergency lighting fixtures and accessories shall be constructed and independently tested to meet the requirements of applicable codes. Batteries shall be Nicad or equal with no required maintenance, and shall have a minimum life expectancy of five years and warranty period of three years. - c. Exit Signs Exit signs shall be ENERGY STAR compliant, thereby meeting the following requirements. Input power shall be less than 5 watts per face. Letter size and spacing shall adhere to NFPA 101. Luminance contrast shall be greater than 0.8. Average luminance shall be greater than 15 $\rm cd/m^2$ measured at normal (0 degree) and 45 degree viewing angles. Minimum luminance shall be greater than 8.6 $\rm cd/m^2$ measured at normal and 45 degree viewing angles. Maximum to minimum luminance shall be less than 20:1 measured at normal and 45 degree viewing angles. The manufacturer warranty for defective parts shall be at least 5 years. Exit signs shall be provided with integral NiCad or equal batteries with no required maintenance, and shall have a minimum life expectancy of five years and warranty period of three years. 2.11.4 Lampholders, Starters, and Starter Holders UL 542 2.11.5 Ultrasonic, and Passive Infrared Occupancy Sensors UL 916 - 2.12 LOW-VOLTAGE FUSES AND FUSEHOLDERS - 2.12.1 Fuses, Low Voltage Cartridge Type NEMA FU 1. 2.12.2 Fuses, High-Interrupting-Capacity, Current-Limiting Type Fuses, Class G, J, L and CC shall be in accordance with UL 198C. 2.12.3 Fuses, Class K, High-Interrupting-Capacity Type UL 198D. 2.12.4 Fuses, Class H UL 198B. 2.12.5 Fuses, Class R UL 198E. 2.12.6 Fuses, Class T UL 198H. 2.12.7 Fuses for Supplementary Overcurrent Protection UL 198G. 2.12.8 Fuseholders UL 512. 2.13 INSTRUMENTS, ELECTRICAL INDICATING ANSI C39.1. 2.14 MOTORS, AC, FRACTIONAL AND INTEGRAL Motors, ac, fractional and integral horsepower, 500 hp and smaller shall conform to NEMA MG 1 and UL 1004for motors; NEMA MG 10 for energy management selection of polyphase motors; and UL 674 for use of motors in hazardous (classified) locations. In addition to the standards listed above, motors shall be provided with efficiencies as specified in the table "MINIMUM NOMINAL EFFICIENCIES" below. ## 2.14.1 Rating The horsepower rating of motors should be limited to no more than 125 percent of the maximum load being served unless a NEMA standard size does not fall within this range. In this case, the next larger NEMA standard motor size should be used. #### 2.14.2 Motor Efficiencies All permanently wired polyphase motors of 1 hp or more shall meet the minimum full-load efficiencies as indicated in the following table, and as specified in this specification. Motors of 1 hp or more with open, drip proof or totally enclosed fan cooled enclosures shall be high efficiency type, unless otherwise indicated. Motor efficiencies indicated in the tables apply to general-purpose, single-speed, polyphase induction motors. Applications which require definite purpose, special purpose, special frame, or special mounted polyphase induction motors are excluded from these efficiency requirements. Motors provided as an integral part of motor driven equipment are excluded from this requirement if a minimum seasonal or overall efficiency requirement is indicated for that equipment by the provisions of another section. # MINIMUM NOMINAL MOTOR EFFICIENCIES OPEN DRIP PROOF MOTORS | <u>kW</u> | <u>1200 RPM</u> | 1800 RPM | 3600 RPM | |-----------|-----------------|----------|----------| | 0.746 | 82.5 | 85.5 | 80.0 | | 1.12 | 86.5 | 86.5 | 85.5 | | 1.49 | 87.5 | 86.5 | 86.5 | | 2.24 | 89.5 | 89.5 | 86.5 | | MINIMUM NOMINA | L MOTOR EFFICIENC | IES | | |----------------|-------------------|------|------| | 3.73 | 89.5 | 89.5 | 89.5 | | 5.60 | 91.7 | 91.0 | 89.5 | | 7.46 | 91.7 | 91.7 | 90.2 | | 11.2 | 92.4 | 93.0 | 91.0 | | 14.9 | 92.4 | 93.0 | 92.4 | | 18.7 | 93.0 | 93.6 | 93.0 | | 22.4 | 93.6 | 93.6 | 93.0 | | 29.8 | 94.1 | 94.1 | 93.6 | | 37.3 | 94.1 | 94.5 | 93.6 | | 44.8 | 95.0 | 95.0 | 94.1 | | 56.9 | 95.0 | 95.0 | 94.5 | | 74.6 | 95.0 | 95.4 | 94.5 | | 93.3 | 95.4 | 95.4 | 95.0 | | 112.0 | 95.8 | 95.8 | 95.4 | | 149.0 | 95.4 | 95.8 | 95.4 | | 187.0 | 95.4 | 96.2 | 95.8 | | 224.0 | 95.4 | 95.0 | 95.4 | | 261.0 | 94.5 | 95.4 | 95.0 | | 298.0 | 94.1 | 95.8 | 95.0 | | 336.0 | 94.5 | 95.4 | 95.4 | | 373.0 | 94.5 | 94.5 | 94.5 | # TOTALLY ENCLOSED FAN-COOLED MOTORS | <u>kW</u> | 1200 RPM | 1800 RPM | 3600 RPM | |-----------|----------|----------|----------| | 0.746 | ۵۵ ۶ | 85.5 | 78.5 | | | 82.5 | | | | 1.12 | 87.5 | 86.5 | 85.5 | | 1.49 | 88.5 | 86.5 | 86.5 | | 2.24 | 89.5 | 89.5 | 88.5 | | 3.73 | 89.5 | 89.5 | 89.5 | | 5.60 | 91.7 | 91.7 | 91.0 | | 7.46 | 91.7 | 91.7 | 91.7 | | 11.2 | 92.4 | 92.4 | 91.7 | | 14.9 | 92.4 | 93.0 | 92.4 | | 18.7 | 93.0 | 93.6 | 93.0 | | 22.4 | 93.6 | 93.6 | 93.0 | | 29.8 | 94.1 | 94.1 | 93.6 | | 37.3 | 94.1 | 94.5 | 94.1 | | 44.8 | 94.5 | 95.0 | 94.1 | | 56.9 | 95.0 | 95.4 | 94.5 | | 74.6 | 95.4 | 95.4 | 95.0 | | 93.3 | 95.4 | 95.4 | 95.4 | | 112.0 | 95.8 | 95.8 | 95.4 | | 149.0 | 95.8 | 96.2 | 95.8 | | 187.0 | 95.6 | 96.2 | 95.9 | | 224.0 | 95.4 | 96.1 | 95.8 | | 261.0 | 94.5 | 96.2 | 94.8 | | 298.0 | 94.5 | 95.8 | 94.5 | | 336.0 | 94.5 | 94.5 | 94.5 | | 373.0 | 94.5 | 94.5 | 94.5 | # MINIMUM NOMINAL MOTOR EFFICIENCIES OPEN DRIP PROOF MOTORS | HP | 1200 RPM | 1800 RPM | 3600 RPM | |----|----------|----------|----------| | | | | | | 1 | 82.5 | 85.5 | 80.0 | | | TOTALLY | ENCLOSED FAN-COOLED MOTORS | | |-----|---------|----------------------------|------| | 1.5 | 86.5 | 86.5 | 85.5 | | 2 | 87.5 | 86.5 | 86.5 | | 3 | 89.5 | 89.5 | 86.5 | | 5 | 89.5 | 89.5 | 89.5 | | 7.5 | 91.7 | 91.0 | 89.5 | | 10 | 91.7 | 91.7 | 90.2 | | 15 | 92.4 | 93.0 | 91.0 | | 20 | 92.4 | 93.0 | 92.4 | | 25 | 93.0 | 93.6 | 93.0 | | 30 | 93.6 | 93.6 | 93.0 | | 40 | 94.1 | 94.1 | 93.6 | | 50 | 94.1 | 94.5 | 93.6 | | 60 | 95.0 | 95.0 | 94.1 | | 75 | 95.0 | 95.0 | 94.5 | | 100 | 95.0 | 95.4 | 94.5 | | 125 | 95.4 | 95.4 | 95.0 | | 150 | 95.8 | 95.8 | 95.4 | | 200 | 95.4 | 95.8 | 95.4 | | 250 | 95.4 | 96.2 | 95.8 | | 300 | 95.4 | 95.0 | 95.4 | | 350 | 94.5 | 95.4 | 95.0 | | 400 | 94.1 | 95.8 | 95.0 | | 450 | 94.5 | 95.4 | 95.4 | | 500 | 94.5 | 94.5 | 94.5 | # TOTALLY ENCLOSED FAN-COOLED MOTORS | HP | 1200 RPM | 1800 RPM | 3600 RPM | |-----|----------|----------|----------| | 1 | ۵۵ - ۲ | 05.5 | 70 5 | | 1 | 82.5 | 85.5 | 78.5 | | 1.5 | 87.5 | 86.5 | 85.5 | | 2 | 88.5 | 86.5 | 86.5 | | 3 | 89.5 | 89.5 | 88.5 | | 5 | 89.5 | 89.5 | 89.5 | | 7.5 | 91.7 | 91.7 | 91.0 | | 10 | 91.7 | 91.7 | 91.7 | | 15 | 92.4 | 92.4 | 91.7 | | 20 | 92.4 | 93.0 | 92.4 | | 25 | 93.0 | 93.6 | 93.0 | | 30 | 93.6 | 93.6 | 93.0 | | 40 | 94.1 | 94.1 | 93.6 | | 50 | 94.1 | 94.5 | 94.1 | | 60 | 94.5 | 95.0 | 94.1 | | 75 | 95.0 | 95.4 | 94.5 | | 100 | 95.4 | 95.4 | 95.0 | | 125 | 95.4 | 95.4 | 95.4 | | 150 | 95.8 |
95.8 | 95.4 | | 200 | 95.8 | 96.2 | 95.8 | | 250 | 95.6 | 96.2 | 95.9 | | 300 | 95.4 | 96.1 | 95.8 | | 350 | 94.5 | 96.2 | 94.8 | | 400 | 94.5 | 95.8 | 94.5 | | 450 | 94.5 | 94.5 | 94.5 | | 500 | 94.5 | 94.5 | 94.5 | # 2.15 MOTOR CONTROLS # 2.15.1 General NEMA ICS 1, NEMA ICS 2, NEMA ICS 3 and NEMA ICS 6, and UL 508 and UL 845. Panelboards supplying non-linear loads shall have neutrals sized for 200 percent of rated current. #### 2.15.2 Motor Starters Combination starters shall be provided with motor short circuit protector as specified in paragraph 2.5. #### 2.15.3 Thermal-Overload Protection Each motor of 1/8 hp or larger shall be provided with thermal-overload protection. Polyphase motors shall have overload protection in each ungrounded conductor. The overload-protection device shall be provided either integral with the motor or controller, or shall be mounted in a separate enclosure. Unless otherwise specified, the protective device shall be of the manually reset type. Single or double pole tumbler switches specifically designed for alternating-current operation only may be used as manual controllers for single-phase motors having a current rating not in excess of 80 percent of the switch rating. ## 2.15.4 Low-Voltage Motor Overload Relays #### 2.15.4.1 General Thermal and magnetic current overload relays shall conform to NEMA ICS 2 and UL 508. Overload protection shall be provided either integral with the motor or motor controller, and shall be rated in accordance with the requirements of NFPA 70. ## 2.15.4.2 Construction Manual reset type thermal relay shall be bimetallic construction. Automatic reset type thermal relays shall be bimetallic construction. Magnetic current relays shall consist of a contact mechanism and a dash pot mounted on a common frame. # 2.15.4.3 Ratings Voltage ratings shall be not less than the applicable circuit voltage. Trip current ratings shall be established by selection of the replaceable overload device and shall not be adjustable. Where the controller is remotely-located or difficult to reach, an automatic reset, non-compensated overload relay shall be provided. Manual reset overload relays shall be provided otherwise, and at all locations where automatic starting is provided. Where the motor is located in a constant ambient temperature, and the thermal device is located in an ambient temperature that regularly varies by more than minus 18 degrees F, an ambient temperature-compensated overload relay shall be provided. ## 2.15.5 Automatic Control Devices ## 2.15.5.1 Direct Control Automatic control devices (such as thermostats, float or pressure switches) which control the starting and stopping of motors directly shall be designed for that purpose and have an adequate horsepower rating. ## 2.15.5.2 Pilot-Relay Control Where the automatic-control device does not have such a rating, a magnetic starter shall be used, with the automatic-control device actuating the pilot-control circuit. ## 2.15.5.3 Manual/Automatic Selection - a. Where combination manual and automatic control is specified and the automatic-control device operates the motor directly, a double-throw, three-position tumbler or rotary switch (marked MANUAL-OFF-AUTOMATIC) shall be provided for the manual control. - b. Where combination manual and automatic control is specified and the automatic-control device actuates the pilot control circuit of a magnetic starter, the magnetic starter shall be provided with a three-position selector switch marked MANUAL-OFF-AUTOMATIC. - c. Connections to the selector switch shall be such that; only the normal automatic regulatory control devices will be bypassed when the switch is in the Manual position; all safety control devices, such as low-or high-pressure cutouts, high-temperature cutouts, and motor-overload protective devices, shall be connected in the motor-control circuit in both the Manual and the Automatic positions of the selector switch. Control circuit connections to any MANUAL-OFF-AUTOMATIC switch or to more than one automatic regulatory control device shall be made in accordance with wiring diagram approved by the Contracting Officer unless such diagram is included on the drawings. All controls shall be 120 volts or less unless otherwise indicated. ## 2.16 PANELBOARDS Dead-front construction, NEMA PB 1 and UL 67. #### 2.17 RECEPTACLES 2.17.1 Heavy Duty Grade NEMA WD 1. Devices shall conform to all requirements for heavy duty receptacles. 2.17.2 Standard Grade UL 498. 2.17.3 Ground Fault Interrupters UL 943, Class A or B. 2.17.4 NEMA Standard Receptacle Configurations NEMA WD 6. a. Single and Duplex, 15-Ampere and 20-Ampere, 125 Volt 15-ampere, non-locking: NEMA type 5-15R, locking: NEMA type L5-15R, 20-ampere, non-locking: NEMA type 5-20R, locking: NEMA type L5-20R. b. 15-Ampere, 250 Volt Two-pole, 3-wire grounding, non-locking: NEMA type 6-15R, locking: NEMA type L6-15R. Three-pole, 4-wire grounding, non-locking: NEMA type 15-15R, locking: NEMA type L15-15R. c. 20-Ampere, 250 Volt Two-pole, 3-wire grounding, non-locking: NEMA type 6-20R, locking: NEMA type L6-20R. Three-pole, 4-wire grounding, non-locking: NEMA type 15-20R, locking: NEMA type L15-20R. d. 30-Ampere, 125/250 Volt Three-pole, 3-wire, non-locking: NEMA type 10-30R, locking: NEMA type L10-30R. Three-pole, 4-wire grounding, non-locking: NEMA type 14-30R, locking: NEMA type L14-30R. e. 30-Ampere, 250 Volt Two-pole, 3-wire grounding, non-locking: NEMA type 6-30R, locking: NEMA type L6-30R. Three-pole, 4-wire grounding, non-locking: NEMA type 15-30R, locking: NEMA type L15-30R. f. 50-Ampere, 125/250 Volt Three-pole, 3-wire: NEMA type 10-50R. Three-pole, 4-wire grounding: NEMA type 14-50R. g. 50-Ampere, 250 Volt Two-pole, 3-wire grounding: NEMA type 6-50R. Three-pole, 4-wire grounding: NEMA type 15-50R. 2.18 Service Entrance Equipment UL 869A. 2.19 SPLICE, CONDUCTOR UL 486C. ## 2.20 SWITCHBOARDS The switchboards shall be dead-front switchboards conforming to NEMA PB 2 and labeled under UL 891. The switchboard shall be a completely enclosed, self-supporting metal structure with utility metering, required number of vertical panel sections, buses, circuit breakers and other devices as shown on drawings. Busses shall be copper with horizontal and vertical buses having rating as shown on drawings. A copper ground bus rated not less than 300a mpos extending the entire length of the assembled structure. The withstand rating and interrupting capacity of the switchboards and circuit breakers shall be based on the maximum fault current available. ## 2.20.1 Circuit Breakers Circuit breakers shall be stationary molded-case circuit breakers with frame sizes and trip ratings as shown on drawings. # 2.20.2 Auxiliary Equipment ## 2.20.2.1 Instruments Instruments shall be long scale, 6.8 inches minimum, semiflush rectangular, indicating or digital switchboard type, mounted at eye level. - a. Ammeter, complete with selector switch having off position and positions to read each phase current. - b. Voltmeter, rcomplete with selector switch having off position and positions to read each phase to phase and phase to neutral voltage. ## 2.21 SNAP SWITCHES UL 20. - 2.22 TAPES - 2.22.1 Plastic Tape UL 510. 2.22.2 Rubber Tape UL 510. #### 2.23 TRANSFORMERS Single- and three-phase transformers shall have two windings per phase. Full-capacity standard NEMA taps shall be provided in the primary windings of transformers unless otherwise indicated. Three-phase transformers shall be configured with delta-wye windings, except as indicated. "T" connections may be used for transformers rated 15 kVA or below. Transformers supplying non-linear loads shall be UL listed as suitable for supplying such loads with a total K-factor not to exceed K-13 and have neutrals sized for 200 percent of rated current. ## 2.23.1 Transformers, Dry-Type Transformers shall have 220 degrees C insulation system for transformers 15 kVA and greater, and shall have 180 degrees C insulation system for transformers rated 10 kVA and less, with temperature rise not exceeding 150 degrees C under full-rated load in maximum ambient temperature of 40 degrees C. a. 600 Volt or Less Primary: NEMA ST 20, UL 506, general purpose, dry-type, self-cooled, ventilated. Transformers shall be provided in NEMA 1 enclosure. Transformers shall be quiet type with maximum sound level at least 3 decibels less than NEMA standard level for transformer ratings indicated. #### 2.24 ISOLATED POWER SYSTEM EQUIPMENT UL 1047, with monitor UL 1022. # 2.25 WATTHOUR/DEMAND METERS ANSI C12.10 for self-contained watthour-demand meter with pulse-initiators for remote monitoring of watt-hour usage and instantaneous demand. Meter shall be socket-mounted indoor type. Meter shall be Class 200. ## 2.26 INSTRUMENT TRANSFORMERS #### 2.26.1 General Instrument transformers shall comply with ANSI C12.11 and IEEE C57.13. Instrument transformers shall be configured for mounting in/on the device to which they are applied. Polarity marks on instrument transformers shall be visually evident and shown on drawings. #### 2.26.2 Current Transformers Unless otherwise indicated, bar, wound, or window-type transformers are acceptable; and except for window-type units installed over insulated buses, transformers shall have a BIL rating consistent with the rated BIL of the associated switchgear or electric power apparatus bushings, buses or conductors. Current transformers shall have the indicated ratios. The continuous thermal-current rating factor shall be not less than 1.5. Other thermal and mechanical ratings of current transformer and their primary leads shall be coordinated with the design of the circuit breaker and shall be not less than the momentary rating of the associated circuit breaker. Circuit protectors shall be provided across secondary leads of the current transformers to prevent the accidental open-circuiting of the transformers while energized. Each terminal of each current transformer shall be connected to a
short-circuiting terminal block in the circuit interrupting mechanism cabinet, power transformer terminal cabinet, and in the associated instrument and relay cabinets. # 2.26.2.1 Current Transformers for kWH and Demand Metering (Low Voltage) Current transformers shall conform to IEEE C57.13. Provide current transformers with a metering accuracy Class of 0.3 through B-0.5, with a minimum RF of 1.5 at 30 degrees C, with 600-volt insulation, and 10 kV BIL. Provide butyl-molded, window-type current transformers mounted in the current transformer cabinet. # 2.27 WIRING DEVICES NEMA WD 1 for wiring devices, and NEMA WD 6 for dimensional requirements of wiring devices. ## 2.28 EXTERIOR ILLUMINATION ## 2.28.1 General Lighting Luminaires, ballasts, lamps, and control devices required for general area lighting shall be in accordance with sheets of Standard Detail No. 40-06-04, attached to these specifications. Applicable sheets are shown on drawings. # 2.28.2 Lamps and Ballasts, High Intensity Discharge (HID) Sources ## 2.28.2.1 High-Pressure Sodium Lamps shall conform to ANSI C78.1350, ANSI C78.1351, ANSI C78.1352, or ANSI C78.1355. Ballasts shall conform to ANSI C82.4, or UL 1029. High-pressure sodium lamps shall be clear. # 2.28.3 Luminaire Components Luminaire components shall conform to the following: attachments, ANSI C136.3; voltage classification, ANSI C136.2; field identification marking, ANSI C136.15; interchangeability, ANSI C136.6 and ANSI C136.9; and sockets, ANSI C136.11. # 2.28.4 Lighting Control Equipment #### 2.28.4.1 Photo-Control Devices Photo-control devices shall conform to ANSI C136.10. Each photo-control element shall be a replaceable, weatherproof, plug-in or twist-lock assembly adjustable operation range of approximately 0.5 to 5.0 foot-candles. ## 2.28.4.2 Timer Control Switches Astronomic dial type arranged to turn "ON" at sunset, and turn "OFF" at a pre-determined time or sunrise, automatically changing the settings each day in accordance with seasonal changes of sunset and sunrise shall be provided. A switch rated 600 volts, having battery backed electronic clock to maintain accurate time for a minimum of 7 hours following a power failure shall be provided. A time switch with a manual on-off bypass switch shall be provided. Housing for the time switch shall be a surface mounted, NEMA 1 (indoor) enclosure conforming to NEMA ICS 6. ## 2.28.4.3 Magnetic Contactor Magnetic contactors shall be mechanically held, electrically operated, and shall conform to NEMA ICS 1 and NEMA ICS 2. The contactor shall be suitable for 120 volts, single phase, 60 Hz. Coil voltage shall be 120 volts. Maximum continuous ampere rating and number of poles shall be as indicated on drawings. Enclosures for contactors mounted indoors shall be NEMA ICS 6, Type 1. Each contactor shall be provided with a spare, normally open auxiliary contact. Terminal lugs shall be coordinated with the wire size. ## 2.28.5 Photometric Distribution Classification Photometrics shall conform to IESNA RP-8. # 2.28.6 Luminaires, Floodlighting #### 2.28.6.1 HID and Incandescent HID lighting fixtures shall conform to UL 1572. Incandescent lighting fixtures shall conform to UL 1571. # 2.28.7 FIXTURES Standard fixtures shall be as detailed on Standard Detail No. 40-06-04, which accompany and form a part of this specification. Applicable sheets are shown on drawings. Special fixtures shall be as indicated on the drawings. Illustrations shown on these sheets or on the drawings are indicative of the general type desired and are not intended to restrict selection to fixtures of any particular manufacturer. Fixtures of similar design, equivalent light distribution and brightness characteristics, equal finish and quality will be acceptable as approved. #### 2.28.7.1 Accessories Accessories such as straps, mounting plates, nipples, or brackets shall be provided for proper installation. # 2.28.7.2 Special Fixtures The types of special fixtures are designated by letters and numbers. For example, SP-1 denotes special Type 1. #### PART 3 EXECUTION #### 3.1 GROUNDING Grounding shall be in conformance with NFPA 70, the contract drawings, and the following specifications. #### 3.1.1 Ground Rods The resistance to ground shall be measured using the fall-of-potential method described in IEEE Std 81. The maximum resistance of a driven ground shall not exceed 25 ohms under normally dry conditions. If this resistance cannot be obtained with a single rod, provide additional rods not less than 6 feet on centers, or if sectional type rods are used, additional sections may be coupled and driven with the first rod. In high-ground-resistance, UL listed chemically charged ground rods may be used. If the resultant resistance exceeds 25 ohms measured not less than 48 hours after rainfall, the Contracting Officer shall be notified immediately. Connections below grade shall be fusion welded. Connections above grade shall be fusion welded or shall use UL 467 approved connectors. #### 3.1.2 Ground Bus Ground bus shall be provided in the electrical equipment rooms as indicated. Noncurrent-carrying metal parts of transformer neutrals and other electrical equipment shall be effectively grounded by bonding to the ground bus. The ground bus shall be bonded to both the entrance ground, and to a ground rod or rods as specified above having the upper ends terminating approximately 4 inches above the floor. Connections and splices shall be of the brazed, welded, bolted, or pressure-connector type, except that pressure connectors or bolted connections shall be used for connections to removable equipment. For raised floor equipment rooms in computer and data processing centers, a minimum of 4, one at each corner, multiple grounding systems shall be furnished. Connections shall be bolted type in lieu of thermoweld, so they can be changed as required by additions and/or alterations. # 3.1.3 Grounding Conductors A green equipment grounding conductor, sized in accordance with NFPA 70 shall be provided, regardless of the type of conduit. Equipment grounding bars shall be provided in all panelboards. The equipment grounding conductor shall be carried back to the service entrance grounding connection or separately derived grounding connection. All equipment grounding conductors, including metallic raceway systems used as such, shall be bonded or joined together in each wiring box or equipment enclosure. Metallic raceways and grounding conductors shall be checked to assure that they are wired or bonded into a common junction. Metallic boxes and enclosures, if used, shall also be bonded to these grounding conductors by an approved means per NFPA 70. When switches, or other utilization devices are installed, any designated grounding terminal on these devices shall also be bonded to the equipment grounding conductor junction with a short jumper. #### 3.2 WIRING METHODS Wiring shall conform to NFPA 70, the contract drawings, and the following specifications. Unless otherwise indicated, wiring shall consist of insulated conductors installed in conduit. Where cables and wires are installed in cable trays, they shall be of the type permitted by NFPA 70 for use in such applications. Nonmetallic-sheathed cables or metallic-armored cables may be installed in areas permitted by NFPA 70. Wire fill in conduits shall be based on NFPA 70 for the type of conduit and wire insulations specified. # 3.2.1 Conduit and Tubing Systems Conduit and tubing systems shall be installed as indicated. Conduit sizes shown are based on use of copper conductors with insulation types as described in paragraph WIRING METHODS. Minimum size of raceways shall be 3/4 inch. Only metal conduits will be permitted when conduits are required for shielding or other special purposes indicated, or when required by conformance to NFPA 70. Nonmetallic conduit and tubing may be used in damp, wet or corrosive locations when permitted by NFPA 70 and the conduit or tubing system is provided with appropriate boxes, covers, clamps, screws or other appropriate type of fittings. Electrical metallic tubing (EMT) may be installed only within buildings. EMT may be installed in concrete and grout in dry locations. EMT installed in concrete or grout shall be provided with concrete tight fittings. EMT shall not be installed in damp or wet locations, or the air space of exterior masonry cavity walls. Bushings, manufactured fittings or boxes providing equivalent means of protection shall be installed on the ends of all conduits and shall be of the insulating type, where required by NFPA 70. Only UL listed adapters shall be used to connect EMT to rigid metal conduit, cast boxes, and conduit bodies. Aluminum conduit may be used only where installed exposed in dry locations. Nonaluminum sleeves shall be used where aluminum conduit passes through concrete floors and firewalls. Penetrations of above grade floor slabs, time-rated partitions and fire walls shall be firestopped in accordance with Section 07840aFIRESTOPPING. Except as otherwise specified, IMC may be used as an option for rigid steel conduit in areas as permitted by NFPA 70. Raceways shall not be installed under the firepits of boilers and furnaces and shall be kept 6 inches away from parallel runs of flues, steam pipes and hot-water pipes. Raceways shall be concealed within finished walls, ceilings, and floors unless otherwise shown. Raceways crossing structural expansion joints or seismic joints shall be provided with suitable expansion fittings or other suitable means to compensate for the building expansion and contraction and to provide for continuity of grounding. ## 3.2.1.1 Pull Wires A pull wire shall be inserted in each empty raceway in which wiring is to be installed if the raceway is more than 50 feet in length and contains more than the equivalent of two 90-degree bends, or where the raceway is more than 150 feet in length. The pull wire shall be of No. 14 AWG zinc-coated steel, or of plastic
having not less than 200 pounds per square inch tensile strength. Not less than 10 inches of slack shall be left at each end of the pull wire. # 3.2.1.2 Conduit Stub-Ups Where conduits are to be stubbed up through concrete floors, a short elbow shall be installed below grade to transition from the horizontal run of conduit to a vertical run. A conduit coupling fitting, threaded on the inside shall be installed, to allow terminating the conduit flush with the finished floor. Wiring shall be extended in rigid threaded conduit to equipment, except that where required, flexible conduit may be used 6 inches above the floor. Empty or spare conduit stub-ups shall be plugged flush with the finished floor with a threaded, recessed plug. # 3.2.1.3 Installing in Slabs Including Slabs on Grade Conduit installed in slabs-on-grade shall be rigid steel or IMC. Conduits shall be installed as close to the middle of concrete slabs as practicable without disturbing the reinforcement. Outside diameter shall not exceed 1/3 of the slab thickness and conduits shall be spaced not closer than 3 diameters on centers except at cabinet locations where the slab thickness shall be increased as approved by the Contracting Officer. Where conduit is run parallel to reinforcing steel, the conduit shall be spaced a minimum of one conduit diameter away but not less than one inch from the reinforcing steel. # 3.2.1.4 Changes in Direction of Runs Changes in direction of runs shall be made with symmetrical bends or cast-metal fittings. Field-made bends and offsets shall be made with an approved hickey or conduit-bending machine. Crushed or deformed raceways shall not be installed. Trapped raceways in damp and wet locations shall be avoided where possible. Lodgment of plaster, dirt, or trash in raceways, boxes, fittings and equipment shall be prevented during the course of construction. Clogged raceways shall be cleared of obstructions or shall be replaced. ## 3.2.1.5 Supports Metallic conduits and tubing, and the support system to which they are attached, shall be securely and rigidly fastened in place to prevent vertical and horizontal movement at intervals of not more than 10 feet and within 3 feet of boxes, cabinets, and fittings, with approved pipe straps, wall brackets, conduit clamps, conduit hangers, threaded C-clamps, beam clamps, or ceiling trapeze. Loads and supports shall be coordinated with supporting structure to prevent damage or deformation to the structure. Loads shall not be applied to joist bridging. Attachment shall be by wood screws or screw-type nails to wood; by toggle bolts on hollow masonry units; by expansion bolts on concrete or brick; by machine screws, welded threaded studs, heat-treated or spring-steel-tension clamps on steel work. Nail-type nylon anchors or threaded studs driven in by a powder charge and provided with lock washers and nuts may be used in lieu of expansion bolts or machine screws. Raceways or pipe straps shall not be welded to steel structures. Cutting the main reinforcing bars in reinforced concrete beams or joists shall be avoided when drilling holes for support anchors. Holes drilled for support anchors, but not used, shall be filled. In partitions of light steel construction, sheet-metal screws may be used. Raceways shall not be supported using wire or nylon ties. Raceways shall be independently supported from the structure. Upper raceways shall not be used as a means of support for lower raceways. Supporting means shall not be shared between electrical raceways and mechanical piping or ducts. Cables and raceways shall not be supported by ceiling grids. Except where permitted by NFPA 70, wiring shall not be supported by ceiling support systems. Conduits shall be fastened to sheet-metal boxes and cabinets with two locknuts where required by NFPA 70, where insulating bushings are used, and where bushings cannot be brought into firm contact with the box; otherwise, a single locknut and bushing may be used. Threadless fittings for electrical metallic tubing shall be of a type approved for the conditions encountered. Additional support for horizontal runs is not required when EMT rests on steel stud cutouts. ## 3.2.1.6 Exposed Raceways Exposed raceways shall be installed parallel or perpendicular to walls, structural members, or intersections of vertical planes and ceilings. Raceways under raised floors and above accessible ceilings shall be considered as exposed installations in accordance with NFPA 70 definitions. ## 3.2.1.7 Communications Raceways Communications raceways indicated shall be installed in accordance with the previous requirements for conduit and tubing and with the additional requirement that no length of run shall exceed 50 feet for 3/4 inch sizes, and 100 feet for 1 inch or larger sizes, and shall not contain more than two 90-degree bends or the equivalent. Additional pull or junction boxes shall be installed to comply with these limitations whether or not indicated. Inside radii of bends in conduits of 1 inch size or larger shall not be less than ten times the nominal diameter. ## 3.2.2 Cable Trays Cable trays shall be supported in accordance with the recommendations of the manufacturer but at no more than 6 foot intervals. Contact surfaces of aluminum connections shall be coated with an antioxidant compound prior to assembly. Adjacent cable tray sections shall be bonded together by connector plates of an identical type as the cable tray sections. The Contractor shall submit the manufacturer's certification that the cable tray system meets all requirements of Article 318 of NFPA 70. The cable tray shall be installed and grounded in accordance with the provisions of Article 318 of NFPA 70. Data submitted by the Contractor shall demonstrate that the completed cable tray systems will comply with the specified requirements. Cable trays shall terminate 10 inches from both sides of smoke and fire partitions. Conductors run through smoke and fire partitions shall be installed in 4 inch rigid steel conduits with grounding bushings, extending 12 inches beyond each side of the partitions. The installation shall be sealed to preserve the smoke and fire rating of the partitions. Penetrations shall be firestopped in accordance with Section 07840a FIRESTOPPING. ## 3.2.3 Cables and Conductors Installation shall conform to the requirements of NFPA 70. Covered, bare or insulated conductors of circuits rated over 600 volts shall not occupy the same equipment wiring enclosure, cable, or raceway with conductors of circuits rated 600 volts or less. # 3.2.3.1 Sizing Unless otherwise noted, all sizes are based on copper conductors and the insulation types indicated. Sizes shall be not less than indicated. Branch-circuit conductors shall be not smaller than No. 12 AWG. Conductors for branch circuits of 120 volts more than 100 feet long from panel to load center, shall be no smaller than No. 10 AWG. Class 1 remote control and signal circuit conductors shall be not less than No. 14 AWG. Class 2 remote control and signal circuit conductors shall be not less than No. 16 AWG. Class 3 low-energy, remote-control and signal circuits shall be not less than No. 22 AWG. # 3.2.3.2 Use of Aluminum Conductors in Lieu of Copper Unless otherwise indicated, the Contractor may substitute aluminum conductors in lieu of copper conductors for copper sizes No. 4 AWG and larger. Should the Contractor choose to provide aluminum for conductors, the Contractor shall be responsible for increasing conductor size to have same ampacity as copper size indicated; increasing conduit and pull box sizes to accommodate larger size aluminum conductors in accordance with NFPA 70; ensuring that pulling tension rating of aluminum conductors is sufficient; providing panelboards that are UL listed for use with aluminum, and so labelled; relocating equipment, modifying equipment terminations, resizing equipment; and resolving problems that are a direct result of providing aluminum conductors in lieu of copper. # 3.2.3.3 Cable Splicing Splices shall be made in an accessible location. Crimping tools and dies shall be approved by the connector manufacturer for use with the type of connector and conductor. - a. Copper Conductors, 600 Volt and Under: Splices in conductors No. 10 AWG and smaller diameter shall be made with an insulated, pressure-type connector. Splices in conductors No. 8 AWG and larger diameter shall be made with a solderless connector and insulated with tape or heat-shrink type insulating material equivalent to the conductor insulation. - b. Aluminum Conductors, 600 Volt and Under: Splices of aluminum conductors shall be made with a UL listed, solderless, compression-type, aluminum bodied connector, stamped for AL or AL/CU. Aluminum contact surfaces of conductors shall be cleaned with a wire brush and covered with anti-oxidant joint compound prior to making of connections. Any excess joint compound shall be wiped away after installing the connector. Insulate the connection with tape or heat-shrink type insulating material equivalent to the conductor insulation. ## 3.2.3.4 Conductor Identification and Tagging Power, control, and signal circuit conductor identification shall be provided within each enclosure where a tap, splice, or termination is made. Where several feeders pass through a common pull box, the feeders shall be tagged to indicate clearly the electrical characteristics, circuit number, and panel designation. Phase conductors of low voltage power circuits shall be identified by color coding. Phase identification by a particular color shall be maintained continuously for the length of a circuit, including junctions. a. Color coding shall be provided for service, feeder, branch, and ground conductors. Color shall be green for grounding conductors and white for neutrals; except where neutrals of more than one system are installed in the same raceway or box, other neutral shall be white with colored (not green) stripe. The color
coding for 3-phase and single-phase low voltage systems shall be as follows: 120/208-volt, 3-phase: Black(A), red(B), and blue(C). - b. Conductor phase and voltage identification shall be made by color-coded insulation for all conductors smaller than No. 6 AWG. For conductors No. 6 AWG and larger, identification shall be made by color-coded insulation, or conductors with black insulation may be furnished and identified by the use of half-lapped bands of colored electrical tape wrapped around the insulation for a minimum of 3 inches of length near the end, or other method as submitted by the Contractor and approved by the Contracting Officer. - c. Control and signal circuit conductor identification shall be made by color-coded insulated conductors, plastic-coated self-sticking printed markers, permanently attached stamped metal foil markers, or equivalent means as approved. Control circuit terminals of equipment shall be properly identified. Terminal and conductor identification shall match that shown on approved detail drawings. Hand lettering or marking is not acceptable. ## 3.3 BOXES AND SUPPORTS Boxes shall be provided in the wiring or raceway systems where required by NFPA 70 for pulling of wires, making connections, and mounting of devices or fixtures. Pull boxes shall be furnished with screw-fastened covers. Indicated elevations are approximate, except where minimum mounting heights for hazardous areas are required by NFPA 70. Unless otherwise indicated, boxes for wall switches shall be mounted 48 inches above finished floors. Switch and outlet boxes located on opposite sides of fire rated walls shall be separated by a minimum horizontal distance of 24 inches. The total combined area of all box openings in fire rated walls shall not exceed 100 square inches per 100 square feet. Maximum box areas for individual boxes in fire rated walls vary with the manufacturer and shall not exceed the maximum specified for that box in UL Elec Const Dir. Only boxes listed in UL Elec Const Dir shall be used in fire rated walls. # 3.3.1 Box Applications Each box shall have not less than the volume required by NFPA 70 for number of conductors enclosed in box. Boxes for metallic raceways shall be listed for the intended use when located in normally wet locations, when flush or surface mounted on outside of exterior surfaces, or when located in hazardous areas. Boxes installed in wet locations and boxes installed flush with the outside of exterior surfaces shall be gasketed. Boxes for mounting lighting fixtures shall be not less than 4 inches square, or octagonal, except smaller boxes may be installed as required by fixture configuration, as approved. Cast-metal boxes with 3/32 inch wall thickness are acceptable. Large size boxes shall be NEMA 1 or as shown. Boxes in other locations shall be sheet steel except that aluminum boxes may be used with aluminum conduit, and nonmetallic boxes may be used with nonmetallic conduit and tubing, when permitted by NFPA 70. Boxes for use in masonry-block or tile walls shall be square-cornered, tile-type, or standard boxes having square-cornered, tile-type covers. ## 3.3.2 Brackets and Fasteners Boxes and supports shall be fastened to wood with wood screws or screw-type nails of equal holding strength, with bolts and metal expansion shields on concrete or brick, with toggle bolts on hollow masonry units, and with machine screw or welded studs on steel work. Threaded studs driven in by powder charge and provided with lockwashers and nuts, or nail-type nylon anchors may be used in lieu of expansion shields, or machine screws. Penetration of more than 1-1/2 inches into reinforced-concrete beams or more than 3/4 inch into reinforced-concrete joists shall avoid cutting any main reinforcing steel. The use of brackets which depend on gypsum wallboard or plasterboard for primary support will not be permitted. In partitions of light steel construction, bar hangers with 1 inch long studs, mounted between metal wall studs or metal box mounting brackets shall be used to secure boxes to the building structure. When metal box mounting brackets are used, additional box support shall be provided on the side of the box opposite the brackets. This additional box support shall consist of a minimum 12 inch long section of wall stud, bracketed to the opposite side of the box and secured by two screws through the wallboard on each side of the stud. Metal screws may be used in lieu of the metal box mounting brackets. # 3.3.3 Mounting in Walls, Ceilings, or Recessed Locations In walls or ceilings of concrete, tile, or other non-combustible material, boxes shall be installed so that the edge of the box is not recessed more than 1/4 inch from the finished surface. Boxes mounted in combustible walls or ceiling material shall be mounted flush with the finished surface. The use of gypsum or plasterboard as a means of supporting boxes will not be permitted. Boxes installed for concealed wiring shall be provided with suitable extension rings or plaster covers, as required. The bottom of boxes installed in masonry-block walls for concealed wiring shall be mounted flush with the top of a block to minimize cutting of the blocks, and boxes shall be located horizontally to avoid cutting webs of block. Separate boxes shall be provided for flush or recessed fixtures when required by the fixture terminal operating temperature, and fixtures shall be readily removable for access to the boxes unless ceiling access panels are provided. # 3.3.4 Installation in Overhead Spaces In open overhead spaces, cast-metal boxes threaded to raceways need not be separately supported except where used for fixture support; cast-metal boxes having threadless connectors and sheet metal boxes shall be supported directly from the building structure or by bar hangers. Hangers shall not be fastened to or supported from joist bridging. Where bar hangers are used, the bar shall be attached to raceways on opposite sides of the box and the raceway shall be supported with an approved type fastener not more than 24 inches from the box. #### 3.4 DEVICE PLATES One-piece type device plates shall be provided for all outlets and fittings. Plates on unfinished walls and on fittings shall be of zinc-coated sheet steel, cast-metal, or impact resistant plastic having rounded or beveled edges. Plates on finished walls shall be of steel with baked enamel finish or impact-resistant plastic and shall be ivory. Screws shall be of metal with countersunk heads, in a color to match the finish of the plate. Plates shall be installed with all four edges in continuous contact with finished wall surfaces without the use of mats or similar devices. Plaster fillings will not be permitted. Plates shall be installed with an alignment tolerance of 1/16 inch. The use of sectional-type device plates will not be permitted. Plates installed in wet locations shall be gasketed and provided with a hinged, gasketed cover, unless otherwise specified. ## 3.5 RECEPTACLES # 3.5.1 Single and Duplex, 15 or 20-ampere, 125 volt Single and duplex receptacles shall be rated 20 amperes, 125 volts, two-pole, three-wire, grounding type with polarized parallel slots. Bodies shall be of ivory to match color of switch handles in the same room or to harmonize with the color of the respective wall, and supported by mounting strap having plaster ears. Contact arrangement shall be such that contact is made on two sides of an inserted blade. Receptacle shall be side- or back-wired with two screws per terminal. The third grounding pole shall be connected to the metal mounting yoke. Switched receptacles shall be the same as other receptacles specified except that the ungrounded pole of each suitable receptacle shall be provided with a separate terminal. Only the top receptacle of a duplex receptacle shall be wired for switching application. Receptacles with ground fault circuit interrupters shall have the current rating as indicated, and shall be UL Class A type unless otherwise shown. Ground fault circuit protection shall be provided as required by NFPA 70 and as indicated on the drawings. #### 3.5.2 Floor Outlets Floor outlets shall be adjustable and each outlet shall consist of a cast-metal body with threaded openings for conduits, adjustable ring, and cover plate with 1/2 inch or 3/4 inch threaded flush plug. Each telephone outlet shall consist of a horizontal cast housing with a receptacle as specified. Gaskets shall be used where necessary to ensure a watertight installation. Plugs with installation instructions shall be delivered to the Contracting Officer at the job site for capping outlets upon removal of service fittings. # 3.5.3 Weatherproof Applications Weatherproof receptacles shall be suitable for the environment, damp or wet as applicable, and the housings shall be labeled to identify the allowable use. Receptacles shall be marked in accordance with UL 514A for the type of use indicated; "Damp locations", "Wet Locations", "Wet Location Only When Cover Closed". Assemblies shall be installed in accordance with the manufacturer's recommendations. ## 3.5.3.1 Damp Locations Receptacles in damp locations shall be mounted in an outlet box with a gasketed, weatherproof, cast-metal cover plate (device plate, box cover) and a gasketed cap (hood, receptacle cover) over each receptacle opening. The cap shall be either a screw-on type permanently attached to the cover plate by a short length of bead chain or shall be a flap type attached to the cover with a spring loaded hinge. #### 3.5.3.2 Wet Locations Receptacles in wet locations shall be installed in an assembly rated for such use whether the plug is inserted or withdrawn, unless otherwise indicated. In a duplex installation, the receptacle cover shall be configured to shield the connections whether one or both receptacles are in use. # 3.5.4 Receptacles, 15-Ampere, 250-Volt Receptacles, 15-ampere, 250-volt, shall be duplex two-pole, three-wire, grounding
type with bodies of ivory phenolic compound supported by mounting yoke having plaster ears. The third grounding pole shall be connected to the metal yoke. Each receptacle shall be provided with a mating cord-grip plug. # 3.5.5 Receptacles, 20-Ampere, 250-Volt Receptacles, single, 20-ampere, 250-volt, shall be ivory molded plastic, two-pole, three-wire or three-pole, four-wire, grounding type complete with appropriate mating cord-grip plug. ## 3.5.6 Receptacles, 30-Ampere, 125/250-Volt Receptacles, single, 30-ampere, 125/250-volt, shall be molded-plastic, three-pole, four-wire, grounding type, complete with appropriate mating cord-grip type attachment plug. # 3.5.7 Receptacles, 30-Ampere, 250-Volt Receptacles, single, 30-ampere, 250-volt, shall be molded-plastic, three-pole, three-wire type, complete with appropriate mating cord-grip plug. # 3.5.8 Receptacles, 50-Ampere, 125/250-Volt Receptacles, single 50-ampere, 125/250-volt, shall be flush, molded plastic, three-pole, four-wire, grounding type with appropriate matching cord-grip plug. ## 3.5.9 Receptacles, 50-Ampere, 250-Volt Receptacles, single, 50-ampere, 250-volt, shall be flush molded plastic, three-pole, three-wire type, complete with appropriate mating cord-grip plug. ## 3.5.10 Special-Purpose or Heavy-Duty Receptacles Special-purpose or heavy-duty receptacles shall be of the type and of ratings and number of poles indicated or required for the anticipated purpose. Contact surfaces may be either round or rectangular. One appropriate straight or angle-type plug shall be furnished with each receptacle. Locking type receptacles, rated 30 amperes or less, shall be locked by rotating the plug. Locking type receptacles, rated more than 50 amperes, shall utilize a locking ring. # 3.6 WALL SWITCHES Wall switches shall be of the totally enclosed tumbler type. The wall switch handle and switch plate color shall be ivory. Wiring terminals shall be of the screw type or of the solderless pressure type having suitable conductor-release arrangement. Not more than one switch shall be installed in a single-gang position. Switches shall be rated 15-ampere 20-ampere 120-volt for use on alternating current only. #### 3.7 SERVICE EQUIPMENT Service-disconnecting means shall be of the type indicated in paragraph SWITCHBOARDS with an external handle for manual operation. When service disconnecting means is a part of an assembly, the assembly shall be listed as suitable for service entrance equipment. Enclosures shall be sheet metal with hinged cover for surface mounting unless otherwise indicated. #### 3.8 PANELBOARDS AND LOADCENTERS Circuit breakers and switches used as a motor disconnecting means shall be capable of being locked in the open position. Door locks shall be keyed alike. Nameplates shall be as approved. Directories shall be typed to indicate loads served by each circuit and mounted in a holder behind a clear protective covering. Busses shall be copper. #### 3.8.1 Loadcenters Loadcenters shall be circuit breaker equipped. #### 3.8.2 Panelboards Panelboards shall be circuit breaker equipped as indicated on the drawings. ## 3.9 FUSES Equipment provided under this contract shall be provided with a complete set of properly rated fuses when the equipment manufacturer utilize fuses in the manufacture of the equipment, or if current-limiting fuses are required to be installed to limit the ampere-interrupting capacity of circuit breakers or equipment to less than the maximum available fault current at the location of the equipment to be installed. Fuses shall have a voltage rating of not less than the phase-to-phase circuit voltage, and shall have the time-current characteristics required for effective power system coordination. Time-delay and non-time-delay options shall be as specified. ## 3.9.1 Cartridge Fuses; Noncurrent-Limiting Type Cartridge fuses of the noncurrent-limiting type shall be Class H, nonrenewable, dual element, time lag type and shall have interrupting capacity of 10,000 amperes. At 500 percent current, cartridge fuses shall not blow in less than 10 seconds. ## 3.9.2 Cartridge Fuses; Current-Limiting Type Cartridge fuses, current-limiting type, Class J, L, RK1, RK5 shall have tested interrupting capacity not less than 200,000 amperes. Fuse holders shall be the type that will reject all Class H fuses. # 3.9.3 Continuous Current Ratings (600 Amperes and Smaller) Service entrance and feeder circuit fuses (600 amperes and smaller) shall be Class J, current-limiting, time-delay with 200,000 amperes interrupting capacity. # 3.9.4 Continuous Current Ratings (Greater than 600 Amperes) Service entrance and feeder circuit fuses (greater than 600 amperes) shall be Class L, current-limiting, time-delay with 200,000 amperes interrupting capacity. ## 3.9.5 Motor and Transformer Circuit Fuses Motor, motor controller, transformer, and inductive circuit fuses shall be Class RK1 or RK5, current-limiting, time-delay with 200,000 amperes interrupting capacity. #### 3.10 MOTORS Each motor shall conform to the hp and voltage ratings indicated, and shall have a service factor and other characteristics that are essential to the proper application and performance of the motors under conditions shown or specified. Three-phase motors for use on 3-phase 208-volt systems shall have a nameplate rating of 200 volts. Unless otherwise specified, all motors shall have open frames, and continuous-duty classification based on a 40 degree C ambient temperature reference. Polyphase motors shall be squirrel-cage type, having normal-starting-torque and low-starting-current characteristics, unless other characteristics are specified in other sections of these specifications or shown on contract drawings. The Contractor shall be responsible for selecting the actual horsepower ratings and other motor requirements necessary for the applications indicated. When electrically driven equipment furnished under other sections of these specifications materially differs from the design, the Contractor shall make the necessary adjustments to the wiring, disconnect devices and branch-circuit protection to accommodate the equipment actually installed. # 3.11 MOTOR CONTROL Each motor or group of motors requiring a single control shall be provided under other sections of these specifications with a suitable controller and devices that will perform the functions as specified for the respective motors. Each motor of 1/8 hp or larger shall be provided with thermal-overload protection. Polyphase motors shall have overload protection in each ungrounded conductor. The overload-protection device shall be provided either integral with the motor or controller, or shall be mounted in a separate enclosure. Unless otherwise specified, the protective device shall be of the manually reset type. Single or double pole tumbler switches specifically designed for alternating-current operation only may be used as manual controllers for single-phase motors having a current rating not in excess of 80 percent of the switch rating. Automatic control devices such as thermostats, float or pressure switches may control the starting and stopping of motors directly, provided the devices used are designed for that purpose and have an adequate horsepower rating. When the automatic-control device does not have such a rating, a magnetic starter shall be used, with the automatic-control device actuating the pilot-control circuit. When combination manual and automatic control is specified and the automatic-control device operates the motor directly, a double-throw, three-position tumbler or rotary switch shall be provided for the manual control; when the automatic-control device actuates the pilot control circuit of a magnetic starter, the latter shall be provided with a three-position selector switch marked MANUAL-OFF-AUTOMATIC. Connections to the selector switch shall be such that only the normal automatic regulatory control devices will be bypassed when the switch is in the Manual position; all safety control devices, such as low- or high-pressure cutouts, high-temperature cutouts, and motor-overload protective devices, shall be connected in the motor-control circuit in both the Manual and the Automatic positions of the selector switch. Control circuit connections to any MANUAL-OFF-AUTOMATIC switch or to more than one automatic regulatory control device shall be made in accordance with wiring diagram approved by the Contracting Officer unless such diagram is included on the drawings. All controls shall be 120 volts or less unless otherwise indicated. ## 3.11.1 Contacts Unless otherwise indicated, contacts in miscellaneous control devices such as float switches, pressure switches, and auxiliary relays shall have current and voltage ratings in accordance with NEMA ICS 2 for rating designation B300. # 3.11.2 Safety Controls Safety controls for boilers shall be connected to a 2-wire, 120 volt grounded circuit supplied from the associated boiler-equipment circuit. Where the boiler circuit is more than 120 volts to ground, safety controls shall be energized through a two-winding transformer having its 120 volt secondary winding grounded. Overcurrent protection shall be provided in the ungrounded secondary conductor and shall be sized for the load encountered. #### 3.12 MOTOR-DISCONNECT MEANS Each motor shall be provided with a disconnecting means when required by NFPA 70 even though not indicated. For single-phase motors, a single or double pole toggle switch, rated only for alternating current, will be acceptable for capacities less than 30 amperes, provided the ampere rating of the switch is at least 125 percent of the motor rating. Switches shall disconnect all ungrounded conductors. ## 3.13 TRANSFORMER INSTALLATION Three-phase transformers shall be connected only in a delta-wye or wye-delta configuration as indicated except isolation transformers having a one-to-one turns ratio. "T" connections may be used for transformers rated at 15 kVA
or below. Dry-type transformers shown located within 5 feet of the exterior wall shall be provided in a weatherproof enclosure. Transformers to be located within the building may be provided in the manufacturer's standard, ventilated indoor enclosure designed for use in 40 degrees C ambient temperature, unless otherwise indicated. # 3.14 LIGHTING FIXTURES, LAMPS AND BALLASTS This paragraph shall cover the installation of lamps, lighting fixtures and ballasts in interior or exterior building mounted applications. #### 3.14.1 Lamps Lamps of the type, wattage, and voltage rating indicated shall be delivered to the project in the original cartons and installed just prior to project completion. Lamps installed and used for working light during construction shall be replaced prior to turnover to the Government if more than 15% of their rated life has been used. Lamps shall be tested for proper operation prior to turn-over and shall be replaced if necessary with new lamps from the original manufacturer. 10% spare lamps of each type, from the original manufacturer, shall be provided. # 3.14.2 Lighting Fixtures Fixtures shall be as shown and shall conform to the following specifications and shall be as detailed on the drawings. Illustrations shown on the drawings are indicative of the general type desired and are not intended to restrict selection to fixtures of any particular manufacturer. Fixtures of similar designs and equivalent energy efficiency, light distribution and brightness characteristics, and of equal finish and quality will be acceptable if approved. The fluorescent emergency light fixtures shall be furnished with self-contained battery packs. #### 3.14.2.1 Accessories Accessories such as straps, mounting plates, nipples, or brackets shall be provided for proper installation. ## 3.14.2.2 Ceiling Fixtures Ceiling fixtures shall be coordinated with and suitable for installation in, on or from the ceiling as shown. Installation and support of fixtures shall be in accordance with NFPA 70 and manufacturer's recommendations. Where seismic requirements are specified herein, fixtures shall be supported as shown or specified. Recessed fixtures shall have adjustable fittings to permit alignment with ceiling panels. Recessed fixtures installed in fire-resistive ceiling construction shall have the same fire rating as the ceiling or shall be provided with fireproofing boxes having materials of the same fire rating as the ceiling, in conformance withUL Elec Const Dir. Surface-mounted fixtures shall be suitable for fastening to the ceiling panel structural supports. # 3.14.2.3 Fixtures for Installation in Grid Type Ceilings Fixtures for installation in grid type ceilings which are smaller than a full tile shall be centered in the tile. 1 by 4 foot fixtures shall be mounted along the grid rail as shown. Work above the ceiling shall be coordinated among the trades to provide the lighting layout shown. Fixtures mounted to the grid shall have trim exactly compatible with the grid. Contractor shall coordinate trims with ceiling trades prior to ordering fixtures. Fixtures in continuous rows shall be coordinated between trades prior to ordering. Fixtures shall be mounted using independent supports capable of supporting the entire weight of the fixture. No fixture shall rest solely on the ceiling grid. Recessed fixtures installed in seismic areas should be installed utilizing specially designed seismic clips. Junction boxes shall be supported at four points. ## 3.14.2.4 Suspended Fixtures Suspended fixtures shall be provided with swivel hangers or hand-straights so that they hang plumb. Pendants, rods, or chains 4 feet or longer excluding fixture shall be braced to prevent swaying using three cables at 120 degrees of separation. Suspended fixtures in continuous rows shall have internal wireway systems for end to end wiring and shall be properly aligned to provide a straight and continuous row without bends, gaps, light leaks or filler pieces. Aligning splines shall be used on extruded aluminum fixtures to assure hairline joints. Steel fixtures shall be supported to prevent "oil-canning" effects. Fixture finishes shall be free of scratches, nicks, dents, and warps, and shall match the color and gloss specified. Pendants shall be finished to match fixtures. Aircraft cable shall be stainless steel. Canopies shall be finished to match the ceiling and shall be low profile unless otherwise shown. Maximum distance between suspension points shall be 10 feet or as recommended by the manufacturer, whichever is less. ## 3.14.3 Ballasts Remote type ballasts or transformers, where indicated, shall be mounted in a well ventilated, easily accessible location, within the maximum operating distance from the lamp as designated by the manufacturer. #### 3.15 LIGHTING CONTROL SYSTEM ## 3.15.1 Photo-Control Lighting luminaires shall be controlled in banks by a single photo-control element mounted within each bank. ### 3.15.2 Time Control Switches Switches shall be installed with not less than four 1/4 inch bolts. The use of sheet metal screws will not be allowed. # 3.15.3 Magnetic Contactors Terminal lugs shall be coordinated with the wire size. Switches shall be securely fastened to the supporting structure or wall using not less than four 1/4 inch bolts. The use of sheet metal screws will not be allowed. # 3.16 EQUIPMENT CONNECTIONS Wiring not furnished and installed under other sections of the specifications for the connection of electrical equipment as indicated on the drawings shall be furnished and installed under this section of the specifications. Connections shall comply with the applicable requirements of paragraph WIRING METHODS. Flexible conduits 6 feet or less in length shall be provided to all electrical equipment subject to periodic removal, vibration, or movement and for all motors. All motors shall be provided with separate grounding conductors. Liquid-tight conduits shall be used in damp or wet locations. #### 3.16.1 Motors and Motor Control Motors and motor controls shall be installed in accordance with NFPA 70, the manufacturer's recommendations, and as indicated. Wiring shall be extended to motors and motor controls and terminated. # 3.16.2 Installation of Government-Furnished Equipment Wiring shall be extended to the equipment and terminated. ## 3.17 CIRCUIT PROTECTIVE DEVICES The Contractor shall calibrate, adjust, set and test each new adjustable circuit protective device to ensure that they will function properly prior to the initial energization of the new power system under actual operating conditions. #### 3.18 PAINTING AND FINISHING Field-applied paint on exposed surfaces shall be provided under Section 09900 PAINTING, GENERAL. #### 3.19 REPAIR OF EXISTING WORK The work shall be carefully laid out in advance, and where cutting, channeling, chasing, or drilling of floors, walls, partitions, ceiling, or other surfaces is necessary for the proper installation, support, or anchorage of the conduit, raceways, or other electrical work, this work shall be carefully done, and any damage to building, piping, or equipment shall be repaired by skilled mechanics of the trades involved at no additional cost to the Government. #### 3.20 FIELD TESTING Field testing shall be performed in the presence of the Contracting Officer. The Contractor shall notify the Contracting Officer 21 days prior to conducting tests. The Contractor shall furnish all materials, labor, and equipment necessary to conduct field tests. The Contractor shall perform all tests and inspection recommended by the manufacturer unless specifically waived by the Contracting Officer. The Contractor shall maintain a written record of all tests which includes date, test performed, personnel involved, devices tested, serial number and name of test equipment, and test results. All field test reports will be signed and dated by the Contractor. # 3.20.1 Safety The Contractor shall provide and use safety devices such as rubber gloves, protective barriers, and danger signs to protect and warn personnel in the test vicinity. The Contractor shall replace any devices or equipment which are damaged due to improper test procedures or handling. ## 3.20.2 Ground-Resistance Tests The resistance of each grounding electrode system shall be measured using the fall-of-potential method defined in IEEE Std 81. Soil resistivity in the area of the grid shall be measured concurrently with the grid measurements. Ground resistance measurements shall be made before the electrical distribution system is energized and shall be made in normally dry conditions not less than 48 hours after the last rainfall. Resistance measurements of separate grounding electrode systems shall be made before the systems are bonded together below grade. The combined resistance of separate systems may be used to meet the required resistance, but the specified number of electrodes must still be provided. - a. Single rod electrode 25 ohms. - b. Grid electrode 25 ohms. ## 3.20.3 Cable Tests The Contractor shall be responsible for identifying all equipment and devices that could be damaged by application of the test voltage and ensuring that they have been properly disconnected prior to performing insulation resistance testing. An insulation resistance test shall be performed on all low and medium voltage cables after the cables are installed in their final configuration and prior to energization. The test voltage shall be 500 volts DC applied for one minute between each conductor and ground and between all possible combinations of conductors. The minimum value of resistance shall be: R in megohms = (rated voltage in kV + 1) x 1000/(length of cable in feet) Each cable failing this test shall be repaired or replaced. The repaired cable system shall then be retested until failures have been eliminated. - 3.20.3.1 Low Voltage Cable Tests - a. Continuity test. - b. Insulation resistance test. #### 3.20.4 Motor Tests - a. Phase
rotation test to ensure proper directions. - b. Operation and sequence of reduced voltage starters. - c. High potential test on each winding to ground. - d. Insulation resistance of each winding to ground. - e. Vibration test. - f. Dielectric absorption test on motor and starter. - 3.20.5 Dry-Type Transformer Tests The following field tests shall be performed on all dry-type transformers . - a. Insulation resistance test phase-to-ground, each phase. - b. Turns ratio test. ## 3.20.6 Circuit Breaker Tests The following field tests shall be performed on circuit breakers. - 3.20.6.1 Circuit Breakers, Molded Case - a. Insulation resistance test phase-to-phase, all combinations. - b. Insulation resistance test phase-to-ground, each phase. - c. Closed breaker contact resistance test. d. Manual operation of the breaker. #### 3.21 OPERATING TESTS After the installation is completed, and at such time as the Contracting Officer may direct, the Contractor shall conduct operating tests for approval. The equipment shall be demonstrated to operate in accordance with the specified requirements. An operating test report shall be submitted in accordance with paragraph FIELD TEST REPORTS. ## 3.22 FIELD SERVICE # 3.22.1 Onsite Training The Contractor shall conduct a training course for the operating staff as designated by the Contracting Officer. The training period shall consist of a total of 8 hours of normal working time and shall start after the system is functionally completed but prior to final acceptance tests. The course instruction shall cover pertinent points involved in operating, starting, stopping, servicing the equipment, as well as all major elements of the operation and maintenance manuals. Additionally, the course instructions shall demonstrate all routine maintenance operations. A VHS format video tape of the entire training shall be submitted. ## 3.22.2 Installation Engineer After delivery of the equipment, the Contractor shall furnish one or more field engineers, regularly employed by the equipment manufacturer to supervise the installation of equipment, assist in the performance of the onsite tests, oversee initial operations, and instruct personnel as to the operational and maintenance features of the equipment. ## 3.23 ACCEPTANCE Final acceptance of the facility will not be given until the Contractor has successfully completed all tests and after all defects in installation, material or operation have been corrected. -- End of Section -- # SECTION 16528A # EXTERIOR LIGHTING 05/01 # PART 1 GENERAL # 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # AMERICAN NATIONAL STANDARDS INSTITUTE (ANSI) | ANSI C78.1350 | (1990) Electric Lamps - 400-Watt,
100-Volt, S51 Single-Ended High-Pressure
Sodium Lamps | |---------------|---| | ANSI C78.1351 | (1989) Electric Lamps - 250-Watt, 100-Volt
S50 Single-Ended High-Pressure Sodium Lamps | | ANSI C78.1352 | (1990) Electric Lamps - 1000-Watt,
250-Volt, S52 Single-Ended High-Pressure
Sodium Lamps | | ANSI C78.1355 | (1989) Electric Lamps - 150-Watt, 55-Volt
S55 High-Pressure Sodium Lamps | | ANSI C80.1 | (1995) Rigid Steel Conduit - Zinc Coated | | ANSI C82.4 | (1992) Ballasts for
High-Intensity-Discharge and Low-Pressure
Sodium Lamps (Multiple-Supply Type) | | ANSI C136.2 | (1996) Luminaires, Voltage Classification of Roadway Lighting Equipment | | ANSI C136.3 | (1995) Roadway Lighting
Equipment-Luminaire Attachments | | ANSI C136.6 | (1997) Roadway Lighting Equipment - Metal
Heads and Reflector Assemblies -
Mechanical and Optical Interchangeability | | ANSI C136.9 | (1990) Roadway Lighting - Socket Support
Assemblies for Use in Metal Heads -
Mechanical Interchangeability | | ANSI C136.10 | (1996) Roadway Lighting- Locking-Type
Photocontrol Devices and Mating
Receptacles - Physical and Electrical
Interchangeability and Testing | | ANSI C136.11 | (1995) Multiple Sockets for Roadway
Lighting Equipment | |-------------------------|---| | ANSI C136.15 | (1997) Roadway Lighting, High Intensity
Discharge and Low Pressure Sodium Lamps in
Luminaires - | | AMERICAN SOCIETY FOR TH | ESTING AND MATERIALS (ASTM) | | ASTM A 123/A 123M | (2001) Zinc (Hot-Dip Galvanized) Coatings
on Iron and Steel Products | | ASTM A 153/A 153M | (2001) Zinc Coating (Hot-Dip) on Iron and
Steel Hardware | | ASTM B 2 | (2000) Medium-Hard-Drawn Copper Wire | | ASTM B 8 | (1999) Concentric-Lay-Stranded Copper
Conductors, Hard, Medium-Hard, or Soft | | ASTM B 117 | (1997) Operating Salt Spray (Fog) Apparatus | | ASTM D 1654 | (R 2000) Evaluation of Painted or Coated
Specimens Subjected to Corrosive
Environments | | ILLUMINATING ENGINEERIN | NG SOCIETY OF NORTH AMERICA (IESNA) | | IESNA RP-8 | (1983; R 1993) Roadway Lighting | | INSTITUTE OF ELECTRICAL | AND ELECTRONICS ENGINEERS (IEEE) | | IEEE C2 | (2000) National Electrical Safety Code | | NATIONAL ELECTRICAL MAI | NUFACTURERS ASSOCIATION (NEMA) | | NEMA ICS 1 | (1993) Industrial Control and Systems | | NEMA ICS 2 | (1993) Industrial Controls and Systems
Controllers, Contactors, and Overload
Relays Rated Not More Than 2,000 Volts AC
or 750 volts DC | | NEMA ICS 6 | (1993) Industrial Control and Systems,
Enclosures | | NEMA OS 1 | (1996) Sheet-Steel Outlet Boxes, Device
Boxes, Covers, and Box Supports | | NEMA OS 2 | (1998) Nonmetallic Outlet Boxes, Device
Boxes, Covers and Box Supports | | NEMA RN 1 | (1998) Polyvinyl-Chloride (PVC) Externally
Coated Galvanized Rigid Steel Conduit and
Intermediate Metal Conduit | ## NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) | NFPA 70 (2002) National Electrical Cod | |--| |--| # UNDERWRITERS LABORATORIES (UL) | UL 6 | (1997) Rigid Metal Conduit | |---------|---| | UL 83 | (1998; Rev thru Sep 1999)
Thermoplastic-Insulated Wires and Cables | | UL 98 | (1994; Rev thru Jun 1998) Enclosed and Dead-Front Switches | | UL 486A | (1997; Rev thru Dec 1998) Wire Connectors
and Soldering Lugs for Use with Copper
Conductors | | UL 486B | (1997; Rev Jun 1997) Wire Connectors for Use with Aluminum Conductors | | UL 514A | (1996; Rev Dec 1999) Metallic Outlet Boxes | | UL 514B | (1997; Rev Oct 1998) Fittings for Cable and Conduit | | UL 514C | (1996; Rev thru Dec 1999) Nonmetallic
Outlet Boxes, Flush-Device Boxes, and
Covers | | UL 1029 | (1994; R 1997, Bul. 2000)
High-Intensity-Discharge Lamp Ballasts | | UL 1571 | (1995; Rev thru Nov 1999) Incandescent
Lighting Fixtures | | UL 1572 | (1995; Rev thru Nov 1999) High Intensity
Discharge Lighting Fixtures | ## 1.2 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: # SD-02 Shop Drawings Lighting System; G, Detail drawings for the complete system and for lighting fixtures. SD-06 Test Reports Operating Test; G, Test procedures and reports for the Operating Test. After receipt by the Contractor of written approval of the test procedures, the Contractor shall schedule the tests. The final test procedures report shall be delivered after completion of the tests. SD-10 Operation and Maintenance Data Lighting System; G, A draft copy of the operation and maintenance manuals, prior to beginning the tests for use during site testing. Final copies of the manuals as specified bound in hardback, loose-leaf binders, within 30 days after completing the field test. The draft copy used during site testing shall be updated with any changes required, prior to final delivery of the manuals. Each manual's contents shall be identified on the cover. The manual shall include names, addresses, and telephone numbers of each subcontractor installing equipment and systems, and nearest service representatives for each item of equipment for each system. The manuals shall have a table of contents and tab sheets. Tab sheets shall be placed at the beginning of each chapter or section and at the beginning of each appendix. The final copies delivered after completion of the field test shall include modifications made during installation checkout and acceptance. #### 1.3 SYSTEM DESCRIPTION ## 1.3.1 Lighting System The lighting system shall be configured as specified and shown. The system shall include all fixtures, hardware, cables, connectors, adapters and appurtenances needed to provide a fully functional lighting system. # 1.3.2 Electrical Requirements The equipment shall operate from a voltage source as shown, plus or minus 10 percent, and 60 Hz, plus or minus 2 percent. 1.3.3 Interface Between Lighting System and Power Distribution Conductors shall include all conductors extending from the load side of the power panels that serve assessment lighting equipment. ## 1.3.4 Nameplates Each major component of equipment shall have a nonferrous metal or engraved plastic nameplate which shall show, as a minimum, the manufacturer's name and address, the catalog or style number, the electrical rating in volts, and the capacity in amperes or watts. ## 1.3.5 Standard Products Materials and equipment shall be standard products of manufacturer regularly engaged in the manufacture of such products. Items of equipment shall essentially
duplicate equipment that has been in satisfactory use at least 2 years prior to bid opening. ## 1.3.6 Protection of Lighting System Components ## 1.3.6.1 Components and Conductors Lighting system conductors shall be protected from damage. Lighting system conductors shall be installed in raceways. The conductors shall be in rigid steel conduit of the indicated size. Wire guards shall be provided to protect security lighting luminaries mounted below 20 feet. A NEMA ICS 6, Type 4 enclosure shall house exterior group-located electrical equipment such as time switches, safety switches, and magnetic contactors. Where only one piece of equipment is being provided at a location, the equipment shall be provided with its own enclosure. ## 1.3.6.2 Tamper Provisions Enclosures, cabinets, housings (other than luminaire housings), boxes, raceways, conduits, and fittings having hinged doors or removable covers, and which contain any part of the security lighting system (including power sources), shall be provided with corrosion-resistant tamper switches, connected to an Intrusion Detection System (IDS), that will initiate an alarm signal when the door or cover is opened or moved. Tamper switches shall be inaccessible until the switch is activated. Switch leads and mounting hardware shall be concealed from the exterior of the enclosure. For pull or junction boxes which contain no splices or connections the covers may be protected by 1/4 inch tack welds on four sides of each cover rather than by tamper switches. Labels shall be affixed to indicate they contain no connections. Labels shall not indicate that the box is part of the security system. #### 1.4 CORROSION PROTECTION #### 1.4.1 Aluminum Materials Aluminum shall not be used in contact with earth or concrete. Where aluminum conductors are connected to dissimilar metal, fittings conforming to UL 486B shall be used. ## 1.4.2 Ferrous Metal Materials ## 1.4.2.1 Hardware Ferrous metal hardware shall be hot-dip galvanized in accordance with ASTM A 153/A 153M and ASTM A 123/A 123M. # 1.4.2.2 Equipment Equipment and component items, including but not limited to metal poles and ferrous metal luminaires not hot-dip galvanized or porcelain enamel finished, shall be provided with corrosion-resistant finishes which shall withstand 120 hours of exposure to the salt spray test specified in ASTM B 117 without loss of paint or release of adhesion of the paint primer coat to the metal surface in excess of 1/16 inch from the test mark. The scribed test mark and test evaluation shall have a rating of not less than 7 in accordance with TABLE 1, (procedure A) of ASTM D 1654. Cut edges or otherwise damaged surfaces of hot-dip galvanized sheet steel or mill galvanized sheet steel shall be coated with a zinc rich paint conforming to the manufacturer's standard. ## 1.4.3 Finishing Painting required for surfaces not otherwise specified and finish painting of items only primed at the factory, shall be as specified in Section 09900 PAINTING, GENERAL. #### PART 2 PRODUCTS #### 2.1 STANDARD PRODUCT Material and equipment shall be the standard product of a manufacturer regularly engaged in the manufacture of the product and shall essentially duplicate items that have been in satisfactory use for at least 2 years prior to bid opening. Items of the same classification shall be identical including equipment, assemblies, parts, and components. #### 2.2 CABLE The Contractor shall provide all wire and cable not indicated as government furnished equipment. Wire and cable components shall be able to withstand the jobsite environment for a minimum of 20 years. #### 2.2.1 Wires Conductors no. 8 AWG and larger in diameter shall be stranded. Conductors no. 10 AWG and smaller shall be solid. All conductors shall be copper. Unless otherwise noted or required by NFPA 70, wires shall be 600 volts type THWN, THHN or THW conforming to UL 83. Where lighting fixtures require 90 degree Centigrade C conductors, provide only conductors with 90 degree C insulation or better. ## 2.2.2 Bare Copper Conductors Medium-hard-drawn copper conductors shall conform to ASTM B 2 and ASTM B 8. ## 2.3 CABLE SPLICES AND CONNECTORS Cable splices and connectors shall conform to UL 486A. #### 2.4 BOXES Boxes and covers shall be made of cast iron with zinc coated or aluminized finish, and shall be of the sizes indicated on drawings. The minimum inside dimensions shall be not less than 12 inches square by 6 inches deep and not less than required to house the cable splice. A suitable gasket shall be installed between the box and cover for watertightness. A sufficient number of screws shall be installed to hold the cover in place along the entire surface of contact. Grounding lugs shall be provided. ## 2.5 CONDUIT AND FITTINGS ## 2.5.1 Conduit, Rigid Steel Rigid steel conduit shall conform to ANSI C80.1 and UL 6. ## 2.5.2 Conduit Coatings Underground metallic conduit and fittings shall be coated with a plastic resin system conforming to NEMA RN 1, Type 40. Epoxy systems may also be used. - 2.5.3 Conduit Fittings and Outlets - 2.5.3.1 Boxes, Metallic Outlets NEMA OS 1 and UL 514A. 2.5.3.2 Boxes, Nonmetallic, Outlet and Flush-Device Boxes and Covers NEMA OS 2 and UL 514C. 2.5.3.3 Boxes, Switch (Enclosed), Surface Mounted UL 98. 2.5.3.4 Fittings for Conduit and Outlet Boxes UL 514B. - 2.6 ILLUMINATION - 2.6.1 General Lighting Luminaires, ballasts, lamps, and control devices required for general area lighting shall be in accordance with sheets of Standard Detail No. 40-06-04, attached to these specifications. Applicable sheets are shown on drawings. - 2.7 LAMPS AND BALLASTS, HIGH INTENSITY DISCHARGE (HID) SOURCES - 2.7.1 High-Pressure Sodium Lamps shall conform to ANSI C78.1350, ANSI C78.1351, ANSI C78.1352, or ANSI C78.1355. Ballasts shall conform to ANSI C82.4, or UL 1029. High-pressure sodium lamps shall be clear. #### 2.8 LUMINAIRE COMPONENTS Luminaire components shall conform to the following: attachments, ANSI C136.3; voltage classification, ANSI C136.2; field identification marking, ANSI C136.15; interchangeability, ANSI C136.6 and ANSI C136.9; and sockets, ANSI C136.11. - 2.9 LIGHTING CONTROL EQUIPMENT - 2.9.1 Photo-Control Devices Photo-control devices shall conform to ANSI C136.10. Each photo-control element shall be a replaceable, weatherproof, plug-in or twist-lock assembly adjustable operation range of approximately 0.5 to 5.0 foot-candles. 2.9.2 Timer Control Switches Astronomic dial type arranged to turn "ON" at sunset, and turn "OFF" at a pre-determined time or sunrise, automatically changing the settings each day in accordance with seasonal changes of sunset and sunrise shall be provided. A switch rated 600 volts, having battery backed electronic clock to maintain accurate time for a minimum of 7 hours following a power failure shall be provided. A time switch with a manual on-off bypass switch shall be provided. Housing for the time switch shall be a surface mounted, NEMA 1 (indoor) enclosure conforming to NEMA ICS 6. #### 2.9.3 Manual Control Switches Manual control switches shall conform to UL 98. The switches shall be the heavy-duty type and shall be suitable for operation on a 120 volt, 60 Hz system. The number of poles and ampere rating shall be as indicated. Switch construction shall be such that a screwdriver will be required to open the switch door when the switch is on. The selector switch shall have a minimum of three positions: ON, OFF, and AUTOMATIC. The automatic selection shall be used when photoelectric or timer control is desired. The selector switch shall interface with the lighting system magnetic contactor and control its activity. ## 2.9.4 Magnetic Contactor Magnetic contactors shall be mechanically held, electrically operated, and shall conform to NEMA ICS 1 and NEMA ICS 2. The contactor shall be suitable for 120 volts, single phase, 60 Hz. Coil voltage shall be 120 volts. Maximum continuous ampere rating and number of poles shall be as indicated on drawings. Enclosures for contactors mounted indoors shall be NEMA ICS 6, Type 1. Each contactor shall be provided with a spare, normally open auxiliary contact. Terminal lugs shall be coordinated with the wire size. ## 2.10 PHOTOMETRIC DISTRIBUTION CLASSIFICATION Photometrics shall conform to IESNA RP-8. ## 2.11 LUMINAIRES, FLOODLIGHTING ## 2.11.1 HID and Incandescent HID lighting fixtures shall conform to UL 1572. Incandescent lighting fixtures shall conform to UL 1571. #### 2.12 FIXTURES Standard fixtures shall be as detailed on Standard Detail No. 40-06-04, which accompany and form a part of this specification. Applicable sheets are shown on drawings. Special fixtures shall be as indicated on the drawings. Illustrations shown on these sheets or on the drawings are indicative of the general type desired and are not intended to restrict selection to fixtures of any particular manufacturer. Fixtures of similar design, equivalent light distribution and brightness characteristics, equal finish and quality will be acceptable as approved. ## 2.12.1 Accessories Accessories such as straps, mounting plates, nipples, or brackets shall be provided for proper installation. ## 2.12.2 Special Fixtures The types of special fixtures are designated by letters and numbers. For example, SP-1 denotes special Type 1. #### PART 3 EXECUTION #### 3.1 GENERAL The Contractor shall install all system components, including government furnished equipment, and appurtenances in accordance with the manufacturer's instructions, IEEE C2, and contract documents, and shall furnish necessary hardware, fixtures, cables, wire, connectors, interconnections, services, and adjustments required for a complete and operable system. #### 3.1.1 Current Site Conditions The Contractor shall verify that site conditions are in agreement with the design package. The Contractor shall report all changes to the site or conditions that will affect performance of the system to the Government. The Contractor shall not
take any corrective action without written permission from the Government. #### 3.2 ENCLOSURE PENETRATIONS Enclosure penetrations shall be from the bottom unless the system design requires penetrations from other directions. Penetrations of interior enclosures involving transitions of conduit from interior to exterior, and penetrations on exterior enclosures shall be sealed with rubber silicone sealant to preclude the entry of water. The conduit riser shall terminate in a hot-dipped galvanized metal cable terminator. The terminator shall be filled with an approved sealant as recommended by the cable manufacturer, and in such a manner that the cable is not damaged. #### 3.3 PREVENTION OF CORROSION #### 3.3.1 Aluminum Aluminum shall not be used in contact with earth or concrete, and where connected to dissimilar metal, shall be protected by approved fittings and treatment. # 3.3.2 Steel Conduits Steel conduits shall not be installed within concrete slabs-on-grade. Steel conduits installed underground or under slabs-on-grade, or penetrating slabs-on-grade, shall be field wrapped with 0.010 inch thick pipe-wrapping plastic tape applied with a 50 percent overlap, or shall have a factory-applied plastic resin, epoxy coating. Zinc coating may be omitted from steel conduit which has a factory-applied epoxy coating. ## 3.3.3 Cold Galvanizing Field welds and/or brazing on factory galvanized boxes, enclosures, conduits, etc. shall be coated with a cold galvanized paint containing at least 95 percent zinc by weight. ## 3.4 CABLE INSTALLATION Cable and all parts of the cable system such as splices and terminations shall be rated not less than 600 volts. The size and number of conductors shall be as indicated. Conductors larger than No. 8 AWG shall be stranded. Each circuit shall be identified by means of fiber or nonferrous metal tags, or approved equal, in each junction box, and at each terminal. ## 3.4.1 Splices Splices shall be made with sealed insulated pressure connectors and shall provide insulation and jacket equal to that of the cable. In order to prevent moisture from entering the splice, jackets shall be cut back to expose the required length of insulation between the jacket and the tapered end of the insulation. ## 3.5 CONNECTIONS TO BUILDINGS Wiring shall be extended into the building as indicated and shall be properly connected to the indicated equipment. After installation of wiring, conduits shall be sealed to prevent moisture or gases from entering the building. #### 3.6 LIGHTING #### 3.6.1 Lamps Lamps of the proper type, wattage, and voltage rating shall be delivered to the project in the original containers and installed in the fixtures just before completion of the project. #### 3.6.2 Fixture Installation Standard fixtures shall be installed as detailed on Standard Detail No. 04-06-04, which accompany and form a part of this specification. Special fixtures shall be as indicated on drawings. Illustrations shown on these sheets or on the drawings are indicative of the general type desired and are not intended to restrict selection of fixtures to any particular manufacturer. Fixtures of similar design, equivalent light-distribution and brightness characteristics, and equal finish and quality will be acceptable as approved. #### 3.6.2.1 Accessories Accessories such as straps, mounting plates, nipples, or brackets shall be installed as required for proper installation. ## 3.6.2.2 Special Fixtures The types of special fixtures are designated by letters and numbers. For example, SP-1 denotes special type 1. #### 3.7 LIGHTING CONTROL SYSTEM #### 3.7.1 Photo-Control Lighting luminaires shall be controlled in banks by a single photo-control element mounted within each bank. ## 3.7.2 Time Control Switches Switches shall be installed with not less than four 1/4 inch bolts. The use of sheet metal screws will not be allowed. ## 3.7.3 Manual and Safety Switches Terminal lugs shall be coordinated with the wire size. Switches shall be securely fastened to the supporting structure or wall using not less than four 1/4 inch bolts. The use of sheet metal screws will not be allowed. ## 3.7.4 Magnetic Contactors Terminal lugs shall be coordinated with the wire size. Switches shall be securely fastened to the supporting structure or wall using not less than four 1/4 inch bolts. The use of sheet metal screws will not be allowed. #### 3.8 GROUNDING Grounding shall be in conformance with NFPA 70, the contract drawings, and the following. Grounding conductors shall be soft-drawn, stranded copper. #### 3.9 TESTS #### 3.9.1 Operating Test After the installation is completed and at such time as the Contracting Officer may direct, the Contractor shall conduct an operating test for approval. The equipment shall be demonstrated to operate in accordance with the requirements specified. The test shall be performed in the presence of the Contracting Officer. The Contractor shall furnish instruments and personnel required for the test, and the Government will furnish the necessary electric power. -- End of Section -- #### SECTION 16710A # PREMISES DISTRIBUTION SYSTEM 04/97 ## PART 1 GENERAL #### 1.1 REFERENCES The publications listed below form a part of this specification to the extent referenced. The publications are referred to in the text by basic designation only. # ELECTRONIC INDUSTRIES ALLIANCE (EIA) | ANSI/TIA/EIA-568-A | (1995) Commercial Building
Telecommunications Cabling Standard | |----------------------|--| | ANSI/TIA/EIA-568-B | (1995) Commercial Building
Telecommunications Cabling Standard | | ANSI/TIA/EIA-568-A-5 | (2000) Transmission Performance
Specifications for 4-pair 100 ohm Category
5E Cabling | | ANSI/TIA/EIA-569-A | (1998) Commercial Building Standard for
Telecommunications Pathways and Spaces | | ANSI/TIA/EIA-606 | (1993) Administration Standard for the
Telecommunications Infrastructure of
Commercial Buildings | | ANSI/TIA/EIA-607 | (1994) Commercial Building Grounding and
Bonding Requirements for Telecommunications | # INSULATED CABLE ENGINEERS ASSOCIATION (ICEA) | | Wiring of Premises | | |---------------|--|---| | ICEA S-83-596 | (1994) Fiber Optic Premises Distribution Cable | L | (1994) Communications Wire and Cable for ## NATIONAL FIRE PROTECTION ASSOCIATION (NFPA) NFPA 70 (2002) National Electrical Code # 1.2 SYSTEM DESCRIPTION ICEA S-80-576 The premises distribution system shall consist of inside-plant horizontal, riser, and backbone cables and connecting hardware to transport telephone and data (including LAN) signals between equipment items in a building. ## 1.3 ENVIRONMENTAL REQUIREMENTS Connecting hardware shall be rated for operation under ambient conditions of 32 to 140 degrees F and in the range of 0 to 95 percent relative humidity, noncondensing. #### 1.4 QUALIFICATIONS ## 1.4.1 Minimum Contractor Qualifications All work under this section shall be performed by and all equipment shall be furnished and installed by a certified Telecommunications Contractor, hereafter referred to as the Contractor. The Contractor shall have the following qualifications in Telecommunications Systems installation: - a. Contractor shall have a minimum of 3 years experience in the application, installation and testing of the specified systems and equipment. - b. All supervisors and installers assigned to the installation of this system or any of its components shall have factory certification from each equipment manufacturer that they are qualified to install and test the provided products. - c. All installers assigned to the installation of this system or any of its components shall have a minimum of 3 years experience in the installation of the specified copper and fiber optic cable and components. ## 1.4.2 Minimum Manufacturer Qualifications The equipment and hardware provided under this contract will be from manufacturers that have a minimum of 3 years experience in producing the types of systems and equipment specified. ## 1.5 SUBMITTALS Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. The following shall be submitted in accordance with Section 01330 SUBMITTAL PROCEDURES: #### SD-02 Shop Drawings Premises Distribution System; G, ED. Detail drawings including a complete list of equipment and material. Detail drawings shall contain complete wiring and schematic diagrams and other details required to demonstrate that the system has been coordinated and will function properly as a system. Drawings shall include vertical riser diagrams, equipment rack details, elevation drawings of telecommunications closet walls, outlet face plate details for all outlet configurations, sizes and types of all cables, conduits, and cable trays. Drawings shall show proposed layout and anchorage of equipment and appurtenances, and equipment relationship to other parts of the work including clearance for maintenance and operation. #### SD-03 Product Data Record Keeping and Documentation; G, RE. Documentation on cables and termination hardware in accordance with ${\tt ANSI/TIA/EIA-606}$. Manufacturer's Recommendations; G, RE. Where installation procedures, or any part thereof, are required to be in accordance with the recommendations of the manufacturer of the material being installed, printed copies of these recommendations, prior to installation shall be provided. Installation of the item will not be allowed to proceed until the recommendations are received and approved. Qualifications; G, RE. The qualifications of the Manufacturer, Contractor, and the Installer to perform the work specified herein. This shall include proof of the minimum qualifications
specified herein. #### SD-07 Certificates Premises Distribution System. Written certification that the premises distribution system complies with the ANSI/TIA/EIA-568-B, ANSI/TIA/EIA-569-A, and ANSI/TIA/EIA-606 standards. Materials and Equipment. Where materials or equipment are specified to conform, be constructed or tested to meet specific requirements, certification that the items provided conform to such requirements. Certification by a nationally recognized testing laboratory that a representative sample has been tested to meet the requirements, or a published catalog specification statement to the effect that the item meets the referenced standard, will be acceptable as evidence that the item conforms. Compliance with these requirements does not relieve the Contractor from compliance with other requirements of the specifications. ## 1.6 DELIVERY AND STORAGE Equipment delivered and placed in storage shall be stored with protection from the weather, humidity and temperature variation, dirt and dust or other contaminants. #### 1.7 OPERATION AND MAINTENANCE MANUALS Commercial off the shelf manuals shall be furnished for operation, installation, configuration, and maintenance for all products provided as a part of the premises distribution system. Specification sheets for all cable, connectors, and other equipment shall be provided. ## 1.8 RECORD KEEPING AND DOCUMENTATION #### 1.8.1 Cables A record of all installed cable shall be provided on electronic media using Windows based computer cable management software and in hard copy format per ANSI/TIA/EIA-606. A licensed copy of the cable management software including documentation, shall be provided. The cable records shall include the required data fields for each cable and complete end-to-end circuit report for each complete circuit from the assigned outlet to the entry facility per ANSI/TIA/EIA-606. ## 1.8.2 Termination Hardware A record of all installed patch panels and outlets shall be provided on electronic media using Windows based computer cable management software and in hard copy format per ANSI/TIA/EIA-606. A licensed copy of the cable management software including documentation, shall be provided. The hardware records shall include only the required data fields per ANSI/TIA/EIA-606. #### PART 2 PRODUCTS ## 2.1 MATERIALS AND EQUIPMENT Materials and equipment shall be the standard products of a manufacturer regularly engaged in the manufacture of the products and shall be the manufacturer's latest standard design that has been in satisfactory use for at least 1 year prior to installation. Materials and equipment shall conform to the respective publications and other requirements specified below and to the applicable requirements of NFPA 70. #### 2.2 UNSHIELDED TWISTED PAIR CABLE SYSTEM #### 2.2.1 Backbone Cable Backbone cable shall meet the requirements of ICEA S-80-576 and ANSI/TIA/EIA-568-B for Category 5e 100-ohm unshielded twisted pair cable. Cable shall be label-verified. Cable jacket shall be factory marked at regular intervals indicating verifying organization and performance level. Conductors shall be solid untinned copper 24 AWG. Cable shall be rated CMR, CMP, or CMG as appropriate, per NFPA 70. #### 2.2.2 Horizontal Cable Horizontal cable shall meet the requirements of ANSI/TIA/EIA-568-A-5 for Category 5e. Cable shall be label-verified. Cable jacket shall be factory marked at regular intervals indicating verifying organization and performance level. Conductors shall be solid untwwinned copper 24 AWG. Cable shall be rated CMG or CMP, as appropriate, per NFPA 70. ## 2.2.3 Connecting Hardware Connecting and cross-connecting hardware shall be the same category as the cable it serves. Hardware shall be in accordance with ANSI/TIA/EIA-568-A. #### 2.2.3.1 Telecommunications Outlets Administrative area wall and desk outlet plates for unclassified systems shall come equipped with one green MT-RJ Secure jack for NIPRNET user and one black modular RJ-45 jack, labeled for voice use. (As identified on the drawings.) Administrative area wall and desk outlet plates for classified systems shall come equipped with one red MT-RJ Secure jack for SIPRNET user, one yellow MT-RJ Secure jack for NSANET user and one blue MT-RJ Secure jack for PDAS user. (As identified on the drawings.) Wall phone and pay phone outlet plates shall come equipped with one unlabeled modular jack and appropriate mounting lugs. Modular jacks shall be the same category as the cable they terminate and shall meet the requirements of ANSI/TIA/EIA-568-B. Modular jack pin/pair configuration shall be T568A per ANSI/TIA/EIA-568-B. Modular jacks shall be unkeyed. Single gang faceplates shall be provided; faceplates shall be ivory in color impact resistant plastic. Outlet assemblies used in the premises distribution system shall consist of modular jacks assembled into both simplex and duplex outlet assemblies in single gang covers. The modular jacks shall conform to the requirements of ANSI/TIA/EIA-568-B, and shall be rated for use with Category 5e cable in accordance with ANSI/TIA/EIA-568-B. and shall meet the Link test parameters as listed in ANSI/TIA/EIA-568-B. MT-RJ jacks shall conform to the requirements of ANSI/TIA/EIA-568-B, and shall be rated for use with 62.5/125um, multimode, plenum, zip cord fiber optic cable. ## 2.2.3.2 Patch Panels Patch panels shall consist of eight-position modular jacks, with rear mounted type 110 insulation displacement connectors, arranged in rows or columns on 19 inch rack mounted panels. Jack pin/pair configuration shall be T568A per ANSI/TIA/EIA-568-B. Jacks shall be unkeyed. Panels shall be provided with labeling space. The modular jacks shall conform to the requirements of ANSI/TIA/EIA-568-B, and shall be rated for use with Category 5e cable in accordance with ANSI/TIA/EIA-568-B and shall meet the Link Test parameters as listed in ANSI/TIA/EIA-568-B. #### 2.2.3.3 Patch Cords Patch cords shall be cable assemblies consisting of flexible, twisted pair stranded wire with eight-position plugs at each end. Cable shall be label-verified. Cable jacket shall be factory marked at regular intervals indicating verifying organization and performance level. Patch cords shall be wired straight through; pin numbers shall be identical at each end and shall be paired to match T568A patch panel jack wiring per ANSI/TIA/EIA-568-B. Patch cords shall be unkeyed. Patch cords shall be factory assembled. Patch cords shall conform to the requirements of ANSI/TIA/EIA-568-B for Category 5e. Provide sufficient patch cords in a variety of lengths and connector styles to allow simultaneous patching of all voice and data terminations. #### 2.2.3.4 Terminal Blocks Terminal blocks shall be wall mounted wire termination units consisting of insulation displacement connectors mounted in plastic blocks, frames or housings. Blocks shall be type 110 which meet the requirements of ANSI/TIA/EIA-568-B, and shall be rated for use with Category 5e cable in accordance with ANSI/TIA/EIA-568-B and shall meet the Link Test parameters as listed in ANSI/TIA/EIA-568-B. Blocks shall be mounted on standoffs and shall include cable management hardware. Insulation displacement connectors shall terminate 24 or 22 gauge solid copper wire as a minimum, and shall be connected in pairs so that horizontal cable and connected jumper wires are on separate connected terminals. ## 2.3 FIBER OPTIC CABLE SYSTEM #### 2.3.1 Backbone Cable ## 2.3.1.1 Multimode Multimode fiber optic backbone cable shall meet the requirements of ANSI/TIA/EIA-568-B and ICEA S-83-596 for 62.5/125 micrometer multimode graded index optical fiber cable. Numerical aperture for each fiber shall be a minimum of 0.275. Cable construction shall be tight buffered type with two fiber strands. Individual fibers shall be color coded for identification. Cable shall be imprinted with fiber type, fiber count and aggregate length at regular intervals of 3 feet. Cable shall be rated and marked OFNP or OFNG per NFPA 70. ## 2.3.2 Connecting Hardware #### 2.3.2.1 Connectors Connectors shall be MT - RJ type with ceramic ferrule material with a maximum insertion loss of .5 dB. Connectors shall meet performance requirements of ANSI/TIA/EIA-568-B. Connectors shall be field installable. Connectors shall terminate fiber sizes as required for the service. #### 2.3.2.2 Patch Panels Patch panels shall be a complete system of components by a single manufacturer, and shall provide termination, splice storage, routing, radius limiting, cable fastening, storage, and cross-connection. Patch panels shall be 19 inch rack mounted panels. Patch panels shall provide strain relief for cables. Panels shall be provided with labeling space. Patch panel connectors and couplers shall be the same type and configuration as used elsewhere in the system. # 2.3.2.3 Patch Cords Patch cords shall be cable assemblies consisting of flexible optical fiber cable with connectors of the same type as used elsewhere in the system. Optical fiber shall be the same type as used elsewhere in the system. Patch cords shall be complete assemblies from manufacturer's standard product lines. Provide sufficient patch cords in a variety of lengths and connector styles to allow simultaneous patching of all fiber optic terminations. #### 2.4 EQUIPMENT RACKS #### 2.4.1 Cable Guides Cable guides shall be specifically manufactured for the purpose of routing cables, wires and patch cords horizontally and vertically on 19 inch equipment racks. Cable guides shall consist of ring or bracket-like devices mounted on rack panels for horizontal use or individually mounted for vertical use. Cable guides shall mount to racks by screws and/or nuts and lockwashers. #### 2.4.2 Floor Mounted Cabinets Equipment cabinets shall be floor mounted enclosures with side panels, acrylic plastic front doors, rear louvered metal doors, depth-adjustable front and rear mounting rails, and louvered top. Ventilation fans will be included. Vertical
cable management devices shall be integral to the cabinet. Power strips with 4 AC outlets shall be provided within the cabinet. Equipment racks shall mount equipment 19 inches wide and shall be 72 inches high and 30 inches deep. Cabinet exteriors shall be painted. ## 2.5 EQUIPMENT MOUNTING BACKBOARD Plywood backboards shall be provided, sized as shown, painted with white or light colored fire resistant paint. #### 2.6 TELECOMMUNICATIONS OUTLET BOXES Electrical boxes for telecommunication outlets shall be 4-11/16 inch square by 2-1/8 inches deep with minimum 3/8 inch deep single or two gang plaster ring as shown. Provide a minimum 1 inch conduit. #### PART 3 EXECUTION #### 3.1 INSTALLATION The classfied systems in this building shall meet the requirements of NACSIM 5203 and DIAM 50-3 for cable distribution and wiring. System components and appurtenances shall be installed in accordance with NFPA 70, manufacturer's instructions and as shown. Necessary interconnections, services, and adjustments required for a complete and operable signal distribution system shall be provided. Components shall be labeled in accordance with ANSI/TIA/EIA-606. Penetrations in fire-rated construction shall be firestopped in accordance with Section 07840a FIRESTOPPING. Conduits, outlets and raceways shall be installed in accordance with Section 16415A ELECTRICAL WORK, INTERIOR. Wiring shall be installed and documented in accordance with ${\tt ANSI/TIA/EIA-568-B}$, ${\tt TIA/EIA~606}$ and as specified in Section 16415A ELECTRICAL WORK, INTERIOR. Wiring, and terminal blocks and outlets shall be marked in accordance with ANSI/TIA/EIA-606. Cables shall not be installed in the same cable tray, utility pole compartment, or floor trench compartment with ac power cables. Classified system wiring shall have a separate cable tray from the unclassified system wiring, as shown on the drawings. Cables not installed in conduit or wireways shall be properly secured and neat in appearance and, if installed in plenums or other spaces used for environmental air, shall comply with NFPA 70 requirements for this type of installation. ## 3.1.1 Horizontal Distribution Cable The rated cable pulling tension shall not be exceeded. Cable shall not be stressed such that twisting, stretching or kinking occurs. Cable shall not be spliced. Fiber optic cables shall be provided with continuous support along its placement path avoiding point stress loads and shall be installed either in conduit or through type cable trays to prevent microbending losses. Copper cable not in a wireway shall be suspended a minimum of 8 inches above ceilings by cable supports no greater than 60 inches apart. Cable shall not be run through structural members or in contact with pipes, ducts, or other potentially damaging items. Placement of cable parallel to power conductors shall be avoided, if possible; a minimum separation of 12 inches shall be maintained when such placement cannot be avoided. Cables shall be terminated; no cable shall contain unterminated elements. Minimum bending radius shall not be exceeded during installation or once installed. Cable ties shall not be excessively tightened such that the transmission characteristics of the cable are altered. In raised floor areas, cable shall be installed after the flooring system has been installed. Cable shall be neatly coiled not less than 12 inches in diameter below each feed point in raised floor areas. ## 3.1.2 Riser and Backbone Cable Vertical cable support intervals shall be in accordance with manufacturer's recommendations. Cable bend radius shall not be less than ten times the outside diameter of the cable during installation and once installed. Maximum tensile strength rating of the cable shall not be exceeded. Cable shall not be spliced. #### 3.1.3 Telecommunications Outlets #### 3.1.3.1 Faceplates As a minimum each jack shall be labeled as to its function and a unique number to identify cable link. Classified systems will be designated with different colored jacks as indicated on drawings. #### 3.1.3.2 Cables Unshielded twisted pair and fiber optic cables shall have a minimum of 6 inches of slack cable loosely coiled into the telecommunications outlet boxes. Minimum manufacturers bend radius for each type of cable shall not be exceeded. ## 3.1.3.3 Pull Cords Pull cords shall be installed in all conduit serving telecommunications outlets which do not initially have fiber optic cable installed. #### 3.1.4 Terminal Blocks Terminal blocks shall be mounted in orderly rows and columns. Adequate vertical and horizontal wire routing areas shall be provided between groups of blocks. Industry standard wire routing guides shall be utilized. # 3.1.5 Unshielded Twisted Pair Patch Panels Patch panels shall be mounted in equipment racks with sufficient modular jacks to accommodate the installed cable plant plus 10 percent spares. Cable guides shall be provided above, below and between each panel. #### 3.1.6 Fiber Optic Patch Panels Patch panels shall be mounted in enclosed equipment cabinets with sufficient ports to accommodate the installed cable plant plus 10 percent spares. A slack loop of fiber shall be provided within each panel. Loop shall be 3 feet in length. The outer jacket of each cable entering a patch panel shall be secured to the panel to prevent movement of the fibers within the panel, using clamps or brackets specifically manufactured for that purpose. ## 3.1.7 Equipment Racks and Cabinets Cable guides shall be bolted or screwed to racks. Racks shall be installed level. Ganged racks shall be bolted together. Ganged cabinets shall have adjacent side panels removed. ## 3.1.8 Rack Mounted Equipment Equipment to be rack mounted shall be securely fastened to racks by means of the manufacturer's recommended fasteners. #### 3.2 TERMINATION Cables and conductors shall sweep into termination areas; cables and conductors shall not bend at right angles. Manufacturer's minimum bending radius shall not be exceeded. When there are multiple system type drops to individual workstations, relative position for each system shall be maintained on each system termination block or patch panel. #### 3.2.1 Unshielded Twisted Pair Cable Each cable shall be terminated on appropriate outlets, terminal blocks or patch panels. No cable shall be unterminated or contain unterminated elements. Pairs shall remain twisted together to within the proper distance from the termination as specified in ANSI/TIA/EIA-568-B. Conductors shall not be damaged when removing insulation. Wire insulation shall not be damaged when removing outer jacket. # 3.2.2 Fiber Optic Cable Each fiber shall have connectors installed. The pull strength between the connector and the attached fiber shall be not less than 25 pounds. The mated pair loss, without rotational optimization, shall not exceed 1.0 dB. Fiber optic connectors shall be installed per ANSI/TIA/EIA-568-B. #### 3.3 GROUNDING Signal distribution system ground shall be installed in the telecommunications entrance facility and in each telecommunications closet in accordance with ANSI/TIA/EIA-607 and Section 16415A ELECTRICAL WORK, INTERIOR. Equipment racks shall be connected to the electrical safety ground. ## 3.4 ADDITIONAL MATERIALS The Contractor shall provide the following additional materials required for facility startup. - a. 10 of each type outlet connectors. - b. 10 of each type cover plate. - c. 1 of each type terminal block or patch panel for each telecommunications closet. - d. 4 Patch cords of 5 feet for each telecommunications closet. - e. 1 Set of any and all special tools required to establish a cross connect and to change and/or maintain a terminal block. #### 3.5 ADMINISTRATION AND LABELING ## 3.5.1 Labeling #### 3.5.1.1 Labels All labels shall be in accordance with ANSI/TIA/EIA-606. #### 3.5.1.2 Cable All cables will be labeled using color labels on both ends with unencoded identifiers per ANSI/TIA/EIA-606. ## 3.5.1.3 Termination Hardware All workstation outlets and patch panel connections will be labeled using color coded labels with unencoded identifiers per ANSI/TIA/EIA-606. #### 3.6 TESTING Materials and documentation to be furnished under this specification are subject to inspections and tests. All components shall be terminated prior to testing. Equipment and systems will not be accepted until the required inspections and tests have been made, demonstrating that the signal distribution system conforms to the specified requirements, and that the required equipment, systems, and documentation have been provided. #### 3.6.1 Unshielded Twisted Pair Tests All metallic cable pairs shall be tested for proper identification and continuity. All opens, shorts, crosses, grounds, and reversals shall be corrected. Correct color coding and termination of each pair shall be verified in the communications closet and at the outlet. Horizontal wiring shall be tested from and including the termination device in the communications closet to and including the modular jack in each room. Backbone wiring shall be tested end-to-end, including termination devices, from terminal block to terminal block, in the respective communications closets. These test shall be completed and all errors corrected before any other tests are started. ## 3.6.2 Category 5e Circuits All category 5e circuits shall be tested using a test set that meets the Class IIe accuracy requirements of ANSI/TIA/EIA-568-B. Testing shall use the permanent link test configuration of ANSI/TIA/EIA-568-B. Cables that contain failed circuits shall be replaced and retested to verify the standard is met. ## 3.6.3 Fiber Optic Cable Unless stated otherwise, tests shall be performed from both ends of each circuit. Connectors shall be visually inspected for scratches, pits or chips and shall be reterminated if any of these conditions exist. Each circuit leg and complete circuit shall be tested for insertion loss at 1300 and 1500 nm using a light source similar to
that used for the intended communications equipment. High-resolution optical time domain reflectometer (OTDR) tests shall be performed from one end of each fiber. Scale of the OTDR trace shall be such that the entire circuit appears over a minimum of 80 percent of the X-axis. -- End of Section --